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Abstract: A hyperspectral image (HSI) contains abundant spatial and spectral information, but it is
always corrupted by various noises, especially Gaussian noise. Global correlation (GC) across spectral
domain and nonlocal self-similarity (NSS) across spatial domain are two important characteristics
for an HSI. To keep the integrity of the global structure and improve the details of the restored
HSI, we propose a global and nonlocal weighted tensor norm minimum denoising method which
jointly utilizes GC and NSS. The weighted multilinear rank is utilized to depict the GC information.
To preserve structural information with NSS, a patch-group-based low-rank-tensor-approximation
(LRTA) model is designed. The LRTA makes use of Tucker decompositions of 4D patches, which are
composed of a similar 3D patch group of HSI. The alternating direction method of multipliers (ADMM)
is adapted to solve the proposed models. Experimental results show that the proposed algorithm can
preserve the structural information and outperforms several state-of-the-art denoising methods.

Keywords: Tucker decomposition; LRTA; nonlocal self-similarity; weighted tensor norm

1. Introduction

A hyperspectral image (HSI) consists of hundreds of contiguous bands at specific wavelengths.
They can deliver rich spectral information for real scenes. They have been widely used in many
fields, such as urban planning, mapping, agriculture monitoring, forestry, and mineral resources
exploration [1,2]. But HSI is unavoidably corrupted by various noises, e.g., Gaussian noise, mixed
Poisson–Gaussian noise, dead-lines, and stripes. The noise will influence the subsequent processing,
such as classification [3–7], segmentation [8], unmixing [9,10], object detection [11,12], background
subtraction [13], and super-resolution [14]. The central limit theorem establishes that the composite
effect of many independent noise sources (e.g., thermal noise, shot noise, etc.) should approach a
Gaussian distribution. From a practical point of view, current imaging systems designed based on the
assumption of additive Gaussian noise perform quite well. As a kind of signal independent noise, the
Gaussian assumption has been broadly used in HSI denoising [4–18]. From a theoretical point of view,
Gaussian noise is the worst-case scenario for additive noise as the Gaussian distribution maximizes
the entropy subject to a variance constraint [15]. Therefore, reducing the noise of HSI, especially the
Gaussian noise, has been an important preprocessing step in practical applications.

When we add noise to the image to simulate a degraded image, the noise is usually chosen from
N(0, Σ), and Σ is the noise covariance matrix which may contain off-diagonal elements. When Σ =

σ2Ib, b is the number of bands, and σ2 is the variance of the independent and identically distributed
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noise. In this case, N(0, Σ) is always written as N(0, σ2) for the sake of simplicity. This represents
spectrally uncorrelated noise. In the case of spectrally correlated noise, the noise covariance matrix Σ
was generated by:

∑
=
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, (1)

where ci is the correlation coefficient between the noise in bands i and (i−1). This is the simple case
where the noise in each band is correlated with that of its neighbors. Σ can be adapted to account
for more complex interactions. In the literature, additive Gaussian noise is assumed to be spectrally
uncorrelated, and the spectrally correlated noise can be transformed to spectrally uncorrelated noise
by decorrelation methods. In this paper, we mainly consider reducing the Gaussian noise, which is
spectrally uncorrelated.

HSI denoising methods can be classified into different categories from different perspectives.
In this work, we classify the HSI denoising methods from the mathematical view. It can be divided into
three categories: vectorization, matricization, and tensor (here tensor is especially referred to whose
order is more than two). An HSI contains hundreds of spectral channels, and each channel can be
regarded as a grayscale image. In the tensor framework, HSI has three modes, one mode is the spectral
dimension, the other two are spatial dimensions. Vectorization methods represent the HSI as a vector,
such as Spatio-Spectral Total Variation (SSTV) [18], which may result in very high dimensionality and
computation complexity. Matricization methods can be divided into two categories. One is band-wise
(or band-by-band) processing. Each band of HSI is a gray image, and it can be denoised band-wise by
traditional gray-level image denoising methods, such as the nonlocal-based algorithm [19], K-singular
value decomposition (K-SVD) [20], and block-matching 3-D filtering (BM3D) [21]. The band-wise
methods ignore the correlation in the spectral domain, leading to relatively poor performance. The
second category, [10] build the HSI denoising methods under a matrix framework by reshaping an HSI
into a matrix, which evidently is more reasonable than band-wise methods. By contrast, though HSI
denoising methods based on matrix always outperform the band-wise method, the intrinsic spatial
structure of HSI is also inevitably destroyed compared with the methods with the tensor model [22].

Spectral information in an HSI is of great importance in HSI analysis. Therefore, it is essential
for HSI denoising techniques to preserve the spectral information. Low rank (LR) prior can reveal
the low-dimensional structure in high-dimensional data. It has always been used to regularize the
denoising problem [22–24]. The tensor-based approach is feasible and effective for HSI processing
from a physical point of view. Tensor-based approaches have achieved promising results in HSI
denoising [25–36] as they can process the spatial and spectral information jointly. Renard et al. [25]
proposed a low-rank-tensor-approximation (LRTA) method by employing the Tucker factorization
method to obtain the LR approximation of an input HSI. Because LRTA depends on the estimation of
the rank of tensor, it may result in unstable results. Liu et al. [27] designed the parallel factor analysis
(PARAFAC) method by utilizing the parallel factor analysis [28] to denoise HSI. It regards the two
spatial dimensions as two modes of tensor, this will lead to vertical and horizontal artifacts. Xue et
al. [29] used the rank-1 tensor decomposition for HSI denoising. However, the number of components
of this decomposition cannot be estimated precisely, and the accurate estimation of rank is difficult to
guarantee. By jointly considering Tucker and Canonical Polyadic(CP) factorization, a new sparsity
measure is presented to characterize tensor data with physical meaning, and it can achieve better
recovery from a corrupted multispectral image (MSI) [30].

Considering the nonlocal self-similarity across space in an MSI, a tensor dictionary learning-based
(TDL) model [31] is proposed for denoising by enforcing hard constraints on the rank of the core tensor.
In real data, this constraint is not guaranteed as the real rank of the core tensor is hard to determine.
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Yan et al. [34] considered the low-rankness of patches and Hao et al. [35] considered the unfolding
matrices low-rankness of HSI. But the former method ignored the correlation of different modes and
the latter ignored the global low-rankness of the whole HSI (see Figure 1). Figure 1 illustrates the
low-rankness of the unfolding (matricization) of HSI along three modes. The blue curves in Figure 1b,c
are the singular values of matrices unfolding along mode-1 and mode-2 (spatial dimension). As both
of them show almost the same tendency, it implies they have the same property in the spatial domain
along mode-1 and mode-2. The fast decaying trend of the blue curve in Figure 1d indicates the strong
correlation along mode-3 (spectral dimension). The yellow squares in Figure 1b–d are examples of
similar matrix patches in the unfolding matrices along three modes which imply global similarity of
HSI. Similar cube patches in the HSI can be used to enhance denoising performance. Xue et al. [36]
have shown good results with nonlocal similarity consideration. However, the singular value of global
HSI, or the weighted nuclear norm introduced in [37], should be treated differently to further improve
performance. How to fully explore the high correlation and nonlocal similarity is still a challenge for
HSI denoising algorithms. By taking into account of the global correlation and nonlocal similarities
jointly, we proposed a novel denoising approach.
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Figure 1. Illustration of global spatial-and-spectral correlation in hyperspectral images (HSI). (a) Original
HSI and (b) the matrix unfolding by mode-1 and its singular value curve; (c) the matrix unfolding by
mode-2 and its singular values curve, and (d) the matrix unfolding by mode-3 and its singular values
curve. The x-label is the length of the unfolding matrix.

The main contributions of this paper are three-fold. First, instead of only exploring mode-3 LR
prior knowledge of the clean HSI [35], we also consider the LR property of mode-1 and mode-2, which
is called global low-rankness. This idea makes full use of the global information in both the spectral
and spatial domains.

Second, we use k-nearest neighbor (k-NN) to cluster the nonlocal similar patches (3-order tensor)
to construct a 4-order tensor, in which the third dimension is to keep spectral consistent with the HSI
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itself. These constructed tensors are LR. This is different from the method in [35], which reshapes these
similar patches to a new 3-order tensor.

Third, the joint global correlation (GC) and nonlocal low-rankness regularization are integrated
into a single scheme, in which the alternative direction minimization method (ADMM) [38,39] is
utilized and extended in the proposed model. Extensive experimental testing shows that the proposed
method can effectively remove the Gaussian noises and recover details of the original scene. When
compared with state-of-the-art methods, the proposed method has done well in both the quantitative
evaluation and the visual comparison.

The remainder of this paper is organized as follows: Section 2 reviews the related work and details
the proposed method for HSI denoising. Then, the denoising mathematical algorithm and optimization
procedure are presented in Section 3. Experimental results and discussions about the experimental
results are reported in Sections 4 and 5, respectively, and conclusions are drawn in Section 5.

2. Materials and Methods

2.1. Motivation

We use boldface Euler script letter (e.g., X), boldface capital letter (e.g., X), boldface lowercase
letter (e.g., x), lowercase letter (e.g., x) to denote, respectively, tensor, matrix, vector, and scalar.
For an N order tensor X ∈ RI1×I2×···×IN , its element at location (i1, i2, · · · , iN) is denoted by xi1,i2,··· ,iN ,
where R is the real manifold. Its fiber is a vector defined by fixing all indices but one [13]. Its
L1 norm and Frobenius norm are defined as ‖X‖1 =

∑I1
i1=1

∑I2
i2=1 · · ·

∑IN
iN=1

∣∣∣xi1,i2,··· ,iN

∣∣∣ and ‖X‖2F =∑I1
i1=1

∑I2
i2=1 · · ·

∑IN
iN=1 x2

i1,i2,··· ,iN, respectively. Matricization (or unfolding) of tensor X along mode-n

is denoted by X(n) ∈ RIn×(I1···In−1In+1···IN), which is obtained by taking all the mode-n fibers to be the
columns of the resulting matrix. For a tensorX, its n-mode product with a matrix U ∈ RK×In is denoted
by O = X×n U ∈ RI1×···×In−1×K×In+1×···×IN . The Tucker decomposition of tensor X is defined as a core
tensor multiplied by a matrix along each mode [17]: X = G×1 U1 ×2 U2 ×3 · · · ×N UN, where G is the
core tensor of the same size as X, and Ui ∈ RIi×Ii is the orthogonal factor matrix which can be regarded
as the principal component in mode i. For more details of tensor formulation, the reader is referred
to [13].

The degradation model with additive Gaussian noise of HSI can be represented by Y = X+N ,
whereY ,X,N ∈ Rd×h×b represent the noisy HSI, clean HSI, and Gaussian noise, respectively, and d, h,
b denote the width, height, and number of bands of the HSI, respectively. In this paper, we assume the
additive white Gaussian noiseN is with zero mean and variance σ2.

With the knowledge of LR prior, the denoising problem of matrix X can described as [37]

argminX
1
2
‖Y−X‖2F + µrank(X), (2)

µ is the tradeoff parameter. Similarly, the denoising problem of HSI in tensor format can be
described as

argmin
X

1
2
‖Y −X‖

2
F + µrank(X). (3)

In the low-rank approximation problem, the nuclear norm is usually introduced as the surrogate
functional of LR constraint. The matrix unfolding along mode-3 is LR [22]. Through unfolding along
mode-3 with the weighted nuclear norm minimum (WNNM) described in [37], excellent performance
in noise removal has been shown in [35]. However, the method in [31] ignores the fact that the
unfolding matrix along each mode is coded information which means that both matrices unfolding
along mode-1 and mode-2 have the same LR property.

For each matrix, the nuclear norm minimum method treats each singular value equally, and it
will lead to a sub-optimum estimation. To overcome this problem, the denoising problem based on the
global correlation can be described as
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X̂ = argmin
X

‖X‖w,∗ s.t. ‖Y −X‖2F ≤ σ
2, (4)

‖X‖w,∗ =
∑N

i=1 αi‖X(i)‖w,∗ and ‖X‖w,∗ =
∑

i

∣∣∣wiσi(X)
∣∣∣
1 is the weight nuclear norm of matrix X [37],

and w = [w1,w2, . . . ,wn] (wi ≥ 0) is the non-negative weight of σi(X), where wk
i = C/

(∣∣∣σi(X)
∣∣∣+ ε

)
,

and C=0.05 is a constant, ε > 0 is a small number to avoid zero numerator. σi(X) is the i-th largest
singular value of X. In this paper, the original HSI is treated as a 3-order tensor, so N=3, and through
some experiments, we find that α1,α2 should be equal and they should be smaller than α3 when
the denoising result is good. We have conducted various experiments and have empirically chosen
α1 = α2 = 0.2, α3 = 0.6.

2.2. The Low-Rankness Approximation of Nonlocal Similar Patches Groups

The HSI represents continuous imaging of the same object across the spectral domain. Spectral
measurements taken from the same objects or materials in different locations are similar, as they
exhibit almost the same spectral reflectance. The patches we call in the following are referred to as 3-D
full-band patches (FBPs). As these patches contain the nonlocal similarity information in the spatial
domain and the global correlation information across all spectral bands, they are usually used as prior
knowledge in denoising methods [22,31]. However, the matricization method usually concatenates the
patches to a matrix, this procession always results in spectral distortion. Based on GC prior, noise in
the HSI will be removed globally, but local spatial and spectral distortion will appear, and there will be
much residual noise. The distortion and residual noise can be removed efficiently based on nonlocal
low-rank regularization [40], which uses nonlocal self-similarity (NSS) to characterize HSI [41]. The
similarity is evaluated by the Frobenius norm of the Euclidean distance of given two patches. Smaller
norms represent a higher similarity [42].

Motivated by [30], we separate noisy-free HSI X into many overlapped 3D patches of the size
t× t× b, where t × t is the spatial dimension, and b is the number of bands of HSI. These patches are
collected in a patch set S : S =

{
Pi ∈ Rt×t×b, i ∈ Γ

}
, where Γ represents the index set and Pi is the

i-th 3D patch in this set. For each exemplar patch Pi, we search for its similar patches by k-nearest
neighbor (k-NN) [43,44] method in the spatial domain. Here, two patches are considered similar if
the Euclidean distance between two patch vectors is smaller than a given threshold. For each 3D
patch of S, we search for similar 3D patches from a big window around this 3D patch. Then S can be
grouped into J clusters and these similar 3D patches in each cluster are reshaped into a 4-order tensor
Rp(X) of size t× t× b×N0, where p is the index of the p-th cluster, as shown in Figure 2, and N0 is the
number of patches. The selection of J is illustrated in Section 4.4. It is more reasonable than reshaping
each cluster into a 3-order tensor, as described in [30]. Because the patches in each cluster have very
similar structures,Rp(X) can be approximated by a LR tensorLp, i.e.,Rp(X) ≈ Lp. The corresponding
optimization problem is

X̂ = argmin
X

‖X‖w,∗ s.t. ‖Y −X‖2F ≤ σ
2. (5)

As an HSI has strong correlation across the spectrum,
(
Lp

)
(3)

is LR. The patches in each cluster

have a very similar structure which implies that
(
Lp

)
(4)

is also LR. SoLp can be represented by Tucker

decomposition: Lp = Gp ×1 U1p ×2 U2p ×3 U3 ×4 U4p, whereGp is core tensor, and U1p, U2p, U3, U4p are
factor matrices orthogonal in columns, e.g., UT

ipU jp = I, UT
3 U 3=I. Note that the factor matrices in the

spectral mode for all p are set as a shared matrix U3, insuring thatLp is low-rank in the spectral mode
on the whole. Similar to the global denoising problem, the ideal HSI’s patches can be estimated by
solving the following optimization problem:

X̂ = argmin
X

‖X‖w,∗ s.t. ‖Y −X‖2F ≤ σ
2, (6)
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where ‖·‖w,∗ is tensor norm described in (1).Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 23 

 

 196 

Figure 2. The 4-order tensor grouped in each cluster can be reconstructed by low-rank Tucker 197 
decomposition. 198 

As an HSI has strong correlation across the spectrum, (𝓛𝑝)
(3)

is LR. The patches in each cluster 199 

have a very similar structure which implies that (𝓛𝑝)
(4)

 is also LR. So 𝓛𝑝 can be represented by 200 

Tucker decomposition: 𝓛𝑝 = 𝓖𝑝 ×1 𝐔1𝑝 ×2 𝐔2𝑝 ×3 𝐔3 ×4 𝐔4𝑝 , where 𝓖𝑝  is core tensor, and 201 

𝐔1𝑝, 𝐔2𝑝 , 𝐔3, 𝐔4𝑝 are factor matrices orthogonal in columns, e.g., 𝐔𝑖𝑝
T 𝐔𝑗𝑝 = 𝐈, 𝐔3

T𝐔
 

3=I. Note that the 202 

factor matrices in the spectral mode for all p are set as a shared matrix 𝐔3, insuring that 𝓛p is low-203 

rank in the spectral mode on the whole. Similar to the global denoising problem, the ideal HSI’s 204 
patches can be estimated by solving the following optimization problem： 205 

𝓧̂ = argmin𝓧    ‖𝓧‖𝑤,∗   s. t. ‖𝓨 − 𝓧‖F
2 ≤ 𝜎2, (6) 

 206 

where ‖∙‖w,∗is tensor norm described in (1). 207 

By replacing 𝓛𝑝 in (6) with the corresponding Tucker decomposition, we obtain the following 208 

problem: 209 

min𝓛𝑝
   𝜆‖ℛ𝑝(𝓧) − 𝓖𝑝 ×1 𝐔1𝑝 ×2 𝐔2𝑝 ×3 𝐔3 ×4 𝐔4𝑝‖

F

2
+ 𝜂‖𝓖𝑝‖

w,∗
, (7) 

 210 

where 𝓖𝑝  is core tensor. 211 

2.3. Proposed method 212 

Considering both global and nonlocal low-rankness, we propose the following regularized 213 
optimization problem： 214 

min𝓧,𝓖𝑝,𝐔1𝑝,𝐔2𝑝,𝐔3,𝐔4𝑝
 𝜇‖𝓧‖𝑤,∗

+ ∑ (
λ

2
‖ℛ𝑝(𝓧) − 𝓖𝑝 ×1 𝐔1𝑝 ×2 𝐔2𝑝 ×3 𝐔3 ×4 𝐔4𝑝‖

F

2
+ 𝜂‖𝓖𝑝‖

w,∗
)

K

p=1
 

s. t. ‖𝓨 − 𝓧‖F
2 ≤ 𝜎2. 

(8) 

The unconstrained version of (8) is 215 

min𝓧,𝓖p,𝐔1p,𝐔2p,𝐔3,𝐔4p
 
1

2
‖𝓨 − 𝓧‖F

2 + 𝜇‖𝓧‖𝑤,∗ + ∑ (
𝜆

2
‖ℛ𝑝(𝓧) −K

p=1

𝓖𝑝 ×1 𝐔1𝑝 ×2 𝐔2𝑝 ×3 𝐔3 ×4 𝐔4𝑝‖
F

2
+ 𝜂‖𝓖𝑝‖

w,∗
). 

(9) 

 216 

3. Optimization procedure and algorithm Results 217 

The scheme of the proposed HSI denoising method is summarized in Figure 3. To solve the 218 
proposed denoising model, we apply the variable splitting technique [39], and introduce new 219 
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By replacing Lp in (6) with the corresponding Tucker decomposition, we obtain the following
problem:

minLp λ‖Rp(X) −Gp ×1 U1p ×2 U2p ×3 U3 ×4 U4p‖
2
F + η‖Gp‖w,∗, (7)

where Gp is core tensor.

2.3. Proposed Method

Considering both global and nonlocal low-rankness, we propose the following regularized
optimization problem:

minX,Gp,U1p,U2p,U3,U4p µ‖X‖w,∗

+
∑K

p=1

(
λ
2 ‖Rp(X) −Gp ×1 U1p ×2 U2p ×3 U3 ×4 U4p‖

2
F + η‖Gp‖w,∗

)
s.t. ‖Y −X‖

2
F ≤ σ

2.

(8)

The unconstrained version of (8) is

minX,Gp,U1p,U2p,U3,U4p
1
2‖Y −X‖

2
F + µ‖X‖w,∗ +

∑K
p=1

(
λ
2 ‖Rp(X)−

Gp ×1 U1p ×2 U2p ×3 U3 ×4 U4p‖
2
F + η‖Gp‖w,∗

)
.

(9)

3. Optimization Procedure and Algorithm Results

The scheme of the proposed HSI denoising method is summarized in Figure 3. To solve the
proposed denoising model, we apply the variable splitting technique [39], and introduce new auxiliary
variables Q andZp (p = 1,2,...,K). Replacing variable X in the second term and Gp in the third term,
problem (8) can be reformulated as

minX,Q,Zp,U1p,U2p,U3,U4p
1
2‖Y −X‖

2
F + µ‖Q‖w,∗

+
∑K

p=1

(
λ
2 ‖Rp(X) −Gp ×1 U1p ×2 U2p ×3 U3 ×4 U4p‖

2
F + η‖Zp‖w,∗

)
s.t. X = Q,Gp = Zp.

(10)

By introducing two proper parameters, α and β, (10) can be changed to the unconstrained version:

minX,Q,Zp,U1p,U2p,U3,U4p
1
2‖Y −X‖

2
F + µ‖Q‖w,∗ +

α
2 ‖X−Q

2
F +

∑K
p=1

(
λ
2Rp(X)−

Gp ×1 U1p ×2 U2p ×3 U3 ×4 U4p‖
2
F + η‖Gp‖w,∗ +

β
2‖Gp −Zp‖

2
F

)
.

(11)
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The proposed algorithm for denoising can now be summarized in Algorithm 1. Please refer to the
Appendix A for the detail of the optimization process with this algorithm.

Algorithm 1. Proposed method for HSI denoising

Input: Noisy HSI Y
Output: Denoised HSI X
Initialization:
Set parameters α, β, λ, µ, η, R1 = ceil(h × 0.6) and R2 = ceil(d × 0.6);X is initialized by (R1, R2, R3)-Tucker
approximation ofY , here ceil(a) indicates the smallest integer larger than a. Other variables are initialized by 0.
1: while not converged do
2: updating Q via Q = fold

{
Dτω(X)

}
3: updating GP via Gp = fold

{
Dυω(Z)

}
4: updatingZp viaZp =

λRP(X)×1UT
1p×2UT

2p×3UT
3×4UT

4p+2βI
λ+2β

5: updating U1p via U1p = SVD
((
Rp(X) ×2 UT

2p ×3 UT
3 ×4 UT

4p

)
(1)

, r1

)
6: updating U2p via U2p = SVD

((
Rp(X) ×1 UT

1p ×3 UT
3 ×4 UT

4p

)
(2)

, r2

)
7: updating U3 via U3 = eigs

(∑K
p=1 QpQT

p, r3
)

8: updating U4p via U4p = SVD
((
Rp(X) ×1 UT

1p ×2 UT
2p ×3 UT

3

)
(4)

, r4

)
9: updating X via X = Ten

(
Φ−1

1 Φ2
)
, where Φ1 = 1 + α+

∑K
p=1 λRT

pRp, Φ2 = y + αq +
∑K

p=1 λRT
pm

10: updating α=1.05α, β=1.05β
11: end while
Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 23 

 

 226 

Figure 3. Scheme of the proposed HSI denoising method using global and nonlocal low-rank (LR) 227 
regularizations. 228 

4. Experimental results and discussion 229 

Experiments on both simulated and real HSI data were executed to qualitatively and 230 
quantitatively assess the denoising performance of the proposed approach. We implemented five 231 
state-of-art HSI denoising methods for comparison, namely HyRes [22], LRTA [25], PARAFAC [27], 232 
tensor dictionary learning (TDL) [30] , Intrinsic Tensor Sparsity (ITSReg) [31], and, tensor singular 233 
value decomposition (t-SVD)[32]. Here, the first four compared algorithms were based on tensor, 234 
although the last one was based on matrix, but it can deal with 3-D HSI data such as tensor, so we 235 
choose it to compare with the proposed method. Their implementation codes can be directly obtained 236 
from the authors’ websites. In our experiments, the parameter settings of the compared methods were 237 
the default setting provided in the reference papers. 238 

4.1. Experiment on Simulated Noisy Data 239 

The first simulated experiments were conducted with the Washington D.C. dataset (WDC for 240 
short) (https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html). This image comprised 241 
1280 lines and 307 columns, with a spatial resolution of 3m and 210 bands. We extracted a 341×307 242 
sub-image, and the bands which were seriously degraded were removed. The data were normalized 243 
to the range of [0, 1], and the variance of added noise varied from 0.1 to 0.3.  244 

Five quantitative image quality assessment indices (IQAs) were employed for performance 245 
evaluation, including peak signal-to-noise ratio (PSNR)[45], structure similarity (SSIM) [45], erreur 246 
relative globale adimensionnelle de synthese (ERGAS) [46],feature similarity (FSIM) [47], and 247 
spectral angle mapper (SAM) [48]. PSNR and SSIM were utilized to evaluate the similarity between 248 
the target image and the reference image based on mean squared error (MSE) and structural 249 
consistency, respectively. The unit of PSNR was dB. The FSIM was utilized to evaluate the perceptual 250 
consistency with the reference image. Larger values of these three measures represent better results. 251 
ERGAS measures fidelity of the restored image based on the weighted sum of MSE in each band, and 252 
SAM calculates the average angle between spectrum vectors of the target HSI and the reference one 253 
across all spatial positions, so it fully reflects the fidelity of the spectral reflectance of the target HSI. 254 
However, different from the former three measures, smaller values of these two measures represent 255 
better denoising results of the HSI. In this paper, the denoising IQAs (MPSNR, MSSIM, MFSIM, 256 
MERGAS, or MSAM) for each HSI were calculated as the average of all the bands. 257 

The performances of all methods on WDC dataset at different noise intensity levels are listed in 258 
Table 1. It can be found that the indices of the proposed method with ERGAS and SAM were lower 259 
than the compared methods, while the other three indices of the proposed method were higher than 260 
these methods. The visual superiority of our method with the results of compared methods is also 261 
obvious. To further depict the visual denoising performance of our method, the denoising results 262 

Nonlocal low-rank tensor

Global low-rank approximation

Nonlocal patches sets

Unfolding by 3 modes

Mode 1 Mode 2 Mode 3

Noisy HSI
Denoised  HSI

Figure 3. Scheme of the proposed HSI denoising method using global and nonlocal low-rank (LR)
regularizations.

4. Experimental Results and Discussion

Experiments on both simulated and real HSI data were executed to qualitatively and quantitatively
assess the denoising performance of the proposed approach. We implemented five state-of-art HSI
denoising methods for comparison, namely HyRes [22], LRTA [25], PARAFAC [27], tensor dictionary
learning (TDL) [30], Intrinsic Tensor Sparsity (ITSReg) [31], and, tensor singular value decomposition
(t-SVD) [32]. Here, the first four compared algorithms were based on tensor, although the last one was
based on matrix, but it can deal with 3-D HSI data such as tensor, so we choose it to compare with the
proposed method. Their implementation codes can be directly obtained from the authors’ websites.
In our experiments, the parameter settings of the compared methods were the default setting provided
in the reference papers.



Remote Sens. 2019, 11, 2281 8 of 22

4.1. Experiment on Simulated Noisy Data

The first simulated experiments were conducted with the Washington D.C. dataset (WDC for
short) (https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html). This image comprised
1280 lines and 307 columns, with a spatial resolution of 3m and 210 bands. We extracted a 341 × 307
sub-image, and the bands which were seriously degraded were removed. The data were normalized
to the range of [0, 1], and the variance of added noise varied from 0.1 to 0.3.

Five quantitative image quality assessment indices (IQAs) were employed for performance
evaluation, including peak signal-to-noise ratio (PSNR) [45], structure similarity (SSIM) [45], erreur
relative globale adimensionnelle de synthese (ERGAS) [46],feature similarity (FSIM) [47], and spectral
angle mapper (SAM) [48]. PSNR and SSIM were utilized to evaluate the similarity between the
target image and the reference image based on mean squared error (MSE) and structural consistency,
respectively. The unit of PSNR was dB. The FSIM was utilized to evaluate the perceptual consistency
with the reference image. Larger values of these three measures represent better results. ERGAS
measures fidelity of the restored image based on the weighted sum of MSE in each band, and SAM
calculates the average angle between spectrum vectors of the target HSI and the reference one across
all spatial positions, so it fully reflects the fidelity of the spectral reflectance of the target HSI. However,
different from the former three measures, smaller values of these two measures represent better
denoising results of the HSI. In this paper, the denoising IQAs (MPSNR, MSSIM, MFSIM, MERGAS, or
MSAM) for each HSI were calculated as the average of all the bands.

The performances of all methods on WDC dataset at different noise intensity levels are listed in
Table 1. It can be found that the indices of the proposed method with ERGAS and SAM were lower
than the compared methods, while the other three indices of the proposed method were higher than
these methods. The visual superiority of our method with the results of compared methods is also
obvious. To further depict the visual denoising performance of our method, the denoising results
under variance 0.3 are shown in Figure 4 with a false-color image. The red, green, and blue channels
are the composition of bands 60, 27, and 17 as described in https://engineering.purdue.edu/~biehl/
MultiSpec/hyperspectral.html. It is observed from the enlarged part of the denoising results that there
were obvious visual artifacts in the results of the PARAFAC and LRTA. The visual artifacts of the
PARAFAC came from the fact that the two spatial dimensions should not be considered as two modes
of tensor. With such decomposition, the outer products will lead to vertical and horizontal artifacts(see
Figure 4d, Figure 5d, and Figure 6d). The details were over-smoothed with t-SVD and ITSReg, as
shown in the zoomed square. The TDL considers only the nonlocal similarity but ignores the global
correlation, so the reconstructed HSI by TDL was not so completed compared with the proposed
method. Even though the false-color image of HyRes looks similar to the proposed method, blurred
parts are still observed from the enlarged part. To verify the effectiveness of the algorithm in different
datasets and at different noise intensity levels, the Urban dataset with size 301 × 201 × 162 was used.
Figures 5 and 6 show the denoising results with noise variance 0.2 of band 42 and 74, respectively.
A similar conclusion can be drawn in the experiment on this dataset (see Table 2 and Figures 5 and 6).
Our algorithm not only suppresses noise but also preserves image details and texture.

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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Table 1. Average performance of six competing methods with respect to five IQAs on the WDC dataset.

Variance Index Noisy Image LRTA PARAFAC TDL t-SVD ITSReg HyRes Proposed

0.1

MERGAS 235.618 80.934 205.254 58.892 66.516 66.400 53.142 51.285
MFSIM 0.837 0.951 0.842 0.977 0.973 0.973 0.989 0.989
MSSIM 0.713 0.937 0.741 0.970 0.968 0.966 0.984 0.986
MPSNR 19.993 29.580 21.209 32.313 31.156 31.096 33.015 33.212
MSAM 0.3420 0.1258 0.1082 0.0776 0.0610 0.0602 0.0488 0.0481

0.2

MERGAS 471.236 128.882 208.844 99.246 106.972 123.583 90.942 90.867
MFSIM 0.711 0.908 0.839 0.951 0.941 0.925 0.961 0.967
MSSIM 0.452 0.870 0.732 0.931 0.922 0.895 0.944 0.951
MPSNR 13.973 25.354 21.057 27.619 26.910 25.630 27.983 28.375
MSAM 0.5428 0.1473 0.1112 0.0875 0.0717 0.0724 0.0681 0.0621

0.3

MERGAS 706.855 165.924 214.940 132.553 142.304 164.568 125.017 124.803
MFSIM 0.620 0.874 0.833 0.925 0.905 0.875 0.937 0.944
MSSIM 0.293 0.807 0.718 0.885 0.868 0.820 0.896 0.904
MPSNR 10.451 23.088 20.805 25.032 24.400 23.127 25.16 25.814
MSAM 0.6901 0.1402 0.1162 0.0898 0.0704 0.0727 0.0614 0.0698
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Figure 4. Simulated noise removal results on Washington D.C. (WDC) data at band 10 (noise variance
is 0.3). (a) Original image. (b) Noisy image. Denoising results by (c) low-rank-tensor-approximation
(LRTA), (d) parallel factor analysis (PARAFAC), (e) tensor dictionary learning (TDL), (f) tensor singular
value decomposition (t-SVD), (g) Intrinsic Tensor Sparsity (ITSReg), (h) HyRes, (i) Proposed.
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(g) ITSReg, (h) HyRes, (i) Proposed
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Table 2. Average performance of six competing methods with respect to five IQAs on the URBAN dataset.

Variance Index Noisy Image LRTA PARAFAC TDL t-SVD ITSREG HyRes Proposed

0.1

MERGAS 304.984 89.666 253.521 69.326 79.281 76.134 63.81 64.371
MFSIM 0.831 0.960 0.829 0.974 0.971 0.972 0.988 0.989
MSSIM 0.580 0.905 0.655 0.948 0.943 0.946 0.951 0.965
MPSNR 19.992 30.798 21.604 33.087 31.916 32.159 35.074 35.108
MSAM 0.514 0.124 0.167 0.086 0.093 0.083 0.064 0.068

0.2

MERGAS 609.968 151.650 258.479 117.230 127.088 140.455 111.057 110.847
MFSIM 0.698 0.911 0.825 0.944 0.937 0.924 0.957 0.960
MSSIM 0.348 0.802 0.643 0.887 0.882 0.869 0.904 0.915
MPSNR 13.972 26.119 21.435 28.443 27.676 26.777 29.684 29.975
MSAM 0.775 0.175 0.177 0.1104 0.108 0.103 0.098 0.091

0.3

MERGAS 914.952 201.083 266.740 155.195 168.758 191.443 146.910 146.281
MFSIM 0.604 0.871 0.819 0.914 0.900 0.875 0.907 0.928
MSSIM 0.224 0.719 0.625 0.833 0.821 0.791 0.851 0.862
MPSNR 10.450 23.630 21.160 25.930 25.168 24.060 27.021 27.380
MSAM 0.934 0.184 0.191 0.117 0.112 0.112 0.115 0.103

As shown by the enlarged part of the denoising results, PARAFAC fails to maintain the structural
integrity and generated obvious artifacts because it lacks accurate estimation for the rank of HSI.
The result of LRTA still has much residual noise. As an extension of matrix singular value decomposition,
the t-SVD still treats each singular value equally in the diagonal. It usually results in over-smooth in
some regions and leaves residual noise in others. Although TDL considers nonlocal similarity in the
spectral domain, it has higher spectral distortion and cannot preserve the details. While ITSReg has
considered the intrinsic structure, it ignores the nonlocal similarity. The HyRes shows almost the same
performance as the proposed method. By comparing with the LRTA, PARAFAC, TDL, t-SVD, and
ITSReg, the proposed method produces better results on Gaussian noise removal. As we consider the
global correlation and nonlocal similarity, it achieves the better visual outcome and spectral fidelity.
Figure 7 shows the PSNR, SSIM, and FSIM values of each band of the Urban dataset with noise
variance at 0.2. The PSNR, SSIM, and FSIM values of the proposed method are higher than those of the
compared methods, indicating better noise removal.

To further investigate the performance of preserving useful spectral information while removing
noise, we plotted the spectral values curve at spatial locations (100,100) and (150,150) in Figure 8a,b,
respectively. The results are contrast-stretched to 0–255 for better visualization. The closer to the
original spectrum means the spectral information preservation is better. Though the HyRes showed
almost the same performance with the proposed method, it showed severe distortion in various
bands. The same results have been observed with the other five compared methods. This result is in
consistency with the IQAs and visual inspection mentioned above.

To give some qualitative comparison, the qualitative index of the mean cross-track profile was
adopted. We show the horizontal mean profiles of 35th band in Indian Pine set before and after
denoising in Figure 9. The horizontal axis in Figure 9 represents the row number, and the vertical
axis represents the mean digital number values of each row. As shown in Figure 9a, the curve has
sharp fluctuation because of the noise. The fluctuation is more or less suppressed by all the methods.
The proposed method provides evidently smoother curves while preserving the spatial information.
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Figure 7. Comparison of IQAs of the denoising results with variance 0.20 Gaussian noise: including
(a) peak signal-to-noise ratio (PSNR), (b) structure similarity (SSIM), and (c) feature similarity (FSIM),
(d) erreur relative globale adimensionnelle de synthese (ERGAS), (e) spectral angle mapper (SAM).
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Figure 8. Comparison of spectral reflectance value at location (a) (100,100), (b) (150,150) under variance
0.20 Gaussian noise.
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Figure 9. Horizontal mean profiles of 35th band in WDC data, the horizontal axis represents the
row number, and the vertical axis represents the mean digital number values of each row. (a) LRTA,
(b) PARAFAC, (c) TDL, (d) tSVD, (e) ITSReg, (f) HyRes, (g) Proposed.
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4.2. Real HSI Denoising

In this section, we present the results of the Indian Pine dataset (https://engineering.purdue.
edu/~biehl/MultiSpec/hyperspectral.html). Its size is 145 × 145 × 220, and spatial resolution is 20 m.
The implementation strategies and parameter settings for all competing methods were the same as
the above-simulated experiments. Since the noise level was unknown, we used the no-reference HSI
quality assessment (NHQA for short) [49] method, which is based on quality-sensitive features. The
results are listed in Table 3, from which we see that the value of the proposed method was lower than
others, which indicates better performance.

Table 3. Comparison of no-reference HSI quality assessment (NHQA) in [49] on Indian Pine dataset.

LRTA PARAFAC TDL t-SVD ITSReg HyRes Proposed

NHQA 27.3619 27.4287 27.1911 27.1038 27.1360 26.9105 26.8241

By analyzing Tables 1–3, we can conclude that the proposed method works better than compared
methods, no matter what the noise level and testing data (synthetic data or real data) are. It demonstrates
the potentials of the global and nonlocal low-rank constraints in our algorithm. The proposed algorithm
provides competitive results to the state-of-the-art algorithms.

Figure 10 shows the 107th band of the restored images obtained by all competing methods.
Figure 10a shows that the original HSI bands were corrupted by heavy noise. Although the restored
results from Figure 10b to Figure 10f look satisfactory, in Figure 10b–d, there still exists residual noise,
and Figure 10e,f show over-smooth with missing details. Comparatively, albeit less prior knowledge
was considered, our method can better restore textures and edge details, and manage to remove
structural noises, as shown in Figure 10h. Some stripes and random noises were removed. This further
substantiates the robustness of the proposed method.
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4.3. Compare of Computational Costs

In this section, we compared the computational costs of different models for these datasets: the
WDC (size 341 × 307 × 160), URBAN (size 145 × 145 × 220), and Indian Pine (size 145 × 145 × 220).
The running time (in seconds) for the denoising task by LRTA, PARAFAC, TDL, t-SVD, ITSReg, and
the proposed method are listed in Table 4. All the experiments were implemented on Windows 7, the
Core i5-7300HQ, CPU@2.5 GHz, and the 8 G memory platform by MATLAB R2014a.

Table 4. Comparisons of computational time for the denoising methods (in second).

Size LRTA PARAFAC t-SVD TDL ITSReg HyRes Proposed

WDC 341 × 307
× 160 48 269 4.2306 × 104 113 10.6579 × 104 159 9.16 × 104

URBAN 301 × 201
× 162 27 132 0.2531 × 104 45 1.0631 × 104 136 4.921 × 104

Indian
Pine

145 × 145
× 220 104 2237 0.1968 × 104 175 0.5053 × 104 182 2.184 × 104

The LRTA method is the fastest. But its denoising performance is lower compared to the other
methods. The proposed method needs to search for similar 3D patches and the optimization procedure
with Tucker decomposition. Both make it relatively slow. For the optimization procedure, though each
sub-problem has the closed-form solution in the ADMM framework, the operation time is still long.
For future work, we intend to investigate how to reduce the processing time. Although the HyRes
obtains similar performance both qualitatively and quantitatively, it can be observed from Figures 8
and 9 that the denoised HSI suffers from spectral distortion.

4.4. Parameter Selection and Analysis of Convergence

In Algorithm 1, there are eight parameters, i.e., α, β, λ, µ, η, R1, R2, and R3. Since the auxiliary
variable Q should be close to the estimated X. The regularization parameter α will gradually increase,
where the error between the two variables will decrease with increasing iterations. In all experiments,
we initialize d α as 10 and updated it by α = 1.05 * α. Similarly, we initialized β=10 and updated it
by new β = 1.05*β. The R1 and R2 for factor matrices U1 and U2 control the complexity of spatial
redundancy. They were empirically set as R1 = ceil(h × 0.6) and R2=ceil(d × 0.6) in all conducted
experiments as this setting works fairly well. The R3, which controls the complexity of temporal
redundancy, should be carefully tuned with each dataset. We set R3 as 1 for the real-world datasets.

The parameter λ controls the error of LR approximation. In our experiments with simulated data,
we initialized λ = 40/σ and λ = 10/σ for WDC dataset and Indian Pine dataset, respectively. The σ here
is the variance of Gaussian noise. For the real data experiments, we set λ = 1.5 in the first iteration.
Then, we gradually increased the value of λ with error decreasing.

The parameters of µ and η balanced the regularizations from the spectral domain and spatial
domain, respectively. To determine the optimal values of these two parameters, we conducted simulated
experiments. Figure 11 shows the example using mean PSNR (MPSNR) as the selection criterion, then
a greedy strategy was applied to select the parameter values one by one. Although the parameters
obtained by this method are not global optimum, it has achieved favorable denoising performance.

The function curve of MPSNR values with the regularization parameters µ and η are plotted in
Figure 11a,b. MPSNR is insensitive to different values of µ and η. Therefore, we can conclude that
the proposed method is robust with any µ and η. For convenience, we set µ and η to 1 in all the
experiments with both simulated and real datasets.
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Figure 11. Sensitivity analysis of parameter: (a) Relationship between mean PSNR (MPSNR) and µ.
(b) Relationship between MPSNR and η.

Additionally, we conducted experiments to understand the best number of clusters J. The results
of MPSNR versus the J are displayed in Figure 12. When J = 45, it achieved the best MPSNR. We also
observe that MPSNR declined slightly when J was increased from 45 to 60. This is mainly because the
similarity within a cluster cannot be guaranteed when J is too large. In other words, the parameter J is
optimal when the denoising performance has reached a plateau.
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Figure 12. Relationship between MPSNR and the cluster number J.

4.5. Analysis of Convergence

To illustrate the convergence of the proposed algorithm, we provide the convergence curves
with MPSNR and MSSIM of the Urban dataset. The curves under different noise levels are shown
in Figure 13a,b. It can be seen that the values of MPSNR and MSSIM do not change after about
20 iterations. In addition, we also provide the convergence curves of the synthetic WDC dataset and
Indian Pine dataset in Figure 14a,b. The objective function values were used as the assessment index of
algorithm convergence. The steepest decline happened in the first 20 iterations.
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Figure 13. Curves of (a) MPSNR, (b) MSSIM of URBAN dataset under noise levels 0.1, 0.2, and 0.3.
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4.6. A comparison of State-of-the-Art Clustering Methods

In Table 5, the proposed tensor-based learning, traditional deep learning method, and the clustering
approach in [7] are compared. Both of the clustering approach in [7] and our proposed method can be
regarded as tensor-based learning. However, there are still some differences. The main difference is that
the clustering approach in [7] is CP (rank-1) decomposition (CPD), while our method is built on Tucker
decomposition (TD). For each constructed 4-D tensor, which possesses the two local spatial modes, one
spectral mode, and one nonlocal spatial mode, each mode has a specific physical meaning. Compared
to CPD without reasonable interpretation to descript information prior to each mode, TD has a stronger
ability to characterize the low-rank property of HSI. For other differences, please refer to Table 5.

Table 5. Comparisons of differences between tensor-based learning and traditional deep learning.

Proposed Approach Approach of [7] Traditional Deep Learning

layer of prior single single multi

time cost low low high

Learning method on-line on-line off-line

decomposition tucker rank-1 canonical —

labeled training samples — large number large number

tunable parameters small small huge
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Table 5. Cont.

Proposed Approach Approach of [7] Traditional Deep Learning

spatial and spectral structure integrated integrated destroyed

computational complexity low low high

classification accuracy low high high

5. Conclusions

In this paper, we proposed an HSI denoising method by jointly utilizing nonlocal and global
low-rankness of HSI. Global low-rankness was exploited via three modes unfolding matrices.
This approach exploited the structural information of the original HSI. To take advantage of nonlocal
similarity, an LR constraint was added as regularization. This approach was also utilized to exploit
the original structural information of image patches and structured sparsity of similar patches. We
also split the variables and designed an efficient ADMM algorithm to solve the model. From the
experiments with both simulated and real datasets, we conclude that the proposed method based on
the intrinsic features of GC and NSS is more efficient. The values of ERGAS and SAM were lower while
the FSIM, SSIM, and PSNR were higher (Tables 1 and 2). Figures 8 and 9 illustrate the efficiency of the
proposed method where spectral features and spatial features were more consistent with the references.
The experimental results demonstrate that our method can achieve competitive performance compared
with other state-of-the-art methods. However, the parameters have to be selected experimentally,
and the time cost is considered high. This is a disadvantage. In the future, we will concentrate on
accelerating the speed of the algorithm to improve its practical significance.
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Appendix A. Optimization Process of Algorithm 1

The ADMM strategy is introduced to optimize the objective function (11):
(I) Optimizing Q:

minQ µ‖Q‖w,∗ +
α
2
‖X−Q‖

2
F. (A1)

This is a weighted tensor nuclear minimum problem, and its closed-form solution is given in [41],
that is Q = fold

{
Dτω(X)

}
, where τ = µ

α .
(II) Optimizing Gp:

minGp η‖Gp‖w,∗ +
β

2
‖Gp −Zp‖

2
F. (A2)

Here we omit the
∑

for simplicity. Similar to sub-problem (I), the closed-form solution is
Gp = fold

{
Dυω

(
Zp

)}
, where υ =

η
β .

(III) OptimizingZp, U1p, U2p, U3, U4p:

minZp,U1p,U2p,U3,U4p

∑K

p=1

(
λ

2
‖Rp(X) −Zp ×1 U1p ×2 U2p ×3 U3 ×4 U4p‖

2
F

)
. (A3)



Remote Sens. 2019, 11, 2281 20 of 22

The optimization problem in (A2) can be approximated by alternatively updating the
following formulas:

Zp =
λRp(X) ×1 UT

1p ×2 UT
2p ×3 UT

3 ×4 UT
4p + 2βI

λ+ 2β
, (A4)

U1p = SVD
((
Rp(X) ×2 UT

2p ×3 UT
3 ×4 UT

4p

)
(1)

, r1

)
, (A5)

U2p = SVD
((
Rp(X) ×1 UT

1p ×3 UT
3 ×4 UT

4p

)
(2)

, r2

)
, (A6)

U4p = SVD
((
Rp(X) ×1 UT

1p ×2 UT
2p ×3 UT

3

)
(4)

, r4

)
, (A7)

U3 = eigs
(∑K

p=1
QpQT

p , r3

)
, (A8)

where I is unit tensor, Qp =
(
Rp(X) ×1 UT

1p ×2 UT
2p ×4 UT

4p

)
(3)

, SVD(A,r) indicates top r singular vectors

of matrix A, and eigs(A,r) indicates top r eigenvectors of matrix A. Let us denote the rank constraint of
U1, U2, and U3 by R1, R2, and R3. The proposed algorithm for denoising can now be summarized in
Algorithm 1.

(IV) Optimizing X:

minX
1
2
‖Y −X‖

2
F +

α
2
‖X−Q‖w,∗ +

∑K

p=1

(
λ
2
‖Rp(X) −Gp ×1 U1p ×2 U2p ×3 U3 ×4 U4p‖

2
F

)
. (A9)

The vectorization of (A9) is

minx
1
2
‖y− x‖2F +

α
2
‖x− q‖w,∗ +

∑K

p=1

(
λ

2
‖Rpx−m‖2F

)
. (A10)

The solution of (A10) is
X = Ten

(
Φ−1

1 Φ2
)
, (A11)

where
Φ1 = 1 + α+

∑K

p=1
λRT

p Rp, Φ2 = y + αq +
∑K

p=1
λRT

p m,

where y = Vec(Y), x = Vec(X), q = Vec(Q),M = Zp ×1 U1p ×2 U2p ×3 U3 ×4 U4p, m = Vec(M) is
vectorization of tensor Y ,X,Q,M. Ten(x) is tensorization of vector x, i.e., the inverse operation of Vec.
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