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Abstract: This paper presents a learning-based, physics-aware soil moisture (SM) retrieval algorithm
for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) mission. The goal of the
proposed novel method is to advance CYGNSS-based SM estimations, exploiting the spatio-temporal
resolution of the GNSS reflectometry (GNSS-R) signals to its highest potential within a machine
learning framework. The methodology employs a fully connected Artificial Neural Network (ANN)
regression model to perform SM predictions through learning the nonlinear relations of SM and other
land geophysical parameters to the CYGNSS observables. In situ SM measurements from several
International SM Network (ISMN) sites are used as reference labels; CYGNSS incidence angles,
derived reflectivity and trailing edge slope (TES) values, as well as ancillary data, are exploited as
input features for training and validation of the ANN model. In particular, the utilized ancillary
data consist of normalized difference vegetation index (NDVI), vegetation water content (VWC),
terrain elevation, terrain slope, and h-parameter (surface roughness). Land cover classification
and inland water body masks are also used for the intermediate derivations and quality control
purposes. The proposed algorithm assumes uniform SM over a 0.0833◦ × 0.0833◦ (approximately
9 km × 9 km around the equator) lat/lon grid for any CYGNSS observation that falls within this
window. The proposed technique is capable of generating sub-daily and high-resolution SM
predictions as it does not rely on time-series or spatial averaging of the CYGNSS observations.
Once trained on the data from ISMN sites, the model is independent from other SM sources for
retrieval. The estimation results obtained over unseen test data are promising: SM predictions with
an unbiased root mean squared error of 0.0544 cm3/cm3 and Pearson correlation coefficient of 0.9009
are reported for 2017 and 2018.

Keywords: artificial neural networks; CYGNSS; soil moisture retrieval

1. Introduction

Soil moisture (SM) has an active role in the Earth’s water cycle between the ground and the
air. This role makes SM a key land geophysical parameter for understanding hydrologic processes,
vegetation states, and climatic conditions in order to improve applications such as hydrologic modeling,
agriculture, crop yield estimation and vegetation change detection, as well as weather and climate
forecasts [1–3]. Global SM retrieval at high spatio-temporal resolutions, therefore, has been an
important research topic for the past several decades.

The current state of the science for global SM estimation relies on microwave remote sensing
with the use of traditional instruments such as monostatic radars and radiometers. This is because
the microwave frequencies are sensitive to the changes in the soil dielectric properties with respect
to the presence of moisture content [4]. In particular, L-band radiometry is commonly used because
it has an increased sensitivity to the near-surface SM (0–5 cm) as well as its reduced attenuation
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due to the atmospheric losses, surface roughness, and vegetation cover [5]. ESA’s Soil Moisture and
Ocean Salinity (SMOS) [6] and NASA’s Soil Moisture Active Passive (SMAP) [7] satellites are current
missions that have on-board L-band radiometers and provide SM retrievals with a spatial resolution of
around 40 km and revisit time of 2–3 days. On the other hand, radar backscattering generally offers
finer spatial resolutions (tens of meters to few km) within longer revisit times except SMAP’s radar
instrument (L-band), which was capable of providing a spatial resolution of 3 km and a revisit time of
2–3 days with the help of its rotating antenna before a hardware failure in mid 2015. SMAP mission
was designed to make use of a 6 m mesh reflector antenna for both radar and radiometer instruments
to provide high spatio-temporal resolution SM products [7,8]. In addition, the radar backscattering
data of ESA’s Sentinel-1 (C-band) [9] and DLR’s TERRASAR-X (X-band) [10] were used for global
SM estimates.

Global Navigation Satellite System Reflectometry (GNSS-R) is an alternative microwave remote
sensing approach, which is based on reception of the reflected GNSS signals from the Earth surface
in a bistatic geometry [11]. This approach shows a great potential for remote sensing of SM because
it operates at L-band. Moreover, it can offer high spatial resolutions with low revisit times by using
constellations of small satellites due to being strictly “receive-only” [12]. GNSS-R applications have
seen advancements for various Earth science areas over the past two decades that have resulted in
the launch of new satellite missions [13–16]. For instance, the first dedicated spaceborne GNSS-R
receiver was a secondary payload on-board the UK Disaster Monitoring Constellation (DMC) [17]. It
has demonstrated the potentiality of GNSS-R for the remote sensing of ocean, ice, and land geophysical
parameters [18]. The UK Technology Demonstration Satellite (TDS-1) was launched in 2014 with an
improved primary GNSS-R payload, Space GNSS Receiver-Remote Sensing Instrument (SGR-ReSI),
which provided more data that were used to study GNSS-R sensitivity to SM [19,20]. NASA’s Cyclone
GNSS (CYGNSS) was launched in December 2016 to improve weather predictions by estimating
ocean winds between 38◦ north and 38◦ south latitudes [21]. CYGNSS has eight small satellites in
orbit, each with four channels, allowing simultaneous measurements from up to 32 channels. It has a
mean revisit time of seven hours over the ocean. The key orbital and instrumental specifications of
the CYGNSS mission are listed in Table 1. The constellation records a considerable amount of land
observation data as well. CYGNSS measurement sensitivity to the surface SM has been reported
by multiple studies [12,22–24]. These efforts demonstrated GNSS-R’s potential to complement the
traditional passive and active instruments for monitoring surface SM at global scales for improved
spatio-temporal resolutions.

Table 1. Orbital and instrumental specifications of CYGNSS [22,25].

Parameter Value

Orbit Non-synchronous
Altitude ∼520 km
Period 95 min

Spatial Resolution ∼25 km × 25 km (incoherent), ∼0.6 km × 6.6 km (coherent, theoretical minimum)
Revisit Times 3 h median, 7 h mean (over the ocean)

Frequency 1.57542 GHz
Polarization Left-hand circularly polarized (LHCP) (Down-looking GNSS-R antenna)

CYGNSS is not designed for land observations; however, a CYGNSS-based, accurate SM retrieval
algorithm could enable scientists (i) to specify the requirements for dedicated SM missions of the future,
(ii) to create new algorithms utilizing existing land data, and (iii) to discover new calibration/validation
approaches for dedicated GNSS-R SM missions. Motivated by this, there have been increasing efforts
to develop SM retrieval algorithms for CYGNSS observations. For example, Chew and Small [22]
correlated the changes in the CYGNSS signal-to-noise ratio (SNR) with the SMAP SM estimations,
assuming that CYGNSS land measurements are dominated by the coherent reflections. They used mean
SMAP SM values as reference with these correlations to obtain daily, CYGNSS-based SM estimations
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from SNR changes for each SMAP Equal-Area Scalable Earth (EASE) grid (36 km × 36 km) [26]. The
overall unbiased root-mean-squared error (ubRMSE) of their algorithm is 0.0450 cm3/cm3. Although
the estimation method itself relied on SMAP SM data as a reference, its significant benefit was that
linking CYGNSS SNR to SMAP SM products allowed the use of CYGNSS observations to fill in the gaps
between the adjacent SMAP observations. Kim and Lakshmi [27] introduced a relative SNR (rSNR)
and SM derivation from CYGNSS delay-Doppler maps (DDM) to infill the gap between adjacent
SMAP revisits. They reprojected the CYGNSS SNR observations into SMAP’s 9-km EASE grids and
calculated the average of these grids to acquire daily SM estimations. They combined rSNR with
SMAP SM values to acquire daily SM estimations over high vegetation density as well. They reported
correlation results at useful levels (Pearson R of 0.77 between CYGNSS-derived SM and SMAP) over
moderate vegetation density but with reduced correlations (R = 0.68) over dense vegetation; however,
they did not report any error level (such as ubRMSE). Carreno-Luengo et al. [23] did not propose
a CYGNSS-based SM estimation method; however, they made use of an approximated CYGNSS
reflectivity, which is the ratio of the calibrated reflected and direct SNR measurements, assuming
predominant coherent reflections over land. They linked CYGNSS reflectivity approximation to the
SM changes for several land cover types. Clarizia et al. [28] introduced the trilinear regression-based
reflectivity–vegetation–roughness (R–V–R) algorithm that derives daily SM estimations at a 36 km
× 36 km resolution as a function of the CYGNSS reflectivity as well as SMAP vegetation opacity
and roughness coefficient. The algorithm was developed considering the dominance of the coherent
reflections over land. The R–V–R performance was compared globally to the SMAP SM product and
reported to have a RMSE of 0.07 cm3/cm3. Al-Khaldi et al. [24] proposed a time-series SM retrieval
algorithm that produces 3-day and 1-day SM estimates. In contrast to former studies, they assumed
that the CYGNSS land returns are mostly driven by the incoherent scattering unless inland water
bodies exist within the footprint. Therefore, they used the CYGNSS normalized bistatic radar cross
section (NBRCS) and mean-square slope (MSS) instead of the DDM SNR. As a result, they provided SM
estimations at relatively coarse resolutions (0.2◦×0.2◦ lat/lon grid roughly 22 km around the equator)
with an overall RMSE of 0.04 cm3/cm3. They constructed a system of equations for 30-day time-series
of the CYGNSS measurements, which is indeed an under-determined system with 29 equations. Hence,
they incorporated the SMAP maximum and minimum SM values into the algorithm for bounding
the system. They also assumed that changes in vegetation and surface roughness occur much slower
compared to changes in SM.

This paper proposes a physics-aware machine learning approach through capturing the nonlinear
dependencies of the CYGNSS observables to SM values and several bio/geophysical parameters
that represent vegetation and ground effects. An Artificial Neural Network (ANN) is employed to
learn the complex nonlinear relations. The term “physics-aware” in this manuscript refers to the
use of several ancillary data sets and International Soil Moisture Network (ISMN) measurements to
represent the vegetation and ground dynamics in the learning process. The details of the data usage
will be explained in the next section. Daily SM measurements are used both in training of the model
and validation of the SM predictions. One of the main objectives of this study is to initiate a novel,
practically applicable SM retrieval algorithm that can provide sub-daily SM products within a few
kilometers by utilizing the individual CYGNSS observations as the algorithm inputs. Once trained on
a reference data set, this method neither requires SM information from other satellite missions, nor
operates on spatial or temporal averaging of the CYGNSS observations. SM retrieval performances for
multiple ISMN sites are visually and quantitatively demonstrated.

The rest of the paper is organized as follows: Section 2 describes the theoretical background of
the GNSS-R based SM retrieval, possible use of CYGNSS data products, and the related challenges,
followed by Section 3 with the explanation of the SM retrieval methodology, details of the ANN model,
acquisition of the data sets, as well as training and validation. Section 4 provides the SM estimation
results along with the visualizations and statistical performance metrics achieved. Section 5 gives a
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comprehensive discussion of the findings and points to be improved in the future. Section 6 concludes
the study.

2. Theoretical Background

Bistatic CYGNSS radars receive the L-band GNSS-R signals that are transmitted by the GPS
satellites and subsequently forward-scattered from Earth’s surface in the specular direction. This
configuration of the CYGNSS and GPS constellations functions as a bistatic radar at L-band, which
receives information relevant to the scattering surface properties. SM can be retrieved as part of
such information overland as it is the primary determinant of the dielectric constant of the scattering
surface. This section provides theoretical background for SM retrieval from bistatic radar observations,
potential use of CYGNSS observables in such a task, and related challenges.

2.1. Inversion of the Bistatic Radar Equations

An ideal GNSS-R based SM retrieval approach would rely on inversion of the bistatic radar
equations to acquire the surface reflectivity. The surface reflectivity would be corrected for the
vegetation cover and surface roughness effects to obtain a Fresnel reflection coefficient. Fresnel
reflection coefficient could then be related to SM with the help of Fresnel reflection equations.

For cases where specular reflections are fully dominant, the coherent component of the bistatic
received power can be written as follows [11,29–31]:

Pcoh
RL =

(
λ

4π

)2 PtGtGr

(rst + rsr)2 ΓRL(θi), (1)

where Pcoh
RL denotes the coherently received power. The subscripts R and L stand for the right-hand

circularly polarized (RHCP) GNSS transmit antenna and the LHCP downward-looking GNSS-R
antenna, respectively [11]. λ is the free space wavelength, Pt is the peak power of the transmitted
GNSS signals, Gt is the gain of the transmitter antenna, Gr is the gain of the receiver antenna. rst is
the distance between the specular reflection point and the GNSS transmitter, while rsr is the distance
between the specular reflection point and the GNSS-R receiver. ΓRL(θi) denotes the specular reflectivity
at a local incidence angle of θi.

The incoherent component of the bistatic received power can be written as follows [32,33]:

Pinc
RL =

(λ)2

(4π)3
PtGtGr

r2
strsr,2

σRL (2)

where Pinc
RL denotes the bistatic received power due to the the diffuse scattering over the surface. σRL is

the bistatic radar cross section (BRCS) in m2. BRCS can be further defined as follows:

σRL = Asσ0
RL, (3)

where the quantity As is the contributing surface area (frequently called the glistening zone [11]), from
where the diffuse scattering originates. σ0

RL is the normalized BRCS (NBRCS), which includes the
spreading loss and the path-dependent phase terms for diffuse mechanisms (such as single scattering
or multi-scattering) in the various multi-path directions for the scattering particles (mainly due to the
vegetation canopy) and the surfaces (topography and roughness) [31].

The bistatic received signals are assumed to be dominated by the coherent reflections when the
surface is relatively flat (no topographic relief) and smooth (weak roughness), having no or non-heavy
vegetation cover [11,12,22,28,34]. The surface reflectivity in this case can be obtained by directly solving
(1) for ΓRL(θi), as shown below:
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ΓRL(θi) =

(
4π

λ

)2 Pcoh
RL (rst + rsr)2

PtGtGr
. (4)

Furthermore, it can also be computed by substituting Equation (1) into Equation (2) with Pcoh
RL =

Pinc
RL (i.e., equating the right-hand-sides of two equations to each other) and obtaining ΓRL(θi) as a

function of σRL [35] as follows:

ΓRL(θi) =
σRL(rst + rsr)2

(4π)r2
str2

sr
. (5)

Above ΓRL calculation (correction for the path loss and the 4π term) functions as a correction to
σRL for coherency assumption, whereas σRL is originally computed assuming incoherency.

After obtaining the surface reflectivity, ΓRL(θi), by using either (4) or (5), the Fresnel reflection
coefficient, <RL(θi), should be derived from ΓRL(θi) for SM retrieval. This is because <RL(θi) is mainly
driven by the moisture content of the soil (SM) [4]. <RL(θi) can be calculated by correcting ΓRL(θi) for
the vegetation [36] and surface roughness effects assuming the rough surface under the vegetation to
be flat and smooth and to follow Kirchhoff’s approximation with a Gaussian height distribution [37]
as follows:

ΓRL(θi) = <RL(θi)
2γ2exp(−hcos2(θi)), (6)

where the exponential term in (6) accounts for the surface roughness effects. The h-parameter is assumed
linearly related to the root-mean-square-height surface roughness [38], as follows:

h = 2k0s, (7)

where k0 is the angular wavenumber and s is the surface root-mean-squared (rms) height.
The squared transmissivity, γ2, in (6) accounts for the wave attenuation as the waves propagate

from the top of the vegetation canopy to the ground and then from the ground to the top of the
vegetation cover again. The transmissivity depends on the vegetation optical depth, τ, and the
incidence angle as follows:

γ = exp(−τsec(θi)). (8)

γ and τ (and parameter b in (9)) are dependent on the electromagnetic signals’ polarization, but the
polarization notation is waived here for simplicity. The vegetation optical depth has been previously
related to vegetation water content (VWC) and a land cover-based proportionality value (b) that
depends on both the vegetation structure and the microwave frequency in the literature [36], and this
approach has been successfully applied to the coarse spatial resolution SMOS/SMAP missions [6,7], as
shown below:

τ = b×VWC. (9)

VWC was empirically derived from normalized difference vegetation index (NDVI) by the SMAP
mission with additional utilization of the minimum and maximum NDVI values of ten-year time-series,
and the stem factor parameter that comes from a land cover-based lookup table (LUT) [39] as follows:

VWC = (1.9134× NDVI2 − 0.3215× NDVI) + stem f actor× NDVImax − NDVImin
1− NDVImin

. (10)

Equation (6) could be solved for the Fresnel reflection coefficient, <RL(θi), substituting equations
from (6) to (10). It could then be related to the soil dielectric constant, εr, with the help of the Fresnel
reflection equations as follows:

<RL(θi) =
1
2
(<VV(θi)−<HH(θi)), (11)
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where

<HH(θi) =
cosθi −

√
εr − sin2θi

cosθi +
√

εr − sin2θi
, (12)

<VV(θi) =
εrcosθi −

√
εr − sin2θi

εrcosθi +
√

εr − sin2θi
. (13)

The soil dielectric constant, εr, can be related to SM with the help of a ground dielectric mixing
model by using soil texture information. A number of dielectric mixing models has been developed in
the literature such as Dobson [4], Mironov [40], or Wang–Schmugge [41] models. It should be noted
that some of these models might require the use of additional geophysical parameters such as soil
temperature [40].

2.2. Potential Use of CYGNSS Data

CYGNSS receivers process delay-Doppler maps (DDM) as the main observatory product [11].
CYGNSS Level 1 v2.1 Science Data Products, definitions of which can be found in Appendix A, include
a number of geometry- and instrument-related DDM-derived variables.

With respect to the consideration of the dominant coherent reflections described previously, the
surface reflectivity can be approximated by using either (4) or (5) with the CYGNSS data products. For
instance, the CYGNSS data can be substituted into the calibration parameters in either equation as
follows: gps_tx_power_db_w for Pt, gps_ant_gain_db_i for Gt, sp_rx_gain for Gr, tx_to_sp_range for
rst, and rx_to_sp_range for rsr. In order to perform the calculation by using (4), the bistatic received
power, Pcoh

RL , needs to be substituted by a CYGNSS observation. Using either ddm_snr or the peak of
the power_analog DDM was investigated by previous studies [22,23,27,28,35]. The ddm_snr product
accounts for the peak DDM signal-to-noise ratio (SNR) and is computed as 10log10(Smax/Navg), where
Smax is the maximum value (in raw counts) in a single DDM bin and Navg is the average raw noise
counts per bin [33].

To solve (5) for the surface reflectivity, brcs data product (Appendix A) of the CYGNSS mission
can be used. In principle, this should produce an output equal to the use of peak power in (4); however,
the resulting reflectivity approximations have differences from each other, which is most likely due
to the internal calibration process when generating brcs. Although the CYGNSS data products are
originally calibrated for ocean surface sensing, using brcs over land is valid since it is only calibrated
for the instrumental and geometric parameters [35]. brcs is published as a DDM within the CYGNSS
Level 1 data; however, the peak value can be exploited under the coherency assumption. The rest of
the derivation through (5) is based on the calibrations with respect to the range terms.

2.3. Challenges

Despite the potential usability of the CYGNSS data products in the reflectivity calculations
through (4) or (5), the uncertainties in the determination of these data products in the present Level 1
data version (v2.1) would introduce errors in the estimations. Uncertainties in the current CYGNSS data
include estimation of the receiver gain as well as the GPS transmitted power and gain. Furthermore,
the transmitter and the receiver ranges to the specular point (SP) might involve errors since the current
SP calculation of the CYGNSS mission uses an ellipsoidal model of the Earth, ignoring topography
over land [28,42]. Since the equations from (4) to (11) can only provide the optimal solution with the
computation of an absolute reflectivity, such errors would require subsequent corrections for accurate
SM retrieval.

Additionally, varying land covers (especially, mixtures of heavy vegetation canopies such as
forests) and topographic relief over land can introduce an ambiguity about where and under what
conditions the coherent reflection regime is dominant. When the incoherent component of the bistatic
received power superimposes or dominates the coherent reflections, the use of (4) and (5) would lead
to inaccuracies.
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In addition to the aforementioned challenges so far, the SM retrieval process itself contains high
complexity and nonlinearity. This is because Equations (4) through (11) imply that the retrieval
problem is dependent not only on the reflectivity and SM but also on the vegetation, surface roughness,
topography, and soil texture through a combination of linear and nonlinear relations. Moreover,
these land geophysical parameters have distinct variability ranges. In addition, the CYGNSS DDM
instrument (DDMI) has diverse sensitivities to these parameters [43]. As a result, CYGNSS observations
exhibit nonlinear relations with the dynamic land parameters. This leads to parameter ambiguity,
where varying combinations of multiple land geophysical parameters might result in the same or
close sensor measurements. Parameter ambiguity makes the SM retrieval an ill-posed problem.
Additionally, to obtain accurate retrieval results, the impact of the measurement geometry (incidence
angle) as well as the internal and external noise need to be properly accounted for. Previous airborne
GNSS-R experiments and modeling studies reported supporting observations and simulated results
for these effects, where a dynamic range of roughly 15 dB is determined jointly by the several dynamic
geophysical parameters throughout crop seasons [34,44].

The CYGNSS constellation has sub-daily, quasi-random observations with fine spatial resolutions.
Despite the advantage due to high spatio-temporal resolution, this complicates the use of ancillary data
for accurate representation of the land geophysical parameters. In other words, finding sufficiently
accurate input parameters at the high spatio-temporal resolutions of the CYGNSS observations to
correct the vegetation and surface roughness effects as well as solving the Fresnel reflection equations
are a concern. It is evident from Equations (4)–(11) that knowledge of the various parameters from
vegetation and surface roughness to soil texture is needed at CYGNSS’s resolution for accurate retrieval
using the given physical model for the coherent reflection assumption. In fact, simplified LUTs (such
as land cover-based or globally constant values) or average values per coarse grids were used to
approximate these parameters in the coarse spatial resolution SM retrieval missions such as SMOS [45]
and SMAP [38]. The reduced sensitivity of the radiometers to the roughness and vegetation makes this
possible for the relatively coarse observations of these missions. Nonetheless, CYGNSS provides quite
fine spatial resolutions (from hundreds of meters to several kilometers, depending on the coherence,
incidence angle, elevation, and orientation) with frequent revisit times (several hours to few days),
and its measurements are highly sensitive to the topography, surface roughness, and vegetation
changes [23]. Thus, even successive observations along the CYGNSS track can have largely different
values due to the spatial variations in these land geophysical parameters. Figure 1 illustrates this
phenomenon by inspecting the CYGNSS observations after the Hurricane Florence landfall on North
Carolina, USA. It shows the mean of the uncalibrated CYGNSS SNR values from 14–18 September
2018 that are averaged per SMAP grid pixels (roughly 36 km × 36 km). The zoomed-in version of
one of the grids demonstrates the actual CYGNSS data where spatial and temporal variability of the
CYGNSS measurements even within a SMAP pixel is apparent. It is evident from Figure 1 that the
CYGNSS mission, or GNSS-R in general, offers a sufficiently high spatio-temporal resolution which
can help improve hydrological and agricultural applications. Therefore, the detailed information from
this resolution gets lost due to any spatial gridding and/or temporal averaging while developing
a CYGNSS-based SM retrieval methodology. For instance, previous SM retrieval attempts gridded
multiple CYGNSS data points into larger grids (such as 36 km× 36 km SMAP EASE-grid) even though
the coherent reflections over land are considered [22,28].

Regarding the methodological challenges and the retrieval complexities described so far,
regression techniques can be practical for the CYGNSS-based SM retrieval problem instead of pure
explicit solution of the physical model shown in Section 2. In principle, such techniques are based on
fitting a regression model between the known SM values from a reference data set (such as SMAP,
SMOS, or in situ SM networks) and the CYGNSS observations (possibly in conjunction with ancillary
data), and exploiting this model to perform future SM estimations. There have been previous efforts
conducted to obtain variations of linear regression models [22,28]. As Clarizia et al. [28] state, however,
linear regression approaches may be too simplistic to deal with the nonlinear dependence of the
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CYGNSS observations on SM and the other land geophysical parameters (SM, vegetation canopy,
topography, surface roughness, and soil texture). For instance, large local variations between NDVI
and topography occur at very high resolutions (few tens of meters) [46]. Such a high spatial variation
of parameter correlations, combined with diverse sensitivity of CYGNSS DDMI to different parameters,
would make linear regression approaches perform poorly.

Figure 1. Multiple CYGNSS observations (uncalibrated DDM SNR) that are averaged into the SMAP
grids. Data are from 14–18 September 2018 over North Carolina, USA (The landfall of the Hurricane
Florence was on 14 September 2018).

3. Soil Moisture Retrieval Methodology

We have developed a new, CYGNSS-based SM retrieval methodology that exploits a
non-parametric, nonlinear machine learning (ML) technique, namely ANN. The decision to use
this method is motivated by its following properties and correspondences to the aforementioned
requirements as well as challenges of the SM retrieval from CYGNSS observations:

• Nonlinear ML algorithms are known for their solid power to solve regression problems where a
mix of linear and nonlinear dependences exists between parameters [47].

• Such techniques, ANNs in particular, are capable of approximating/learning complex mappings
within multi-dimensional parameter spaces with the help of advanced learning algorithms.

• ANNs can, in principle, be trained to approximate any measurable function to any desired degree
of accuracy to represent arbitrary input–output relations [48]. It should not turn out that the
methodology in this study relies on such arbitrary relations. On the contrary, the CYGNSS
observables and ancillary data that are major inputs to the regression process are used in order
to fulfill the linear/nonlinear relations as well as calibration/correction requirements shown in
Section 2. The property of ANNs makes the use of proxy input features possible for the purpose
of fine-tuning the overall model performance.

• ANNs are non-parametric models, meaning that the number of parameters that can be input to the
retrieval process is flexible, in contrast to the requirement for fixed number of parameters in the
parametric models (such as traditional regression models, physical and/or empirical models). This
can help advance the CYGNSS-based SM retrieval approaches by introducing the use of additional
parameters into the retrieval process. For instance, the CYGNSS trailing-edge slope (TES) can
be input into the SM retrieval as a coherency/incoherency indicator in addition to reflectivity,
as previously practiced for a study of inundation detection by using another non-parametric
learning method [35], instead of dealing with the explicit determination of the coherency.

• The non-parametric nature of ANNs make these models applicable to learn many different
kinds of data regardless of their statistical properties. In other words, the retrieval process can
integrate data coming from different sources with even poorly-defined (or unknown) probability
distributions and relate them well to the parameter of interest [47]. To illustrate, LUT-based SMAP
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data such as h-parameter (roughness parameter) and stem factor [39] can be incorporated into the
CYGNSS SM estimates, combining with in situ data such as land cover and NDVI.

• Consequently, such models have to make fewer assumptions about the data distribution,
compared to the parametric models. This should not, in turn, mean that the parameters of the
CYGNSS-based SM retrieval process have poorly-defined probability distributions. In contrast,
it will be demonstrated throughout this section that most of the input parameters coming from
CYGNSS observations and ancillary data exhibit well-defined distributions. However, it is a
powerful flexibility for ancillary data usage that there is no need to make any assumption about
the data distributions.

• The use of such learning algorithms eliminates the need for development of a parametric model
that is aimed at explicitly solving the electromagnetic relations and/or relating the in situ
observations to sensor measurements. This could be beneficial for the SM retrieval from CYGNSS
observations to overcome the aforementioned limitations of ancillary data and possibility of too
simplistic assumptions.

• ANNs are generally said to be a good balance between accuracy, stability, and computational
speed [9].

Throughout this section, insights into the ANN model architecture will be provided first, then
detailed information about the data sets that are used in this study will be given, and, finally, how the
data sets are used in the learning process (training and validation) will be explained.

3.1. ANN Model Architecture

In this study, we employ a fully-connected ANN architecture, also known as Multilayer Perceptron
(MLP), for the nonlinear regression problem, as shown in Figure 2. Input features to the learning
process are the surface reflectivity, TES, and SP incidence angle from the CYGNSS observations; NDVI
and NDVI-derived VWC from MODIS Aqua Surface Reflectance Daily Global 500m data set [49] to
represent the vegetation canopy; elevation, terrain slope, and h-parameter values from the CGIAR-CSI
SRTM 90m, Version 4 digital elevation model (DEM) database [50] to stand for the surface dynamics.
The selection of these input features were determined after a number investigations on their individual
and combined contributions to the estimation performance. The results of these investigations will be
provided in Section 4 (see Table 4). The acquisition of the input features from CYGNSS and ancillary
data sets as well as the SM data will be comprehensively explained later in this section.

Figure 2. Artificial Neural Network with two hidden layers. Input features and the output node are
color-coded with respect to separate data sets from which the parameter values were derived. (Γbrcs is
the reflectivity calculated from BRCS and will be defined later.)
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Reference SM data (in the output layer) are used for optimization of the ANN parameters
(minimization of the loss function) in the training stage and assessing the model performance in the
validation phase. The proposed model minimizes the loss function, which is defined as the squared
error between the model-calculated SM and the reference SM values, over the training data set by
running over a predetermined number of iterations. ANN parameters are learned through a stochastic
gradient descent solver algorithm, where, within each ANN iteration, the model parameters are
updated by computing the partial derivatives of the loss function with respect to the ANN parameters
(back-propagation) [51,52]. In other words, the model learns in the training phase the nonlinear
dependences between the CYGNSS measurements and the reference SM labels with the corresponding
ancillary data. Then, the trained model uses these dependences to make future SM estimations for a
given set of CYGNSS observations and ancillary data.

In fully-connected ANNs, neurons of one layer are fully interconnected to each other neuron of
the adjacent layer. Each layer has a weights-array that can be trained by the forward and backward
propagation mechanisms. This array controls the linear strength of the connections to the next layer [51].
Assuming that the number of neurons in ith layer is Ni, the weights-array at the ith layer has a size
of (Ni+1 × Ni). The inputs-array has a size of (8 × M), where 8 is the number of inputs and M is
the number of data samples. The result of the matrix multiplication between weights-array and
inputs-array of a particular layer is given as input to the next layer. To account for bias in such a linear
relation, a trainable bias value is added to the sum at each neuron. The process described so far defines
no more than a linear relation in each neuron, and, if it was the only operation for the entire ANN,
it would only result in a linear regression. The essential part of ANNs that make them powerful to
solve nonlinear regression problems is the activation function for each neuron. In the literature, a
number of different activation functions are used such as Rectified Linear Unit (ReLU), logistic, or tanh
activations [53,54]. These functions are responsible for taking the corresponding bias-added sum as
input and transferring it to a new value with the help of the corresponding nonlinear relation. This
process at each neuron is repeated until the output layer is evaluated, which gives the predicted SM
value in this study. The calculation from inputs to the output is named forward propagation. The
network uses the training data and back-propagates the error information by updating the weights
and bias in each layer [51] to minimize the defined loss function with the help of a stochastic gradient
descent algorithm. The entire process makes one iteration of forward and backward propagation.
Such iterations are made until the loss function reaches a threshold minimum value or a maximum
number of iterations are performed. After the described learning process is finished, the final set of
node weights and biases for each layer builds up the trained ANN model for SM predictions. This
learned network will produce SM estimates from any new input data parameters through a single
forward propagation.

We have tested several ANN structures, and the ANN parameters that give the best performance
out of our investigations are as follows: The input layer has the same number of nodes as the number
of used features, which is 8. The output layer has a single node which is the predicted SM values. ANN
has two hidden layers in addition to the input and output layers, as shown in Figure 2. The nonlinear
activation function at each layer is chosen to be the Rectified Linear Unit (ReLU) function [53] as it
gives the best overall results compared to logistic or tanh activation functions [54]. The last layer is only
a regression layer with no activation function. The Adam solver, which is a first-order gradient-based
optimizer for stochastic objective functions [55], is employed for solving optimal weights through
loss-function minimization with a learning rate of 0.0001.

3.2. Data Sets

This subsection provides details about the acquisition of the SM, CYGNSS, and ancillary data
sets as well as their expected contribution to the regression, and the quality control steps to eliminate
erroneous data from the analysis.
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3.2.1. Reference Soil Moisture Data

The present study uses daily SM measurements from in situ ISMN sites as reference for the
training and validation. The decision to use these data instead of other global SM sources (such
as SMAP/SMOS) is built upon three main reasons: (i) comparisons can be made better in a daily
basis, compared to 2–3 day revisit time of SMAP and SMOS missions. (ii) This study is conducted
to investigate high spatial resolution CYGNSS-based SM estimates; however, comparisons with
missions like SMAP or SMOS would require the use of a resolution of roughly 36 km, which
under-utilizes CYGNSS’s potential. (iii) If the learning is done using SMAP-like satellite observations,
the performance of the learning process will be limited by the retrieval performance of that source.
For this purpose, a 0.0833◦× 0.0833◦ lat/lon grid (approximately 9 km × 9 km around the equator)
centering each SM site is considered as a representativeness window where the SM measurements are
assumed to be constant. Although this assumption may not always hold as SM can vary much across
short distances, it is a necessary assumption in the current state-of-the-science. For instance, the use
of SMAP or SMOS missions would require to assume a constant SM value over 36-km regions due
to the resolution. Moreover, similar approaches were made in the literature; for example, Dorigo et
al. [56] assumed a coarse 50-km window around the ISMN sites. Hereafter, the SM representativeness
window around SM sites will be called a 9-km grid in the manuscript.

SM data from 18 ISMN sites throughout North America and Australia are analyzed, considering
that there are a sufficient number of data samples (CYGNSS observations, reference SM values, and
corresponding ancillary data) to input to the ANN model as well as there being enough variability
within each parameter (see Figure 6). Fifteen ISMN stations are chosen from Soil Climate Analysis
Network (SCAN) sites from the United States of America [57], and the remaining three are from
an OzNet Hydrological Monitoring Network site from Australia [58]. Detailed information about
these SM sites are given in Table 2. The locations and International Geosphere-Biosphere Programme
(IGBP) land cover types of these ISMN sites are shown in Figure 3, which is visualized by using the
MODIS/Terra + Aqua Land Cover Type L3 Yearly Global 500 m V006 data set [59] via Google Earth
Engine Python API [60]. The selection of these ISMN sites are based on the following reasons: (i)
The latitudinal coverage of CYGNSS (38◦ north and 38◦ south) limits the use of several networks; for
example, no station from Europe can be included in this study. (ii) Because GNSS-R is sensitive only to
the top 5 cm of the soil, the ISMN sites that measure SM at this depth are considered comparable to
the CYGNSS estimations [56]. For instance, the COSMOS network would be an alternative network,
but their measurements are taken from a varying interval of 0–39 cm. (iii) The uniformity of the
sensor technology is another constraint. Despite the internal uncertainty of each SM probe, choosing
SM networks of the same SM measurement technology would avoid additional biases between the
networks. SCAN and OzNet sites are chosen because most of the stations of both networks employ
the same instrument (Stevens Water Inc., Hydraprobe). (iv) The diversity and temporal coverage of
the published data by the networks is also significant as the present analysis needs annual SM data
for 2017 and 2018 as well as the temperature measurements for a quality control. For example, the
PBO_H2O network was not included in the analysis because their sites provide SM only (Additionally,
their measurements are not based on a physical SM probe; instead, their sites are examples of GNSS
interferometric reflectometry based SM estimation). (v) Most of the ISMN sites in the data set are
located on relatively flat (non-mountaneous) surfaces with low-to-moderate vegetation cover (such as
croplands, grasslands, savannas) for the sake of limiting the incoherent scattering effects in the analysis.

The SCAN sites provide daily mean SM (measured from top 2.5–5 cm of the soil), air temperature,
and precipitation measurements for annual periods. The OzNet sites provide 20-min SM (for top 0–5
cm of the soil), soil temperature (measured at top 2.5 cm), and precipitation measurements for annual
periods. Therefore, their measurements are preprocessed in order to obtain daily averages in this study.
Measurements from years 2017 and 2018 for both SCAN and OzNet networks are used in this study
since CYGNSS measurements have been made available starting from mid-March, 2017.
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Table 2. Soil moisture sites that are analyzed in this study. Elevation (in meters) and slope values are
calculated as mean values over the 9-km grid.

ISMN Site Location Lat, Lon Land Cover (IGBP) Elev. Slope

1 - Fort Reno (SCAN) Oklahoma, US 35.55, −98.02 Croplands 420 1.15
2 - Knox City (SCAN) Texas, US 33.45, −99.87 Croplands, Grasslands 446 0.98
3 - Perdido Riv Farms (SCAN) Alabama, US 31.11, −87.55 Crop., Savan., Forests 94 1.21
4 - Prairie View (SCAN) Texas, US 30.08, −95.98 Grass., Savan., Crop. 80 1.12
5 - Reese Center (SCAN) Texas, US 33.62, −102.04 Croplands, Grasslands 1014 1.14
6 - Riesel (SCAN) Texas, US 31.48, −96.88 Grasslands, Croplands 161 1.22
7 - San Angelo (SCAN) Texas, US 31.55, −100.51 Grasslands 600 0.81
8 - Sellers Lake (SCAN) Florida, US 29.10, −81.63 Forests, Savannas 24 1.87
9 - Starkville (SCAN) Mississippi, US 33.63, −88.77 Savan., Forests, Grass. 75 1.46
10 - Uapb Marianna (SCAN) Arkansas, US 34.78, −90.82 Croplands 63 0.84
11 - Uapb Point Remove (SCAN) Arkansas, US 35.21, −92.92 Croplands, Grasslands 99 1.28
12 - Uvalde (SCAN) Texas, US 29.22, −99.76 Grasslands, Croplands 285 1.21
13 - Vance (SCAN) Mississippi, US 34.07, −90.35 Croplands, Forests 47 0.81
14 - Vernon (SCAN) Texas, US 34.02, −99.25 Grasslands, Croplands 373 1.28
15 - Willow Wells (SCAN) New Mexico, US 33.53 −103.63 Grasslands 1336 0.97
16 - Yanco-Y7 (OzNet) Yanco, Australia −34.85, 146.12 Grasslands, Croplands 128 0.55
17 - Yanco-Y8 (OzNet) Yanco, Australia −34.85, 146.41 Croplands, Grasslands 150 0.94
18 - Yanco-Y11 (OzNet) Yanco, Australia −35.11, 145.94 Grasslands, Croplands 114 0.75

Figure 3. ISMN site locations with the IGBP land cover classification in the background. (Left):
SCAN sites from USA, (Middle): OzNet sites from Australia, (Right): IGBP land cover classification
color-code. Indices are same with Table 2.

3.2.2. CYGNSS Data

The CYGNSS observations with a SP location that fall into the 9-km grid of any of the ISMN sites
throughout 2017 and 2018 are included in the analysis. We used the CYGNSS Level 1 v2.1 Science Data
Products to obtain the following observables as CYGNSS-representative inputs to the SM retrieval
algorithm: (i) Reflectivity, (ii) SP incidence angle, (iii) TES. The definition and acquisition of each input
feature are as follows:

Reflectivity is the primary CYGNSS deliverable that must be input to the regression since it is
the GNSS-R receivers’ observation of the changing SM values and surface conditions. The surface
reflectivity can be derived from the CYGNSS data products by several methods as described previously
in this manuscript and performed by other studies. Four different derivations were investigated in this
study: (i) we calculated an approximate reflectivity by substituting the DDM SNR (ddm_snr) into Pcoh

RL
in (4) and calibrating for the instrumental and geometric parameters, as done previously [22,28]. This
calculation is called Γsnr in this manuscript. (ii) Γpeak is generated similarly to the former approach
except that the peak value of the analog power DDM (power_analog) instead of DDM SNR is used for
Pcoh

RL . For cases where error level in the DDM noise floor is high (DDM SNR and Γsnr in turn would
get erroneous), Γpeak could provide increased correspondence to SM. (iii) brcs is used to calculate
the reflectivity as shown in (5), correcting the incoherency assumption by applying the coherent
equation as well as compensating the path loss and 4π term; this reflectivity is called Γbrcs [35].
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(iv) Γratio was derived by using the ratio of the reflected and direct SNRs (ddm_snr and direct_snr,
respectively), which are first calibrated by the range terms, as previously practiced [23]. Separate and
combined effects of these reflectivity calculations were investigated in the SM retrieval, and the results
reported in Section 4 demonstrate that Γbrcs alone has given the highest learning performance. This
can be attributed to diverse levels of errors coming from changing calibration parameters in different
reflectivity calculations. Therefore, the term “reflectivity” will, hereafter, be used for Γbrcs, unless
otherwise stated.

SP incidence angle (in degrees) is used as given in the CYGNSS data. Incidence angle should be
taken into account in the CYGNSS-based SM retrieval methods because of two reasons: (i) CYGNSS
observes the Earth surface over a wide range of incidence angles spanning from 0◦ to 70◦ with a mean
of approximately 30◦ and a standard deviation of roughly 17◦, (ii) Observed reflectivity values are
dependent on the SP incidence angle [24]. Calibrating the reflectivity values for changing incidence
angles can be done by two techniques: (i) Normalize the reflectivity values at any angles to their
corresponding level at 0◦ by using a curve fit function, (ii) Input the incidence angle as a feature to
the learning model and let the model capture the angle dependent curve fit for the reflectivity values.
We examined both of these approaches, implementing the former by applying as Al-Khaldi et al.
considered [24]. Statistical results of the investigation are demonstrated in Section 4; however, using
the SP incidence angle as an input feature to the ANN model (latter approach) worked slightly better.
We attribute the weaker performance of the former to the fact that the curve fit function is based on
empirical observations for typical loam soil parameters, which may not be the case for all the ISMN
sites in our analysis.

TES is computed as the slope of the trailing edge of the reflectivity delay waveform, as defined by
Rodriguez-Alvarez et al. [35]. TES calculation is dependent on the shape of the CYGNSS DDMs and
is, therefore, directly related to the coherency/incoherency of the GNSS-R signals. More incoherent
mixing through the scattering surface makes TES smaller [35]. Even though this study assumes the
dominance of the coherent reflections, we consider the inclusion of TES in the SM retrieval method to
be useful for feeding the regression with a coherency/incoherency metric.

3.2.3. Ancillary Data

The use of ancillary data as input to the retrieval process is required since the GNSS-R reflectivity is
sensitive to not only SM but also other geophysical parameters such as vegetation canopy, topography,
surface roughness, and soil texture. It should also be noted that the calculated reflectivity involves
the effects from these parameters and are not corrected prior to the retrieval in this study. We used
several data sets to represent these parameters as the following input features to the learning model:
(i) NDVI, (ii) VWC, (iii) Elevation, (iv) Slope, and (v) h-parameter (Roughness parameter). These input
features are computed for every CYGNSS data sample in the analysis and given as input to ANN with
the corresponding CYGNSS observables and SM value.

Before getting insight into the ancillary data acquisition, the spatial resolution of this algorithm
should be explained. As defined in [35], the semi-major and semi-minor axes of the first Fresnel zone
ellipse, where the coherent signals come from, varies between 0.6 km and 0.9 km, as well as 0.6 km
and 2.3 km, respectively, for a change of SP incidence angle from 0◦ to 65◦. Depending on the relative
orientation of the CYGNSS spacecrafts and GPS transmitters, the first Fresnel zone gets a varying
orientation with respect to the along-track direction of the CYGNSS receivers as well. The distance
traveled by the SP during the incoherent integration of the GNSS-R signals for one second is roughly 6
km, and it adds an elongation effect to the first Fresnel zone along track direction. In the marginal case
where either (i) the semi-major, or (ii) semi-minor axis aligns with the along-track direction, such an
elongation would only affect that axis. As a result, the final size of the CYGNSS footprint, which can no
longer be an ellipse after the elongation, should, in marginal case (i), vary between 6.6 km and 8.3 km
in the along-track direction, whereas the cross-track direction would only vary from 0.6 km to 0.9 km,
depending on the incidence angle variations. Therefore, the spatial resolution of CYGNSS would vary
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between 0.6 km× 6.6 km and 0.9 km× 8.3 km. Similarly, in the marginal case (ii), the spatial resolution
of CYGNSS would vary between 0.6 km × 6.6 km and 2.3 km × 6.9 km. All other possibilities of the
footprint orientation on the surface would result in a spatial resolution in between the minimum and
maximum of these marginal cases. On the other hand, computations of the Fresnel zone ellipse would
have errors depending on the elevation because of the current SP calculation method of CYGNSS that
considers Earth as an ellipsoid without topography [28]. Based on these data facts, we considered that
a 0.04 ◦× 0.04◦ (approximately 4 km × 4 km) lat/lon grid cell that centers the SP could be capable
of generating the mean terrain statistics (elevation, slope, NDVI, etc.), which, in turn, was assumed
to correspond to the CYGNSS footprint of interest and define the geophysical conditions around the
SP location. This grid cell makes an approximate 4 km spatial resolution for SM retrieval since each
CYGNSS observation in the analysis is used separately to generate a SM value. Hence, this grid will be
called a 4-km grid from now throughout the manuscript. Figure 4 shows an example of such grids
from the analyzed data set. The descriptions of the NDVI, IGBP land cover classifications, elevation
and slope, and inland water body data sets will be given later in this section.

Figure 4. Example grid analysis from a CYGNSS observation over the SCAN site Uapb-Marianna on
day-of year (DOY) 71, 2018. The red square is the 9-km grid cell that centers the ISMN site (red dot).
The black square is the 4-km grid cells that center the CYGNSS observation SP (black dot) that could
fall into anywhere in the 9-km grid. (a) DDM power_analog; (b) digital elevation model [m]. Mean
slope and elevation values calculated from 4-km grid are also shown; (c) IGBP land covers [IGBP].
The color scale for the IGBP land cover is the same as Figure 3. Mean NDVI calculated from the 4-km
grid is also shown; (d) inland water bodies [Pekel indices [61]]. Permanent and temporary water body
percentages within the 4-km grid are also shown.

NDVI represents the vegetation cover above the ground as it was previously exploited by the
SM missions [6,38]. Although by definition NDVI ranges from −1 to 1, normally, it is positive, and
getting values closer to 0 or 1 for sparse or dense vegetation canopies, respectively. Two different,
dynamic data sets were investigated for NDVI data throughout 2017 and 2018: (i) The NOAA Climate
Data Record (CDR) of AVHRR Daily NDVI 0.05◦, Version 4 [62], (ii) MODIS Aqua Surface Reflectance
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Daily Global 500 m data set [49]. The latter has been chosen for its higher spatial resolution. NDVI
is calculated from the near-infrared (NIR) and red bands (RED) of the reflectance data as NDVI =

(NIR− RED)/(NIR + RED). The mean NDVI for the 4-km grid of each CYGNSS observation is
generated from the MODIS data with the following methodology: The data set is accessed via Google
Earth Engine Python API [60] to rapidly and accurately perform analysis for multiple CYGNSS
observations at a time. It is possible with the help of very high computing power of the Google Cloud
Platform while benefiting the same interface for all different satellite data sets. NDVI data usually
suffer from clouds because it is generated by optical instruments such as in the MODIS mission. To
deal with this problem, we applied a sliding window averaging over 16 days, whose center is the day
of interest (eight days ahead and seven days to the past). Noting that the 4-km grid houses 8× 8 spatial
pixels, we have an 8× 8× 16 NDVI cube for each day. To eliminate the ill (cloud-suffered or so) NDVI
values, we only considered the width of two standard deviations of the distribution within the NDVI
cube to calculate the mean NDVI for that particular grid and day of year [63]. Such an approach would
produce close numerical values for adjacent days or short time-series; however, it is the representation
of the reality rather than being a problem. More precisely, NDVI experiences quasi-constant trends
in daily or weekly periods, and shows stronger dynamics through seasonal changes. Furthermore,
spatial variations exist within the representativeness grid of each ISMN site mostly due to the mix of
land covers. Land cover maps for the ISMN sites can be seen in Figure 5.

VWC is computed by using the NDVI data via Equation (10). To the authors’ knowledge, the
accuracy of this empirical relation for high spatio-temporal CYGNSS resolution is not yet proven.
Nevertheless, we decided to use VWC as an input feature in addition to NDVI since it encapsulates
land cover information through stem factor and temporal memory information through minimum
and maximum NDVI values. The stem factor information is a land cover-based LUT in the SMAP
mission [39]. The stem factor value for the 4-km grid of each CYGNSS observation in this study is
calculated as a weighted sum of LUT stem factors based on the land cover percentages in the scene. We
performed two different VWC calculations: (i) NDVImax and NDVImin are computed from 2017 and
2018 NDVI data. (ii) The current NDVI is used in place of NDVImax for the entire data set, and a global
constant value of 0.1 was used for NDVImin, as suggested in the SMAP’s VWC report [39] (Though
suggestion for NDVImax was for croplands and grasslands only). The former performed better in the
SM retrieval, and we link this to the phenomenon that ISMN sites in this study were not only from
croplands and grasslands as the latter method assumes.

Elevation and slope are used to assess their contribution to SM estimation as proxy parameters
for the terrain topography, as topography is known to have impacts on the reflectivity [64]. The use of
elevation is aimed at helping the regression model learn the impact of the ellipsoid-based CYGNSS SP
calculation on the CYGNSS observations, if possible. The slope, on the other hand, is included in the
input features as a coherency/incoherency indicator that could be linked to CYGNSS’s TES by ANN.
Mean elevation and mean slope for each 4-km grid are generated from the static CGIAR-CSI SRTM
90 m, Version 4 DEM database [50], as similarly done in the literature [35]. DEMs of the ISMN sites
can be seen in Figure 5.

The h-parameter is assumed to be linearly related to the root-mean-square-height surface
roughness (7) [38]. Therefore, it is input to the SM retrieval in this study to assess its contribution
to account for the surface roughness. h-parameter values are listed in a land cover-based LUT in the
SMAP mission, similar to stem factor [39]. Therefore, we applied a similar calculation for h-parameter
values over the 4-km grids as a sum of LUT h-parameter values that are weighted by the land cover
percentages in the scene.
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Figure 5. Ancillary data visualization for 18 ISMN sites. (a) IGBP land cover [IGBP]. The land cover
color scale is the same as in Figure 3; (b) DEM [m]. DEM color scale is generated separately per each
ISMN site; (c) inland water bodies [Pekel indices [61]]. The inland water body color scale is the same as
in Figure 4.
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Distributions and corresponding statistics of the input features can be seen in Figure 6. These
distributions were analyzed before and after the quality controls were applied. However, the
distributions and statistics of the data after application of the quality controls did not drastically
change. Since the quality controls are not yet described, only the statistics before the quality controls
are given. Figure 6 shows that reflectivity follows an almost-perfect Gaussian distribution, so 68%
(one-sigma) of the reflectivity values fall in a dynamic range of around 10 dB, whereas 95% (two-sigma)
of them are in a dynamic range of roughly 20 dB. This is in parallel to the previously observed and
simulated dynamic ranges of around 15 dB over cropland growth seasons [34,44]. Incidence angle
follows a quasi-Gaussian distribution that reflects the variation of the CYGNSS observations, where
95% of the measurements have an incidence angle in a range of approximately [0, 60]◦. The TES
distribution is mostly around the mean value of −13.81 with few observations through larger negative
values, which imply that the trailing edge of the reflectivity waveform from peak has a slope of −13.81
on average. The histogram of the elevation data shows the average elevation values around the ISMN
sites. The slope distribution indicates that the regions generally have no topographic relief (majority of
data under a terrain slope of 2), with a sufficient variation within a slope range of roughly [0.45, 2].
The h-parameter values show no more surprising evidence than that two peaks occur at the SMAP
h-values of 0.108 and 0.156 that correspond to croplands and grasslands, respectively [38], and the
rest of the data are distributed in between these values. NDVI data prove a good range of variation,
where roughly 95% of the NDVI values fall in an approximate range of [0, 0.58] since data seem to
follow a nearly perfect Gaussian distribution. VWC distribution, as derived from NDVI by using stem
factor values from the SMAP-based LUT, seems to be a mix of two Gaussian distributions around mean
values (approximately 1.5 and 3.5 kg/m2). These values likely correspond to grassland and cropland
averages, which were the two most common land covers observed in this study.

Figure 6. Distributions of the input features (before quality control flags applied). Application of
quality controls did not result in large variations. Distribution statistics are also given in each plot.
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3.2.4. Quality Controls

The quality control of the data sets plays a significant role in the preprocessing of the data for
the SM retrieval. We made use of distinct quality control mechanisms for in situ SM measurements,
CYGNSS observables, and ancillary data. The ideal impact of each quality control step is given Table 3,
where percent changes in the original dat set is proved as if a particular quality flag is applied alone.
In fact, the quality control flags were applied in the left-to-right order in Table 3.

Table 3. The separate, ideal impact of each quality control is shown as percent changes to the original
data set: If each quality flag was applied alone to the original data set, the percent changes to the
original data set would be as given from the sixth to tenth columns (CYG.: CYGNSS quality flags, θi: θi

< 65◦, Gr: Positive receiver gain, Peak: DDM peak delay bin rows in [7, 10], Water: Removal of inland
water bodies). For reference, the initial numbers of data samples before the application of the quality
controls are given annually in the second and third columns. Percent losses in the data set due to the
actual application of the entire quality controls are also given in the fourth and fifth columns. Overall
data set sizes and percent changes are given in the bottom-most row. Year 2017 data for the ISMN
sites, Reese Center and Willow Wells, have not been analyzed because these stations are located over
1000 meters, and CYGNSS has an elevation upper limit of 600 m for the SP calculation algorithm until
December 2017 [22]. Year 2018 data for the Riesel station have not been analyzed as well due to large
blocks of invalid SM data.

ISMN Site Initial # Final (%) CYG.
(%)

θi
(%)

Gr
(%)

Peak
(%)

Water
(%)2017 2018 2017 2018

Fort Reno 271 275 69.0 66.9 5.2 2.3 30.4 11.4 53.1
Knox City 257 281 58.4 56.2 6.9 2.6 27.9 9.6 37.2
Perdido Riv F. 248 306 55.6 52.9 6.4 2.2 24.6 11.7 38.9
Prairie View 292 289 31.2 31.8 7.3 0.9 24.9 9.6 4.9
Reese Center — 283 — 29.0 6.4 1.4 21.9 6.7 4.24
Riesel 252 — 33.3 — 6.8 0.4 27.8 12.7 0.0
San Angelo 249 308 48.6 29.3 6.3 0.2 21.7 20.9 5.7
Sellers Lake 246 255 74.0 69.8 7.0 2.3 19.6 12.0 61.9
Starkville 207 272 72.9 74.3 6.7 1.7 26.6 12.9 61.4
Uapb-Marianna 226 267 37.2 32.2 9.1 1.1 26.8 13.1 7.9
Uapb–Point R. 270 306 73.0 75.2 5.1 1.6 28.7 9.6 64.2
Uvalde 236 298 25.4 28.9 5.7 1.4 23.7 10.0 0.0
Vance 226 330 41.6 40.3 7.1 2.8 29.4 19.0 13.4
Vernon 232 294 33.6 28.6 5.9 1.5 26.6 9.8 1.2
Willow Wells — 292 — 26.4 5.1 0.3 22.6 7.9 1.37
Yanco-Y7 210 287 34.8 41.8 6.2 0.9 26.7 7.7 13.5
Yanco-Y8 215 322 40.4 37.0 7.2 2.0 26.8 8.7 13.3
Yanco-Y11 235 297 30.6 31.7 5.9 2.7 27.6 8.7 0.0

Overall 3872 4962 47.8 43.9 6.5 1.6 25.9 11.2 22.9

Invalid SM values from the ISMN measurements (such as negative SM or precipitation value)
are filtered out of the refrence SM data for both SCAN and OzNet networks. For SCAN sites, SM
measurements that correspond to air temperatures below 1 ◦C are excluded from the analysis due to
the freezing conditions. The OzNet sites do not experience such conditions as the air temperatures in
the region are far away from these ranges annually. CYGNSS observations and ancillary data are not
collected for the dates that correspond to invalid and freezing-temperature SM data.

CYGNSS observations require further care to discard the low quality observations from the
training and validation. We investigated two different sets of CYGNSS quality flags as Chew et al. [22]
and Rodriguez-Alvarez et al. [35] previously applied and observed higher performance with the
former. Despite a lack of sufficient investigation on the performances of these two quality flag sets, the
weaker performance (ubRMSE = 0.0557) of the latter might be attributed to the reduced number of
data samples used in the training (4027 samples after applying flags from [35]). The quality flags used
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to filter out the CYGNSS data in this study are as follows: S-band powered up, Large spacecraft attitude
error, Black-body DDM, DDM is test pattern, Low confidence GPS EIRP estimate. CYGNSS measurements
with a negative receiver gain estimation are discarded from the analysis. Table 3 shows the percent
changes in the data set as if each of the quality flags was applied directly to the original data set. This
approach helps demonstrate the true impact of each individual quality control to the data set. The
negative receiver gain holds a reasonably big portion (26%) of the CYGNSS observations. Observations
with a DDM peak value from outside the range [7, 10] (zero-delay corresponds to the 8th delay bin) are
also removed to ensure the error in the CYGNSS SP location estimation due to the terrain elevation is
within a reasonable range [22,35]. In addition, CYGNSS data points with an incidence angle above 65◦

are removed due to the poor observation quality, similar to [24].
Inland water bodies have a critical impact on the SM retrieval process because GNSS-R signals get

a step reflectivity waveform (sharp increase in the reflectivity) due to the very strong coherency over
water surface [12,20,22,24,35]. Such impacts should be removed prior to the retrieval because they
would not reflect SM effects in case the surface water is sufficiently large within the CYGNSS footprint.
Being “sufficiently large” is commonly considered as even smaller than the first Fresnel zone [22,35].
Regarding the fact that the CYGNSS spatial resolution would range from a theoretical minimum of
0.6 km to 8.3 km depending on the incidence angles, and relative orientations of the instruments, we
considered a size for the open water bodies that is close to the minimum resolution that would work
to initiate investigations in this study. Hence, we removed the CYGNSS observations where more
than one percent of the 4-km grid is covered by temporary (seasonal) or permanent surface water.
We exploited the JRC Yearly Water Classification History, v1.0 data set (a.k.a. Pekel data set) [61],
which is a 30 meter-resolution surface water database. Since the data set is only available from 1984
to the year 2015, we used 2015 data for this study. There are four values (0: No data, 1: Not water,
2: Seasonal-temporary water, 3: Permanent water) for any given pixel. We used the values 2 and 3 to
perform water body removal, ignoring when or how long the seasonal water body existed in the year.
It is evident from Table 3 that around 23% of the entire data set is excluded from the analysis due to
inland water bodies. This effect is much higher for particular ISMN sites such as Sellers Lake (Florida,
US), Fort Reno (Oklahoma, US), and Starkville (Mississippi, US). Inland water body maps of the ISMN
sites can be seen in Figure 5.

3.3. Training and Validation

The SM measurement data are provided daily; however, the sub-daily availability of the CYGNSS
observations for each ISMN site is not reduced to daily basis in this study. That is to say, for a particular
day-of-year around one of the ISMN stations, if there are multiple CYGNSS SPs that fall into the
9-km grid that centers the site coordinates, all of them are included in the analysis. In such a case, a
constant SM value is assumed for all of those multiple CYGNSS observations due to being in an ISMN
proximity on the same day. This is considered feasible because the geophysical parameters (such as
NDVI, VWC, elevation, slope, and h-value) corresponding to each CYGNSS observation would differ
from each other due to the spatial variation, which in turn could explain variations in the CYGNSS
observations despite uniform SM values.

After the quality control flags are applied, there are a total of 4808 reference samples (distinct
feature vectors) from 18 ISMN stations, spanning from the 77th day-of-year of 2017 (starting date of
the publicly available CYGNSS science mission data) to the end of 2018. The training and validation
sets are organized with the help of a 10-fold cross validation fashion (N-fold in general [65]) as follows:
training and validation are performed together in a total of 10 iterations. In each iteration, (i) 10% of
the total data samples are randomly selected and excluded from the training data; (ii) the ANN model
is trained by using the data samples corresponding to the remaining 90% of the data set; (iii) validation
of the trained model is performed on the excluded data samples. By this method, the trained model
is tested by using “unseen” data in every iteration. (iv) The predicted SM values are stored in the
prediction pool with their corresponding reference SM values. (v) 10% of the data excluded are turned
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back into the training data set. The next iteration is performed similarly to the following exception:
The random selection of new 10% of the data to be excluded for validation purposes is handled in a
way such that samples in this validation set were never chosen into the validation set of any previous
iteration. This regulation ensures that the training/validation split method validates the ANN model
over the entire data set after 10 iterations are finished. (vi) When all 10 iterations are run, the prediction
results for the entire data set with corresponding reference SM values are stored. (vii) Performance
assessment of the entire data set is performed in order to obtain overall and per-ISMN-site statistical
performance metrics such as RMSE, unbiased RMSE (ubRMSE), bias, and Pearson’s R (correlation
coefficient) [66]. The overall training and validation approach is illustrated in Figure 7.

Figure 7. Flowchart showing the training and validation of the CYGNSS SM retrieval algorithm.

4. Results

Contributions of individual input features and their combinations to the learning process were
first assessed in order to determine the optimal input feature set for SM retrieval. Table 4 shows the
results of this assessment by using the indices from (i) to (xi) for changing input combinations. The
bottom-most line provides the optimal set of input features that is employed in this study. (i), (ii),
(iii), and (*) in Table 4 were conducted to compare CYGNSS reflectivity calculations, as shown in
the top three rows and the bottom-most row. Γbrcs gives the highest correlation and lowest ubRMSE
results. (iv) Then, a combination of these reflectivity approximations was assessed with two, three,
or four of them being used together. All possible combinations were examined; however, only one
of them with the closest performance (Γbrcs + Γratio) to the optimal one is given in Table 4. Although
there is a slight difference between two, additional Γratio term reduces the overall performance of the
optimal combination so that it is not included in the optimal combination. (v) Instead of giving the SP
incidence angle as an input to the system, the reflectivity values are corrected for incidence and fed
to the system without angle information; the model performance was slightly worse than feeding SP
incidence angles to the learning. Hence, SP incidence angles were chosen into the optimal performance
inputs set. (vi) Contribution of TES was examined and found to be significant as its removal increases
the ubRMSE and decreases the correlation. TES is also chosen into the input features. (vii) and (viii)
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were performed to assess the effects of NDVI and VWC to the learning process. Both have a positive
impact on the learning performances, but VWC has a more positive contribution compared to NDVI.
This is in parallel with the expectation that VWC involves further information of temporal memory in
NDVImin and NDVImax, as well as land cover information through stem_ f actor. Both parameters are
included into the input features. (ix), (x), (xi) were used to investigate the parameters that are derived
from an SRTM DEM data set. All of them appear to positively affect the model, but elevation has the
highest and h-parameter has the lowest impact on the overall performance. However, all of them are
added to the input features set.

Table 4. Assessment of the input feature contributions to the learning process. The statistical
performance metrics are given for the entire data set. (*) The bottom-most row shows the optimal
performance, which in turn has the input features set that is used in this study.

Input Features RMSE ubRMSE Bias R

(i) Γsnr + TES + θi + NDVI + VWC + Elev. + Slope + h 0.0579 0.0579 0.0006 0.8869
(ii) Γpeak + TES + θi + NDVI + VWC + Elev. + Slope + h 0.0635 0.0635 0.0006 0.8619
(iii) Γratio + TES + θi + NDVI + VWC + Elev. + Slope + h 0.0603 0.0603 0.0007 0.8763
(iv) Γbrcs + Γratio + TES + θi + NDVI + VWC + Elev. + Slope + h 0.0547 0.0547 0.0010 0.9001
(v) Γbrcs + TES + NDVI + VWC + Elev. + Slope + h 0.0549 0.0549 0.0013 0.9001
(vi) Γbrcs + θi + NDVI + VWC + Elev. + Slope + h 0.0596 0.0596 0.0012 0.8920
(vii) Γbrcs + TES + θi + VWC + Elev. + Slope + h 0.0554 0.0554 0.0001 0.8970
(viii) Γbrcs + TES + θi + NDVI + Elev. + Slope + h 0.0595 0.0595 0.0001 0.8794
(ix) Γbrcs + TES + θi + NDVI + VWC + Slope + h 0.0579 0.0579 0.0003 0.8869
(x) Γbrcs + TES + θi + NDVI + VWC + Elev. + h 0.0564 0.0564 0.0003 0.8972
(xi) Γbrcs + TES + θi + NDVI + VWC + Elev. + Slope 0.0548 0.0548 0.0001 0.8995

(*) Γbrcs + TES + θi + NDVI + VWC + Elev. + Slope + h 0.0544 0.0544 0.0002 0.9009

After the determination of the set of optimal input features, validation of the method with this
set was performed. Figure 8 shows the scatter plots of the ISMN-measured and CYGNSS-retrieved
SM values in conjunction with the RMSE, ubRMSE, bias, and Pearson’s R values for the entire data
set, as well as years 2017 and 2018. In addition, per-site and overall performance statistics of the
SM estimation results for the entire data set for both years are shown in Table 5. The entire data set,
spanning both years, has a Pearson’s R value of 0.9009, which is an indicator of high overall agreement
between the CYGNSS-based SM predictions and the reference SM data. Data over either year also
show a high correspondence, with Pearson’s R values of 0.8532 and 0.9238 for year 2017 and 2018,
respectively. These high levels of correlation demonstrate that the presented CYGNSS-based SM
retrieval algorithm was successful in capturing the overall trends in approximately 5000 CYGNSS data
samples. The ubRMSE values of 0.0575, 0.0520, and 0.0544 cm3/cm3 for 2017, 2018, and entire data set,
respectively, are obtained. Keeping in mind that both the science mission requirements for the SMAP
mission over its calibration/validation sites were ubRMSE values no higher than 0.04 cm3/cm3 [38]
and CYGNSS land application studies were targeted at an ubRMSE of 0.05 cm3/cm3, our algorithm
seems capable of generating close values to these levels at least for the current data set and input
features of interest. It should be also noted here that, despite not being shown here, a previous version
of this analysis was conducted with a subset of the data, input features, and quality controls; the
overall performance (overall ubRMSE of 0.0594 cm3/cm3 and Pearson’s R of 0.6604) was poorer than
the ones reported here, although six of the ISMN sites with almost the best performances of this study
were used. These observations are of high importance for the ultimate CYGNSS-based, or GNSS-R
based in general, SM retrieval studies since the algorithm presented here has the potential to provide
increased estimation performances as new satellite observation data and relevant input features are
added to the training.
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Figure 8. Scatter plots of SM retrievals for the entire data set, year 2017, and year 2018. RMSE, ubRMSE,
and bias are given in [cm3/cm3]. Pearson’s R is also provided. N is the number of data points.

Table 5. SM retrieval algorithm performance statistics. RMSE, ubRMSE, and bias are expressed in
[cm3/cm3]. Pearson’s R is also provided.

2017 2018
ISMN Site RMSE ubRMSE Bias R RMSE ubRMSE Bias R

Fort Reno 0.0615 0.0608 0.0094 0.7052 0.0521 0.0520 0.0013 0.8019
Knox City 0.0388 0.0382 0.0069 0.6533 0.0503 0.0492 0.0108 0.7640
Perdido Riv Farms 0.0493 0.0487 0.0080 0.5986 0.0521 0.0513 0.0091 0.4417
Prairie View 0.0465 0.0455 0.0099 0.5897 0.0524 0.0502 0.0151 0.7967
Reese Center - - - - 0.0350 0.0349 0.0022 0.8178
Riesel 0.0947 0.0918 0.0236 0.6706 - - - -
San Angelo 0.0615 0.0606 0.0103 0.3825 0.0705 0.0687 0.0158 0.6290
Sellers Lake 0.0279 0.0277 0.0036 0.5533 0.0252 0.0246 0.0059 0.4171
Starkville 0.0535 0.0521 0.0122 0.3951 0.0621 0.0614 0.0415 0.3609
Uapb-Marianna 0.0522 0.0514 0.0088 0.5994 0.0409 0.0404 0.0064 0.8909
Uapb–Point Remove 0.0442 0.0363 0.0253 0.3350 0.0565 0.0558 0.0086 0.2975
Uvalde 0.0404 0.0404 0.0019 0.8077 0.0441 0.0436 0.0062 0.7621
Vance 0.0789 0.0776 0.0142 0.5764 0.0750 0.0744 0.0095 0.8489
Willow Wells - - - - 0.0254 0.0254 0.0006 0.6886
Vernon 0.0608 0.0601 0.0095 0.7367 0.0567 0.0565 0.0056 0.8506
Yanco-Y7 0.0417 0.0411 0.0074 0.5645 0.0358 0.0354 0.0057 0.7348
Yanco-Y8 0.0453 0.0444 0.0089 0.4662 0.0565 0.0553 0.0113 0.2529
Yanco-Y11 0.0604 0.0602 0.0041 0.4410 0.0571 0.0571 0.0008 0.6170

Overall 0.0575 0.0575 0.0009 0.8532 0.0520 0.0520 0.0010 0.9238

Considering the Pearson’s correlation coefficient ranges of [0, 0.3333), [0.3333, 0.6667), and [0.6667,
1] as low, moderate, or high correlations, 3/4 of the stations have moderate as well as 1/4 of them
have high correlation results through 2017. For 2018, roughly 1/9 of the sites have low, 3/9 of them
have moderate, and the remaining 5/9 have high correlation levels. An interesting outcome of the
correlation assessment is that, even though the highest Pearson’s R value for an ISMN site for 2017
is 0.8077 (Uvalde) and 2018 is 0.8909 (Uapb-Marianna), the overall Pearson’s R value for each year
(0.8532 and 0.9238, respectively) exceeds these maxima. Moreover, the overall correlation coefficient
for the entire data set (0.9009) is higher than these maxima as well. This is valuable especially for
potential future application of the algorithm to the global scenarios, indicating that it is powerful to
generalize the nonlinear regression for the entire data despite some poor performances on specific
sites. Similar to the correlation, it can be reasonable to consider ubRMSE values above 0.0650 as
low-performance, those in the range [0.0500, 0.0650] as moderate-performance, and values below
0.0500 as high-performance. In this case, the algorithm produces low-performance for 1/8 of the sites,
moderate-performance for 3/8, and high-performance for 4/8 of those stations for 2017. For 2018, it
predicts SM with a low-performance for approximately 1/9 of the ISMN sites, moderate-performance
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for 4/9 of them, and high-performance for another 4/9. It is worth noting that ubRMSE alone would
be deceptive as some ISMN sites would have very low trends of SM values in yearly average. However,
combined with the correlation performances, SM estimations of our algorithm seem to be in a good
agreement with mean SM levels of most of the stations. On the other hand, the model performs poorly
on particular stations such that the predicted SM values cannot correlate strongly to the reference SM
data. For instance, Starkville, Sellers Lake, and Uapb–Point Remove are such SCAN sites where the
model’s Pearson’s R follow low-to-moderate values for both years. These stations have a common
feature that more than 60 percent of the observation data are subject to exclusion from analysis due to
the existence of inland water bodies. Therefore, the removal process of the inland water bodies and/or
the accuracy of the 4-km grid might require further investigation in the future. San Angelo has another
interesting result that Pearson’ R for 2017 is much lower than that of 2018. Although this SCAN site is
located an elevation of approximately 600 m (which is equal to CYGNSS’s 600 m threshold for year
2017 as mentioned previously), we included it in the analysis for both years. Nevertheless, it appears
that even an elevation that is equal to the altitude threshold of the CYGNSS SP calculation algorithm
for 2017 would be erroneous.

Figures 9 and 10 show per-site comparisons for selected sites between the CYGNSS-based SM
estimations and daily ISMN measurements for years 2017 and 2018, respectively. These figures show
both time-series to visualize the annual trends and scatter plots to illustrate the correlation between the
reference and predicted SM values. First of all, the ability of the algorithm to generate sub-daily SM
predictions for multiple CYGNSS observations on a day can be observed in these figures. For instance,
the figure grid-line that corresponds to October on the top-first plot (Uvalde) in Figure 9 shows well
that there were two CYGNSS observations that fell into the ISMN site representativeness window on
that particular day-of-year, and the algorithm was able to generate two different SM predictions that
are so close to the reference SM value. Figures 9 and 10 are prepared in a way that the top four ISMN
sites are selected from among those where the SM retrieval algorithm performed the best, the next
one is picked from those with decent results, and the bottom-most ISMN site is chosen from a set of
stations where the algorithm has the poorest performance, with respect to both the correlation and
retrieval errors. For example, Uapb–Point Remove was selected for the bottom-most plot of Figure 10
while Yanco-Y8 is the station with the lowest Pearson’s R value (0.2529). This is because, even though
Uapb–Point Remove has a close Pearson’R to Yanco-Y8, it has a much higher ubRMSE (0.0558) for SM
estimations. Similarly, Vance site has a high ubRMSE of 0.0744 for 2018, but it has a high Pearson’s R
of 0.8489 at the same time. Hence, it was also chosen for the bottom-most.
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Figure 9. SM retrievals for 2017. In situ SM data are color-coded such that magenta and blue circles
correspond to days with freeze temperatures and invalid data, respectively. Scatter plots are also given.
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Figure 10. SM retrievals for year 2018. In situ SM data are color-coded such that magenta and blue
circles correspond to days with freeze temperatures and invalid data, respectively. Scatter plots are
also given.
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5. Discussion

The proposed learning-based SM retrieval methodology generates promising overall
performances with comparable accuracy to the reference SM data, demonstrating that it could be
generalized for the global SM estimation. For this purpose, the current trained model can be used over
global terrains with close statistical distributions of the bio-geophysical parameters (vegetation cover,
topography, and surface roughness) in the present analysis. Alternatively, the model can be further
trained over a much larger and globally-representative data set with additional CYGNSS observations,
terrain characteristics, land cover classifications, as well as possible new input features. As more data
samples are added to the training, the learning performance is expected to improve. In any case, a
future work will be conducted for comparison of the proposed method to global SM sources (such
as SMAP). A potential limitation in a global comparison scenario is the lack of reference SM data at
high spatio-temporal resolutions. This was the main motivation of this study to employ ISMN sites
with a 9-km grid of SM representativeness. Assuming constant SM over such a grid is another source
of limitation in this study, which is inevitable for the current state-of-the-science. The reference SM
data, either ISMN sites in this study or SMAP-like global observatory data, are not the ground truth
and have their own internal errors. Moreover, ISMN measurements have a quite different resolution
(point-scale) than CYGNSS observations (distributed scattering).

In addition to extending the use of the current method, a future work could be conducted to
investigate several non-parametric, nonlinear machine learning algorithms as well as the optimization
of the current ANN model to obtain its full potential. Despite a number of actions to get the best
performance out of the learning model (such as preprocessing of the data with the quality controls,
assessment of the input feature contributions, and use of derived proxy parameters), the scope of this
study is not an in-depth analysis of the learning methods.

The present method has many sources of constraints and uncertainties, some of which have been
addressed and dealt with to a degree in this study, and all could be investigated further in future work.
These can be explained as follows:

CYGNSS observations and data products involve a number of uncertainties that might have
affected the results of this study. During this study, multiple reflectivity approximations from CYGNSS
data products were used as model inputs. The learning performance of the model varied greatly with
these different reflectivity approximations. This indicates a changing level of uncertainty throughout
the CYGNSS dataset. CYGNSS parameter uncertainties can be described as follows: (i) SP calculation
with the geoid assumption was originally developed and works well for ocean [42]; however, it can
generate large offsets for SP locations over land as the elevation and topographic relief get higher.
Since this problem is said to be resolved with the CYGNSS Level 1 Science Data, Version 3.0 in a near
future, we applied a number of strategies that did not involve explicitly solving the actual SP location:
With the help of the coherency assumption, we used the peak brcs value to calculate Γbrcs, which should
reflect the actual coherent reflections; we filtered out brcs DDM peak delay rows that fall outside a
range of [7, 10]; we also incorporated CYGNSS-derived TES, elevation, and slope as proxy coherency
parameters to the ANN model. In addition, analyzing terrains with relatively low topographic relief
(slopes up to 2) and elevations no more than roughly 1300 m in this study limits the effects of this
uncertainty; however, these parameters would get higher values in a global application. (ii) As
previously discussed, the CYGNSS data products, which are determined with the use of internal and
external parameters (such as GPS EIRP and receiver gain, as well as bistatic ranges due to topography
and erroneous SP calculation) would introduce an added layer of uncertainties to the input data
of the learning process. A subset of these could be partially corrected by future effort; for instance,
the bistatic ranges would be obtained more accurately by a corrected SP calculation strategy with
the help of DEM data. (iii) The present method assumes the dominance of coherent reflections over
flat and relatively smooth lands covered with non-heavy vegetation canopy, as followed by several
previous studies [11,12,22,28]. Indeed, high variability of the topography and vegetation covers makes
it impossible to consider pure coherent or incoherent regimes for global applications. In addition,
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changes in the observation geometry (such as increasing incidence angles) would introduce increasing
incoherent scattering that might be comparable to the coherent reflections. The attempt of this study to
introduce coherency/incoherency indicators to the learning process would be improved further by
incorporating additional CYGNSS observations (such as the entire DDM) to provide and improved
coherency detection. It should be also noted that the use of such parameters would necessitate a
trade-off between increased accuracy and decreased spatial resolution.

Ancillary data are required since CYGNSS measurements are dependent on several
bio/geophysical parameters in conjunction with SM, but data sources are not perfect. NDVI is
used to account for vegetation attenuation because there is no global data set of another parameter
on which the reflectivity is more dependent (such as vegetation optical depth or VWC). NDVI is
indeed a metric of vegetation “greenness” and does not fully correlate to the attenuation. Moreover,
it is derived from optical imaging instruments, meaning that it is vulnerable to the atmospheric or
illumination effects such as clouds or night. Such issues can only be diminished to some degree as
this study performs such that a sliding window averaging can be employed. NDVI-derived VWC
data and h-parameter even have additional biases as we employ land cover-based LUT values for stem
factor. On the other hand, all of these parameters prove increased accuracy to the algorithm outcomes.
Improved acquisition of such ancillary parameters as well as involvement of new input features (such
as several vegetation indices) would be of interest in the future.

Internal steps and decisions as well as assumptions and simplifications of the proposed
methodology might have led to issues that are not clear for the time as well. To illustrate, the
use of 4-km grid for averaging the terrain parameters (such as NDVI, elevation, and slope) around the
CYGNSS SP might be too simplistic; nonetheless, it relies for now on the present uncertainty of the
CYGNSS footprint over land, and it appears to be working. Future work would examine different sizes
of such a grid as well as introducing a new grid that is computed accordingly with the along-track
direction of the SP.

Although we perform quality controls such as applications of CYGNSS quality control
flags, removal of measurements with freezing weather conditions, and exclusion of inland water
body-exposed observations, modification of the current method (Such as a different percentage
threshold for inland water bodies) and/or addition of further quality flags would be investigated.
However, it is evident from the data statistics before and after the quality controls of the present study
that roughly half of the data samples are thrown away. This implies that further quality controls
would result in a reduced size of training data and would require the addition of new observations. In
addition, the current quality controls such as removal of inland water bodies above one percent might
not be sufficient to overcome erroneous observations.

6. Conclusions

To the authors’ knowledge, this paper is the first to provide a physics-aware, learning-based,
CYGNSS SM retrieval algorithm that uses several input features from ancillary data sets. The theoretical
background of ideal CYGNSS-based SM retrieval, challenges with the use of CYGNSS observables,
and the applicability of the proposed method as well as input features are provided. The acquisition
of the data sets are described in detail, and their distribution statistics are given. Quality controls for
preprocessing of the data are proposed. The approach has been applied to reference SM data collected
from 18 ISMN stations throughout North America and Australia by using a randomly cross-validated
train/test split fashion, and encouraging results have been reported. The trained model has an overall
ubRMSE of 0.0544 cm3/cm3 and Pearson’s R of 0.9009 on 4808 unseen data samples, which indicates a
potential to be applied on global data sets. Individual contributions from input features have also been
investigated. The use of brcs-derived reflectivity, TES, incidence angle, NDVI, VWC, elevation, slope,
and h-parameter appears to significantly increase the model performance.

The major contributions of the study to the GNSS-R based SM retrieval efforts in general are
as follows:
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• This retrieval process is an intrinsically nonlinear regression problem and the proposed ANN
model demonstrates potential to overcome this problem with its generalization performance.

• ANN is a non-parametric learning algorithm, and it, in turn, removes the need for development
of a parametric, explicit solution model (physical, regression, and/or empirical). Therefore, it
enables using an arbitrary number of input parameters.

• Once trained on reference samples, the model does not require SM information from other sources
(such as SMAP or SMOS) for SM estimation. This allows the learning model to be trained with
any SM source (such as the ISMN sites in this study, or some other point-scale or global-scale SM
sources) and perform SM predictions independently from other SM providers.

• The algorithm has the potential to provide sub-daily SM estimations as it is applicable to every
single CYGNSS observation without a need for spatial gridding or temporal averaging. In other
words, it is capable of making a SM prediction by using a single CYGNSS observation supported
by the other input features.

• The reported overall performances as well as terrain-specific accuracy could be improved by
including new data samples into the training as the CYGNSS mission continues to orbit and
collect new land data in coming years.

• The proposed strategy can help with determination of the calibration/validation sites for
CYGNSS- based SM retrieval studies in order to learn the global bio/geophysical dynamics
(land covers, topography).

Author Contributions: Conceptualization: O.E., M.K., D.B. and A.C.G.; Methodology: O.E.; Software: O.E.;
Validation: O.E.; Formal analysis: O.E.; Investigation: O.E., M.K. and A.C.G.; Resources: O.E. and M.K.; Data
curation: O.E.; Writing—original draft preparation: O.E.; Writing—review and editing: O.E., M.K., D.B. and
A.C.G.; Visualization: O.E.; Supervision: M.K.; Project administration: O.E. and M.K.; Funding acquisition: O.E.
and M.K.

Funding: This research was funded by the NASA Earth and Space Science Fellowship
Program—Grant#80NSSC18K1329.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
AVHRR Advanced Very High Resolution Radiometer
CYGNSS Cyclone Global Navigation Satellite System
DEM Digital Elevation Model
DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center)
ESA European Space Agency
IGBP International Geosphere-Biosphere Programme
ISMN International Soil Moisture Network
JRC Joint Research Center
LUT Lookup Table
MODIS Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NOAA National Oceanic and Atmospheric Administration
SMAP Soil Moisture Active Passive
SMOS Soil Moisture and Ocean Salinity
TES Trailing Edge Slope
UK United Kingdom
VWC Vegetation Water Content
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Appendix A

Table A1. CYGNSS Level 1 data that are used in this study.

brcs 17 × 11 array of DDM bin bistatic radar cross section, m2. The specular point is located
in DDM bin round(brcs_ddm_sp_bin_delay_row), round(brcs_ddm_sp_bin_dopp_col).

power_analog

17 × 11 array of DDM bin analog power, Watts. analog_power is the true power
that would have been measured by an ideal (analog) power sensor. power_digital is
the power measured by the actual 2-bit sensor, which includes quantization effects.
power_analog has been corrected for quantization effects.

ddm_snr
DDM signal-to-noise ratio. 10log(Smax/Navg), where Smax is the maximum value (in
raw counts) in a single DDM bin and Navg is the the average per-bin raw noise counts.
ddm_snr is in dB.

direct_signal_snr 10log(zenith signal power/zenith signal noise) at ddm_timestamp_utc.

sp_lat SP latitude, in degrees North.

sp_lon SP longitude, in degrees East.

rx_to_sp_range The distance between the CYGNSS spacecraft and the specular point, in meters, at
ddm_timestamp_utc.

tx_to_sp_range The distance between the GNSS spacecraft and the specular point, in meters, at
ddm_timestamp_utc.

sp_inc_angle
SP incidence angle, in degrees. This is the angle between the line normal to the Earth’s
surface at the specular point and the line extending from the specular point to the
spacecraft.

gps_tx_power_db_w GPS transmit power. Power input to Tx antenna, in dBw.

gps_ant_gain_db_i GPS transmit antenna gain. Antenna gain in the direction of the specular point, in dBi.

sp_rx_gain Specular point Rx antenna gain. The receive antenna gain in the direction of the specular
point, in dBi.

quality_flags Per-DDM quality flags. 1 indicates presence of condition.
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