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Abstract: Forestland parcelization (i.e., a process by which large parcels of forestland ownership are
divided into many small parcels) presents an increasing challenge to sustainable forest development
in the United States. In Southeastern Ohio, forests also experienced intensive forestland parcelization,
where the majority of forest owners own parcels smaller than 10 acres currently. To better understand
the impact of forestland parcelization on forest development, this study employed multi-source
remotely sensed data and land ownership data in Hocking County, Ohio to examine the relationship
between forestland parcel size and forest attributes, including forest composition and structure.
Our results show that private forestland parcels are generally smaller than public forestland (the
average parcel sizes are 21.5 vs. 275.0 acres). Compared with private lands, public lands have higher
values in all forest attributes, including forest coverage, abundance of oak-dominant stands, canopy
height and aboveground biomass. A further investigation focusing on private forestland reveals that
smaller parcels tend to have smaller forest coverage, less greenness, lower height and aboveground
biomass, indicating that forests in smaller parcels may experience more human disturbances than
larger parcels. The results also show that logarithmic models can well quantify the non-linear
relationship between forest attributes and parcel size in the study area. Our study suggests that
forestland parcelization indeed has negative effects on forest development, so it is very important to
take appropriate measures to protect forests in small ownership parcels.
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1. Introduction

According to the global land cover map derived from Landsat images [1], forests cover 28.35%
of the world. In the United States, about 36% of the land area, or 816 million acres, is forest land [2].
The forest of the United States has been well protected from clearing for agriculture, settlement,
and other uses since the 1920s [3]. However, speeding-up forestland parcelization, defined as the
subdivision of forest land holdings into smaller ownership parcels [4], is currently challenging
sustainable forest development, especially for 49% of the national forestlands owned by non-industrial
private forest (NIPF) owners [5]. Forestland parcelization increases the number of forest landowners
while decreasing the average size of parcels [6]. The increasing rate of forestland parcelization may be
driven by economic and demographic factors, such as death, urbanization, and income structure [5,6].
Forestland parcelization is a national trend. This seriously affects Southeastern Ohio where 85% of the
forestland is privately owned, and the majority of owners hold less than 10 acres.

Understanding the impact of forestland parcelization is fundamental to forest management and
conservation. Through field survey, field experiments, national or local inventory data, and landowner
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interviews, studies have suggested that the increasing forest parcelization has various implications
for the ecosystem and socioeconomic systems [7–9]. The implications may include: leading to forest
fragmentation from a landscape perspective [10], changing the composition and structure of forest [5],
altering the original habitat conditions, connectivity and the microenvironment [11], impacting many
forest-derived goods and services [4], threatening the timber products industry, diminishing economies
of scale, reducing public access to forested lands for outdoor recreation, and challenging the sustainable
forest management [12].

However, existing studies of forestland parcelization using traditional approaches have some
limitations. First, field work is very time consuming, costly, and requires observers with adequate
technical expertise [13]. For example, a field survey in Brazilian forest costs 145,550 dollars and 18,200
person-hours for recording 60,393 trees [14]. Second, due to budgetary constraints and difficulties to
access remote forests, it is impossible to complete surveys at all the locations on forestlands. Therefore,
conclusions drawn from field survey may be biased [15]. Although various sampling designs have
been used to improve the efficiency and representativeness, bias between estimated values by samples
and ground truth still exists. Third, sample based results do not provide enough spatially explicit
details. In contrast, remotely sensed data makes the inventories with low cost [16] and covers all
the locations in an area [15] compared with the traditional approaches for forest inventory. Both
active and passive remotely sensed data can achieve promising results for mapping forest composition
and estimating structural parameters. For example, Landsat images were used to map global forest
cover with 93% accuracy [17] and model forest characteristics in Georgia, USA with accuracy higher
than 80% [18]. Airborne LiDAR data were successfully used to estimate forest attributes, such as
tree height [19] and growing stock volume [20]. However, to the best of our knowledge, studies of
forest parcelization using remote sensing technology are very limited. A recent study used multi-year
Landsat images to identify harvesting events for private forests in Michigan from 1985 to 2011 [21].
Third, most of the existing studies focus on highly parcelized forests or compare forests separated by
long spatial distance [9,22,23]. As a result, it is not very convincing to conclude that forest parcellization
has brought negative effects on forest development without direct comparison between forests with
small and large parcels under the similar environmental conditions. To control for the confounding
factors of environmental conditions, including climate and soil, on the comparison [24,25], the forests
with different parcel sizes should be spatially adjacent within a relatively homogenous area.

To overcome the above-mentioned limitations of existing studies, this paper investigates the
impact of land ownership parcel sizes on forest composition and structure in Southeastern Ohio using
multi-source remotely sensed data. The first objective is to map forest composition and structure using
the cutting-edge remote sensing technologies. Considering that passive and active remote sensing data
complement each other in forest monitoring, this study makes full use of the strengths of different types
of remotely sensed data. The second objective is to reveal how forest parcelization affects the forest
development through comparing forests in the private and public lands and analyzing the relationship
between forest attributes and parcel size. In the selected study area, the public land parcels are much
larger than those of private holdings, which enables us to directly compare the forest composition and
structure of parcelized forest and non-parcelized forest under the similar environmental conditions.
The rest of the paper is organized as follows. Section 2 presents the study area and data sets. Section 3
describes the approaches for mapping forest attributes and the statistical analysis involved. Section 4
shows the results and Section 5 discusses the possible ways in which parcelization affects forest
development. Section 6 concludes this study.

2. Study Area and Data

2.1. Study Area

The study area is Hocking County in Southeastern Ohio (Figure 1). The study area covers
approximately 1098 km2. The major land cover is forests. The original forests (old-growth) in
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this area were cut or burned one or more times for agriculture and to fuel both industry and farm
homes. The vegetation types before European settlement in 1788 (pre-settlement) were mixed-oak,
mixed-mesophytic, and beech forests [26]. The second-growth forests in this region were heavily
disturbed by the harvesting of timber, coal mining, and animal grazing. Now, the major forest types
are oak-hickory and mixed-hardwood [27]. Abundant tree species include white oak, black oak, yellow
poplar, hickory, sugar maple, red maple, ash, pine, chestnut oak, scarlet oak and beech according to
forest inventory and analysis (FIA) data. The study area is composed of both private (85.4%) and
public lands (14.6%). One of the largest public lands is the Hocking Hills State Park. The public lands
are well-managed to create large, continuous blocks of forest, while the surrounding private lands
are increasingly parcelized under the pressure of population increase and commercial and industrial
development in the area [28]. Therefore, the selected study area represents an ideal laboratory to study
forest parcelization through direct comparison between two types of ownership.

Figure 1. The study area (Hocking County in Southeastern Ohio, USA) and the parcels of land ownership.

2.2. Data

The data used in this study include land ownership map, Landsat imagery, and airborne LiDAR
data. The land ownership map is a digital GIS file which records the ownership of each land parcel as a
polygon. This map was provided by the Hocking County Mapping Department. The land ownership
in this dataset was collected around year 2010. It recorded small parcels (e.g., lands occupied by
individual houses) to large (e.g., the state parks). All small parcels with area < 1 acre were excluded
from our analysis as trees were rarely planted in tiny parcels [29]. All parcels with area > 1 acre were
summarized in Table 1. The average parcel size of private lands is much smaller than that of public
lands (21.5 acres vs. 275 acres).

Table 1. Summary of parcel size of private and public lands larger than 1 acre in Hocking County, Ohio
(unit: acre).

Ownership Number of Parcels Minimum Maximum Mean Median Standard Deviation

Private lands 10165 1 975.9 21.5 6 43.4

Public lands 136 1.6 1503.6 275 244.4 242.3

Six cloud-free Landsat TM images were collected in different seasons during 2007 and 2008
(April 17, 2007, June 6, 2008, June 20, 2007, September 10, 2008, September 24, 2007, and October
8, 2008). Images were collected during a two-year period because cloud-free images in one year
could not cover all seasons and we assume that forests within a two-year period have minimal
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disturbances. These Landsat images covering the entire growing season of trees have higher capacity
for mapping tree species and modeling forest biophysical attributes than an individual image [30,31].
These Landsat images were leavel-1 terrain corrected (L1T) products downloaded from the United
States Geological Survey (USGS) EarthExplorer (http://earthexplorer.usgs.gov/). These images were
then calibrated into top-of-atmosphere reflectance using the solar angles and calibration coefficients in
their header files. Because there is hilly terrain within the study area, the Landsat images were further
topographically corrected by the classic C-correction method to remove the illumination differences on
steep terrains [32]. These Landsat images were used to map land cover and forest types in the study
area and model the forest attributes including greenness and aboveground biomass. The details are
explained in the Method section.

The airborne LiDAR covering the Hocking County was provided by the Ohio Statewide Imagery
Program (OSIP). The OSIP is a partnership between State agencies and the federal government to
develop high-resolution imagery and elevation data for the entire state to benefit GIS users at all levels
of government. The LiDAR data used in this study was 2 m first and last returns LAS format archived
by County which was downloaded from the OSIP website (https://ogrip.oit.ohio.gov/). The data was
collected in 2007 under leaf-off condition which can be used to estimate tree attributes with satisfactory
accuracy [33]. This LiDAR dataset was used to map the tree heights and stem density.

The ancillary datasets include a SRTM DEM data downloaded from USGS EarthExplorer and
ground plot data provided by the Ohio Department of Natural Resources and USDA Forest Service.
The SRTM DEM was resampled to 30 m to match the resolution of Landsat images. It was used to
assist the topographic correction of Landsat images and provide topographic features for mapping the
forest types. The group plot data provide the ground reference data for training and validating the
models for forest mapping and biophysical attribute modelling.

3. Methods

Figure 2 shows the flowchart of this study. Steps are detailed in the following sections.
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3.1. Mapping Forest Attributes

Landsat time series was used to map the forest types, greenness, and aboveground biomass.
In our previous studies, a hierarchical method was developed to get detailed forest types from dense
Landsat time-series and DEM data [31]. This hierarchical classification method classifies images into
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major land cover types in the first hierarchy and then classifies the forest class into more detailed forest
types in the second hierarchy. It integrates a feature selection and a training-sample-adding procedure
in the second hierarchy to improve classification accuracy. The accuracy of the proposed method
has been assessed by error matrix using ground reference data (95 plots) collected in Southeastern
Ohio. The overall accuracy, users’ and producers’ accuracy of forest type mapping reach 90% [31],
demonstrating that the method is capable of obtaining reliable results. This method trained by ground
samples was used to map forest types in Hocking County. Specifically, besides the five non-forest land
cover types (water, urban build-up, bare land, cropland, grassland), forests were classified into three
major types: pine forest, oak forest, and mixed-mesophytic forest (i.e., maple/beech/birch group) as
shown in Figure 3. This classification scheme considers the importance of oak forest for both ecological
and economic systems in the study area. Oak forests provide food and habitat for wildlife and support
the local timber industry. However, the abundance of oak trees has declined in recent decades [34].
It is necessary to investigate the presence of oak trees in forestlands with different parcel sizes.
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Figure 3. Forest types map derived from Landsat time series.

Normalized difference vegetation index (NDVI) is a widely used spectral index for describing the
greenness of vegetation. NDVI is the normalized reflectance difference between the near infrared and
the red bands. Considering that NDVI saturates in dense canopies [35], NDVI values derived from two
Landsat images, one image of June 20, 2017 representing the peak season (Figure 4) and another one of
September 24, 2007 representing descending season (image not shown), were used to investigate the
forest greenness in parcels with different sizes.

The forest aboveground biomass (AGB) was estimated using Landsat NDVI time series and
artificial neural network (ANN) method. Our previous study explored the use of seasonal NDVI time
series derived from Landsat images across different seasons to estimate AGB in Southeastern Ohio
by six empirical modeling approaches, including simple linear regression, stepwise multiple linear
regression, partial least squares regression, reduced major axis regression, random forest regression,
and ANN regression [30]. Results clearly show that NDVI in the fall season has a stronger correlation
to AGB than the peak season. Furthermore, using seasonal NDVI time series can obtain more accurate
AGB estimates and less saturation problem than using a single NDVI. From the comparison of these
six empirical methods, it is difficult to decide which is superior because they have different strengths
and their accuracy is generally similar. In this study, ANN model was chosen for mapping AGB in the
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study area because ANN obtained smaller root-mean-square error (RMSE) than other methods in the
validation data in Southeastern Ohio (RMSE = 37.31 ton/ha, R2 = 0.54) [30]. The AGB map of our study
area was shown in Figure 5.
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Figure 5. Above ground biomass estimated from seasonal NDVI time-series by an artificial neural
network model.

The canopy height was estimated from LiDAR data by using an open-source tool LAStools
(obtained from http://rapidlasso.com/LAStools). LAStools provides a series of tools for converting,
filtering, viewing, gridding, and compressing of the raw LiDAR data. Four steps were processed for
generating tree height map in the study area: 1) use “lasground” tool to classify the raw LiDAR points
into ground points and non-ground points; 2) use “Lasheight” tool to extract the height of each point
above the ground; 3) use “Lascanopy” tool to generate tree height at 2 m grid; and 4) resample the 2 m
grid tree height map to 30 m to match the spatial resolution of Landsat images, i.e., in each 30 m grid,
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calculate the average of all 2 m grids with height > 2 m assuming that grids with height < 2 m do not
have trees or only have small saplings. The 30 m tree height map is shown in Figure 6. For each 30
m grid, we also computed average intensity of returns. In leaf-off situation, backscattering intensity
of LiDAR points hitting stems or branches is lower than bare ground and other green vegetation, so
lower values of LiDAR intensity in winter could show higher stem volume [33]. Figure 7 shows that
the low values in intensity well match the pixels with high forest density (i.e., the dark green pixels) in
the summer Landsat image.
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3.2. Statistical Analysis

We first summarized the pixel-wise values of forest attributes into each land parcel. Based on all
30 m pixels within each parcel (the smallest parcel covers about 4 pixels), the forest coverage (i.e., the
percent of forest pixels in each parcel) and percent of other non-vegetation covers can be computed.
In each parcel, only forest pixels were used to derive the percent of oak trees, average biomass, average
NDVI, average tree height, and average LiDAR pulse return intensity.

We then compared forest composition and structural attributes between private and public parcels
using two-sample t-test. The null hypothesis is that means of forest attributes of two groups (i.e.,
private and public parcels) are equal in all aspects, including abundance of oak trees, AGB, tree height,
greenness, and stem volume. The alternative hypothesis is defined based on our prior knowledge.
For example, many previous studies found that forest coverage is lower in private lands than that in
public lands, so the alternative hypothesis of forest coverage is that the mean forest coverage in public
lands is larger than that in private lands. The test statistic, t value, was then computed by using the
mean and standard deviation of the two groups. Last, the P-value can be obtained by checking the
t-distribution table. The two groups are significantly different if P-value is lower than 0.05.

We further analyzed the relationship between forest attributes and parcel size by only using private
parcels because there are much more private parcels than public parcels and private parcels have larger
variability in size than public parcels (Table 1). In addition, forestland parcelization often happens
in private land rather than public land, so investigating how the size of private forestland affects
the forest attributes can help to predict the future scenario if the forestland parcelization continues.
To delineate this effect, we adopted a bin-based strategy. First, we divided private parcels into 14
bins with different size ranges (Figure 8). Here, unequal bins were used to ensure that each bin has
sufficient number of parcels because the number of parcels generally dramatically decreases with size.
Second, we summarized the forest attributes in each bin as the mean value and percentiles. Third, we
plotted each forest attribute versus parcel size. Last, we assessed how the forest attributes change with
the parcel size and modeled this relationship by regression analysis. The bin-based strategy is widely
used to explore the relationship between two variables with large samples because it can clearly show
the pattern from the messy sample points and meanwhile reduce the effect of outliers. For example,
a study analyzed how the vegetation greenness changes with elevation through dividing the elevation
range into bins with 100 m interval [36]. Serval private parcels with areas larger than 200 acres were
excluded from this analysis because they have very similar forest attributes with parcels in the range
150–200 acres.
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4. Results

4.1. Comparison between Parcelized Private Lands and Intact Public Lands

Table 2 lists the t-test results of various forest attributes between private and public lands. We can
see that all the alternative hypotheses should be accepted because all the P-values are smaller than
0.0001. The forest coverage, peak-season NDVI, fall-season NDVI, tree height and aboveground
biomass of public lands are significantly larger than those of private lands, and LiDAR intensity of
public lands is significantly lower than private lands. All these t-test results suggest that forests in
public lands are older and denser than those in private lands.

Table 2. Comparison of forest attributes between private and public lands by t-test (sd = standard
deviation; Ha = alternative hypothesis).

Forest Attributes
Private Lands Public Lands

Ha t-Test p-Value
mean1 sd1 mean2 sd2

Forest coverage 64.022 35.082 90.020 21.201 mean2>mean1 14.046 <0.0001
Peak NDVI 0.779 0.031 0.797 0.016 mean2>mean1 12.704 <0.0001
Fall NDVI 0.648 0.039 0.666 0.026 mean2>mean1 8.214 <0.0001

Lidar tree height 41.943 12.451 50.638 10.907 mean2>mean1 9.217 <0.0001
Lidar intensity 114.402 29.677 83.606 24.331 mean2<mean1 14.619 <0.0001

AGB 92.776 35.379 113.891 28.384 mean2>mean1 8.451 <0.0001

4.2. Relationship between Forest Attributes and Parcel Sizes of Private Lands

4.2.1. Forest Coverage and Abundance of Oak Trees

Figure 9 shows the percent of forest coverage and percent of non-vegetation versus parcel size.
From Figure 9, we can see that (1) larger parcels have larger forest coverage and smaller within-group
variance; (2) more lands were used for non-vegetation (e.g., construction and farming) in smaller
parcels; (3) parcels of 1–10 acres have large variance in percentage of non-vegetation land cover;
(4) when parcels >30 acres, the percentage of both forests and non-vegetation becomes relatively
stable, i.e., the mean percentage of forests reach 80% and the non-vegetation covers are about 7%;
and (5) logarithmic regression can well model the non-linear relationship of both forest coverage and
non-vegetation fraction against parcel size (R2 values are 0.77 and 0.74 respectively). The logarithmic
model suggests that the forest coverage increases (non-vegetation fraction decreases) rapidly at small
parcels but then the change steadily slows as parcel size increases.

Figure 10 shows that the abundance of oak trees (i.e., the ratio of oak-dominated forest over
total forest cover in each parcel) increases with parcel size. The mean value of oak tree abundance
becomes stable around 15% when parcel size is larger than 30 acres. In addition, the range of oak tree
abundance in each bin is large, suggesting that land parcels with similar size have very different oak
tree abundance. The relationship between oak-tree abundance and parcel size can be also modeled by
the logarithmic regression (R2: 0.86).

4.2.2. Forest Structural Attributes

Forest greenness represented by the NDVI values shows that greenness in both peak season and
descending season has an increasing trend with parcel size (Figure 11). The variability of NDVI in
peak season is smaller than that in the descending season in large parcels. The possible reason is
that forests in large parcels are dense so that the NDVI values saturate in peak season. Nevertheless,
the saturation problem is not serious in descending season so that forestlands with similar large parcel
size have more significant difference in NDVI values. More importantly, the mean NDVI values in
both peak season and descending season reach a stable value when parcel size is larger than 30 acres.
Logarithmic model fitted the relationship of both peak-season NDVI and descending-season NDVI
very well (R2 values are 0.93 and 0.89 respectively), and the peak-season NDVI changes faster with
parcel size than descending-season NDVI (rate of change: 0.0074 vs. 0.0062).
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Aboveground biomass also increases with parcel size (Figure 12). The mean AGB of bins increases
from 80 tons/acre in small parcels to 110 tons/acre in large parcels. The mean AGB of bins also reaches
a stable value around 110 tons/acre when parcels are larger than 30 acres. This non-linear relationship
can be quantified by a logarithmic model (R2: 0.88). The large range of AGB in each bin indicates
parcels with similar size have very different AGB values in the study area. AGB indicates the amount
of carbon stored in vegetation. Figure 12 suggests that large parcels have higher ability to sequestrate
carbon than small parcels.

LiDAR tree height and LiDAR intensity both show a clear pattern with parcel size (Figure 13).
The average tree height increases from 37 feet in parcels of 1–2 acres to 47 feet in parcels of 30–40 acres
and becomes stable after 30–40 acres. The leaf-off LiDAR intensity decreases with parcel size and also
becomes stable when parcels are larger than 30 acres, suggesting that stem volume is higher in larger
parcels. The relationship of both canopy height and leaf-off LiDAR intensity against parcel size can
also be well modeled by the logarithmic regression (R2: 0.85).
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5. Discussion

From Figures 9–13, we can conclude that forests in small parcels may experience more disturbances
than large parcels and consequently forests in small parcels are generally thinner, younger, shorter, and
have lower abundance of oak trees. The good performance of logarithmic regression for modeling the
relationship of various forest compositional and structural attributes suggests that forest composition
and structure change rapidly with parcel size but this change slows down after a certain parcel size.
Specifically, results of this study show that forests in parcels of 30 acre or larger are relatively stable.
From the relevant literature and field investigation in our study area, the following possible reasons
were explored.

First, forestland parcelization reduces forest coverage and increases forest fragmentation (i.e.,
the division of larger forest patches into disconnected small patches) and edge effects [37]. This is
because the ownership transfers are often associated with liquidation cuts [7] or forestlands are
developed by new owners for agriculture, logging, or settlement purposes [10,38]. A study in France
using historical cadastral map and aerial photographs detected both fragmentation and a decrease
in total forest area following the conversion of forest into agriculture during forestland parcelization
process [39]. Gustafson and Loehle used a timber harvest simulator and neutral model landscapes to
systematically study how parcelization affects forest fragmentation and found that parcelization of
landscapes significantly increased forest fragmentation [12]. A previous study in Hocking County
found that tourism grew dramatically because Hocking County has natural beauty and is close to the
capital city of Ohio, Columbus. As a result, many smallholders built hot-tub cabins in forestlands to
attract visitors [28].

Second, ownership parcelization may change forest composition and structure. Landowners
often have different purposes from the previous owners for owing forestland and thus use different
management practices [40]. As a result, the forest with different management practices may change the
forest composition and structure compared to the mature old-growth forests [27]. A previous study
based on interviews of smallholders in Southeastern Ohio found that smallholders implement different
management practices for maximizing their own benefits [41]. In addition, forest fragmentation has
undoubtedly negative effects on levels of pollination and seed production which may further change
forest composition and structure [24].

Third, it has been demonstrated that forestland parcelization alters the original habitat conditions,
connectivity and microenvironment [11,42]. When the native forests become more fragmented,
the remnant forest patches are threatened as the remnant forests become more and more isolated.
Matlack studied the microenvironmental gradients in Southeastern Pennsylvania and Northern
Delaware and found significant edge effects in light, temperature, littler moisture, vapor pressure
deficit and humidity [11]. These habitat changes and increased edge effects have negative effects on
biodiversity and wildlife population, especially for the endangered species [2,43].

Fourth, it is difficult to implement sustainable forest management in small land parcels. From an
ecological perspective, small forestland cannot be efficiently managed as a sustainable unit with most
traditional ecological methods [5]. Belin et al. applied a mail-back survey method [44], which was
proposed by Dillman [45], to obtain demographic information, gauge respondents’ attitudes toward
the three indices of an ecosystem-based management approach, and measure landowner preferences
toward issues surrounding forest conservation. Then, the authors used statistical tests to analyze the
results and found that 26% of the respondents have a neutral attitude or agree that ecological health
of their forest is not as important as their economic needs. Previous studies found that forestland
parcelzation happens more often in private lands than public lands [37,46], and our study found that
public forestland has healthier forests than private land (Table 2). Therefore, public purchases of
small private forests which are adjacent to public land and under threat, could be a solution for forest
conservation [46], or local government may open up a dialogue for more restrictive local land use
polices for conserving forest [47].
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This study has some limitations which can be further improved in the future. First, errors in the
remote sensing derived products, especially the aboveground biomass, forest type map, may introduce
uncertainties in the relationship between these forest attributes and the parcel size. This study applied
the cutting-edge methods developed recently and specifically in the study area to estimate biomass and
map forest types, as well as binning strategy to mitigate the impact of pixel-wise errors. However, to
better know whether these errors affect the analysis of forest attributes in different parcel sizes, further
study needs to collect more ground reference data to investigate the spatial distribution of errors.
Compared with biomass and forest type, the products derived from LiDAR data are more accurate and
reliable, such as the tree height and LiDAR intensity. Second, we did not study the trajectory of land
parcelization because such ownership transition data in our study area is not available. In this study,
we used forests in different parcel sizes to represent different stages of parcelization. Considering
that the other environmental conditions in the study area are relatively homogenous, differences in
forest attributes among parcels should be able to imply the influence of forest parcelization. If the
trajectory of forestland ownership is available, it is worth exploring the short-term and long-term
forest changes after the ownership deviation. Third, we did not apply multi-year remotely sensed
data to monitor the forest attribute change because of the limitation of training samples for mapping
forest attributes in other years. Alternatively, we compared autumn NDVI derived from two Landsat
images (Landsat-5 TM image on Sep. 24, 2007 and Landsat-8 OLI image on Oct. 8, 2018) to obtain
some preliminary results. The result shows that NDVI changes (i.e., 2018 NDVI - 2007 NDVI) of both
public and private lands are marginal (-0.07 vs. -0.06) and this minor NDVI decrease is mainly due to
the 14-day seasonal difference between two images, suggesting that both private and public forests did
not experience large change in the 12-year period. It is interesting that small parcels have a slightly
smaller NDVI decrease than large parcels (Figure 14). A possible reason is that young trees in small
parcels have rapid canopy development during the 12-year period while mature trees in large parcels
are more stable. The impact of land parcelization is a long-term process, so long-term satellite images
are needed by future studies to explore the temporal change of forests with different sizes. Forth, forest
composition and structure may be affected by other environmental factors besides land parcelization,
such as elevation. Our study area does not have large elevation variation (mean elevation 283 m,
and standard deviation 31 m) and there is no significant elevation trend with parcel size, but elevation
variation may introduce uncertainty in the findings of this study. Future studies should take more
factors into account when exploring the impact of land parcelization on forest development.
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6. Conclusions

This study used multi-source remotely sensed data to investigate the impact of parcel size on forest
composition and structure in the Southeastern Ohio. There are some interesting findings: (1) larger
parcels have a larger proportion of forest cover; (2) for small parcels, such as parcels between 1 and
10 acres, a large portion of land is used for construction and farming; (3) there is an increasing trend
of NDVI with parcel size, but it saturates when parcels are larger than 30 acres; (4) trees are higher
in larger parcels than small parcels; and (5) these nonlinear relationships between forest attributes
and parcel size can be quantified by logarithmic regression models. These findings are consistent
with existing studies, i.e., forests in smaller parcels may have more disturbances than in larger parcels
because of the frequent land transactions and management practices, and forests in small parcels make
it difficult to implement sustainable management. As a result, forests in larger parcels are generally
denser, higher and more mature than those in smaller parcels.

Another implication of this study is that it demonstrates a successful example of using remote
sensing data to investigate the impact of forest ownership. It is a valuable supplement to the traditional
field surveying and interview of land holders. It could be applied to study larger area if both ownership
and remote sensing data are available. Studies with more sites could help to achieve a comprehensive
understanding of the impact of land parcelization on forest composition and structure.
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