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Abstract: Aiming at the problem of the difficulty of high-resolution synthetic aperture radar (SAR)
image acquisition and poor feature characterization ability of low-resolution SAR image, this
paper proposes a method of an automatic target recognition method for SAR images based on
a super-resolution generative adversarial network (SRGAN) and deep convolutional neural network
(DCNN). First, the threshold segmentation is utilized to eliminate the SAR image background clutter
and speckle noise and accurately extract target area of interest. Second, the low-resolution SAR
image is enhanced through SRGAN to improve the visual resolution and the feature characterization
ability of target in the SAR image. Third, the automatic classification and recognition for SAR
image is realized by using DCNN with good generalization performance. Finally, the open data set,
moving and stationary target acquisition and recognition, is utilized and good recognition results are
obtained under standard operating condition and extended operating conditions, which verify the
effectiveness, robustness, and good generalization performance of the proposed method.

Keywords: synthetic aperture radar (SAR); automatic target recognition (ATR); image segmentation;
super-resolution generative adversarial network (SRGAN); deep convolutional neural network
(DCNN)

1. Introduction

Due to its advantages of all-day, all-weather, and strong penetrating capability, synthetic aperture
radar (SAR) has been widely used in military and civil fields. SAR is a kind of active microwave
imaging radar, which can obtain two-dimensional (2-D) images with high resolution [1–4]. The
automatic target recognition (ATR) is for SAR images to extract stable and iconic features based on SAR
images, and determine its category attribute and confirm its particular copies of the same class, which
can be applied to battlefield monitoring, guidance attack, attack effect assessment, marine resource
detection, environmental geomorphology detection, and natural disaster assessment, and has vital
research significance. ATR also plays an important role in the electronic warfare (EW) and electronic
intelligence (ELINT) systems [5,6]. The initial artificial interpretation for SAR images is inefficient
and overly dependent on subjective factors. Therefore, in recent years, ATR for SAR images has
attracted significant attention from many experts, which is one of the most popular topics in current
research [7–9].
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The generalized ATR for SAR images can be divided into three levels: SAR target discrimination,
SAR target classification, and SAR target recognition. SAR target discrimination can only distinguish
the difference between SAR targets. SAR target classification predicts the class of a target in the SAR
image on the basis of SAR target discrimination. SAR target recognition confirms the specific copies
of the same class of targets in SAR images based on target discrimination and target classification.
Generally, when we say the target recognition is a narrow sense of target recognition, it only means
the highest level of target recognition. This paper mainly identifies target recognition. It mainly
includes three steps: target detection, discrimination, and recognition [8]. Target detection extracts
the target region of interest from a SAR image using image segmentation technique to eliminate
background clutter and speckle noise, enhance the target region, and weaken the influence of the
background on recognition. The process of target discrimination is mainly the process of feature
extraction, which extracts and integrates effective information in the SAR image and transforms the
image data into feature vectors. Good features have good intra-class aggregation and inter-class
difference in the classification space. Pei et al. [10] extracted SAR image features using 2-D principle
component analysis-based 2-D neighborhood virtual points discriminant embedding for SAR ATR.
However, when new samples come in, features and models need to be relearned. This method’s
universality is low and it is time consuming. To overcome this problem, Dang et al. [11] used the
incremental non-negative matrix decomposition method to study the features online to improve the
computational efficiency and the universality of the model. After feature extraction, different classifiers
can be designed to classify targets for SAR images. There are three mainstream paradigms of ATR for
SAR images: template matching, model-based methods, and machine learning. Template matching is
the most common and typical one, which stores the physical features, structural feature, etc., extracted
from the training samples in the template data set, and matches the target features of all samples
in the template library until matching rules are met to determine the information of the target to be
tested [8,12]. However, this method requires a large amount of computation and prior information. The
extracted features need to be manually designed, and it is difficult to fully explore the mutual relations
among the massive amount of data. The basic idea behind the model-based classification method is to
replace the target feature templates stored in the target data set with solid model or scattering center
model, which could construct a feature template in real time for recognition according to the specific
conditions such as target posture. Verly et al. [13] achieved recognition results by extracting the length,
area, location, and other features in control and matching them with the model library. However, this
method needs to build the attribute diagram of target size, shape, etc., which is difficult to implement,
and only applicable to specific scenarios.

With the rapid development of computer hardware devices, machine learning is widely used in
optical image processing [14], speech recognition [15], speech separation [16], etc. In recent years, ATR
methods for SAR images based on machine learning have been widely used and achieved very good
results. Verly et al. and Zhao et al. classified and recognized the ground vehicles, whose data was
from the moving and stationary target acquisition and recognition (MSTAR) [17], by using AdaBoost
and a support vector machine based on a maximized classification boundary [13,18]. However, these
methods require hand-designed features and empirical information, is heavily dependent on subjective
factors, and had low universality. Wang et al. utilized the wavelet scattering network to extract wavelet
scattering coefficients as features [19]. Although the convolutional network was utilized, it also belongs
to the traditional methods which contain three steps: feature extraction by hands, dimension reduction,
and classification using different classifier. He et al. [20] utilized convolutional neural network (CNN)
to classify SAR images, with a final recognition rate of 99.47%, but only seven categories of targets in
the MSTAR data set were classified. With the increase of layers, more and more parameters need to be
trained for CNN. Meanwhile, overfitting is occurred easily, which leads to the network’s inability to
converge or to converge to the global optimum. To reduce the number of the network parameters, Chen
et al. [21] proposed a SAR image target recognition method based on A-ConvNets, which removed all
the fully connected layers and only contained sparse connection layers. A softmax activation function
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was utilized at the end of the network to achieve the final classification. This method was verified
using MSTAR data set, and the recognition rate got 99%, which was higher than the traditional method.
However, the recognition rate of this method for SAR images after segmentation is only 95.04%.
Schumacher et al. [22,23] pointed out that the radar echo of each type of target in MSTAR data set
can only be recorded under a specific background, that is, there is a one-to-one relationship between
the target and the background, and the background can also be used as a feature of the target for
classification and recognition. Based on this, Zhou et al. [24] used the traditional CNN to classify the
SAR image background in MSTAR, and obtained the recognition rate of 30–40%, which proved that
SAR image background can improve the recognition rate. At the same time, Zhou et al. proposed
a large-margin softmax (LM-softmax) batch-normalization CNN (LM-BN-CNN) method, which had
a better recognition rates under both standard operating condition (SOC) and extended operating
conditions (EOCs).

However, if the SAR image quality is not good and the resolution is low, it will greatly affect
the correct recognition rate of SAR targets. The above methods are all based on the original SAR
images, and the image quality is not improved and enhanced. In recent years, some researchers
have done a lot of studies on image super-resolution reconstruction [25,26]. Image super-resolution
reconstruction techniques overcome the disadvantages of imaging equipment’s inherent resolution,
breaks the limitation of imaging environment, and can obtain high-quality images, which is higher
than the physical resolution of the existing imaging system, at the lowest cost. The existing
super-resolution reconstruction technique of a single frame image is mainly divided into three types:
an interpolation-based method, reconstruction-based method, and learning-based method. With the
help of machine learning techniques, the high frequency information loss of the low-resolution SAR
image is estimated by learning the mapping relationship between low-resolution and high-resolution
SAR images in order to obtain the detailed information on the clear target, such as edge, contour,
texture, etc. Thus, the image features characterization ability is enhanced, and the SAR image correct
classification coefficient is improved in this paper. Liu et al. [27] adopted a joint-learning-based
strategy, combined with the characteristics of SAR image, to reconstruct a high-resolution SAR image
from low-resolution SAR image to achieve the global minimum of the super-resolution error and
reduce speckle noise. Li et al. [28] utilized a Markov random field and Shearlet transformation
to recover a super-resolution SAR image. The result of this method is better than the traditional
method, but the detailed texture information of the reconstructed image is still different from the
original image in visual effect. The super-resolution reconstruction method based on deep learning
uses multi-layer neural network to directly establish the end-to-end nonlinear mapping relationship
between low-resolution and high-resolution images. Dong et al. [29] proposed a nonlinear regression
super-resolution reconstruction method using CNN, but this method has fewer layers and a smaller
receptive field. To overcome this problem, Kim et al. [30] achieved better results based on recursive
neural network super-resolution technology by adding the number of convolutional layers and
reducing the number of network parameters. In recent years, the generative adversarial network
(GAN) has been developing rapidly with its unique advantages. It uses the game confrontation
process of a generator and a discriminator to realize new image formation [31,32]. The MSTAR
data set was utilized as training set to generate more realistic SAR images by GAN to expand the
SAR image data set. Leding et al. [33] improved GAN to obtain super-resolution GAN (SRGAN)
by replacing the loss function based on mean square error (MSE) with the the loss function of the
feature map of visual geometry group (VGG) network. Under the condition of high magnification, the
reconstruction of optical image from low-resolution to high-resolution was realized, and better visual
effects were obtained.

In this paper, a ATR for SAR image based on SRGAN and DCNN is proposed. First, a SAR image
preprocessing method based on threshold segmentation is utilized to eliminate the influence of image
background on target classification and recognition and extract effective target areas. Second, the
SRGAN model is obtained through training to enhance the low-resolution SAR image, improve
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the visual resolution of the target areas of interest in the SAR image, and improve the feature
characterization ability. Finally, DCNN with good generalization is adopted to learn the SAR target’s
amplitude, contour, texture, and space information, and achieve the SAR images target classification
and recognition.

The remainder of this paper is organized as follows. Section 2 describes the SAR image
preprocessing method based on threshold segmentation and extracts the interested target regions.
The architectures of SRGAN’s generator and discriminator and the composition of loss function are
introduced in Section 3. The expression ability of the target features is improved through SRGAN.
In Section 4, the basic modules of DCNN are introduced in detail, which is utilized for feature
extraction and classification of targets. Section 5 provides detailed experimental results in various
scenarios. Section 6 analyzes the computational complexity of the proposed method. Section 7 gives
the conclusion.

2. SAR Image Pre-Processing

Since the target only occupies part of the SAR image, if the whole SAR image is classified as a
sample, the background characteristics as a feature that matches the target will affect the recognition
result, thus reducing the generalization performance of the ATR algorithm. If the image background
noise is too strong, the recognition accuracy will be decreased. Therefore, it is necessary to use the
image segmentation technique to pre-process the SAR images and extract target areas of interest in
SAR images to improve the recognition accuracy and generalization performance.

The gray histogram of the image represents the statistical distribution of the gray values of image
pixels. It arranges the gray values of image pixels in a descending or ascending order and counts the
number of occurrences of each gray value. Generally speaking, the grayscale distribution of a SAR
image is not uniform, and the image brightness of the same target is changeable under different scenes.
If the same threshold value is used for segmentation of all the images, background speckle noise may
be left in some images with a small threshold value, or the targets may be excessively segmented, the
effective edge information of the targets cannot be retained, and the detailed features of the target may
be lost with large threshold value. Therefore, it is necessary to carry out histogram equalization on the
SAR image to make the grayscale distribute uniformly, expand the dynamic range of the pixel values,
adjust the image contrast, and then select a uniform threshold for image segmentation.

2.1. Histogram Equalization of SAR Image

The purpose of histogram equalization is to find a mapping relation between the original image
and the image after histogram equalization, thus achieving the uniform distribution of the grayscale of
the transformed image [34]. Set r be the grayscale of the original SAR image and s is the grayscale of
the image after histogram equalization. The transformation function from r to s can be expressed using:

s = T(r) (1)

where T(·) is the transformation function. To facilitate discussion, set 0 ≤ r ≤ 1, T(·) needs to satisfy
the following conditions:

(i) When 0 ≤ r ≤ 1, 0 ≤ s ≤ 1;
(ii) When 0 ≤ r ≤ 1, T(r) is a monotonically increasing function.

Then, the transformation function from s to r can be written as:

r = T−1(s) (2)

where T−1(·) is the inverse transformation operator.
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In order to satisfy the above conditions (i) and (ii), suppose that T(r) is the probability distribution
function of r:

s = T(r) =
∫ r

0
pr(v)dv (3)

Then:
ds
dr

=
dT(r)

dr
= pr(r) (4)

The probability density of the transformed grayscale s can be obtained according to the probability
density of the random variable function:

ps(s) =
[

pr(r)
dr
ds

]
r=T−1(s)

=

[
pr(r)

1
ds/dr

]
r=T−1(s)

= 1 (5)

It can be seen that the gray value of SAR image after transformation is evenly distributed.
For the discrete function, the accumulative distribution operator of each grayscale of histogram

can be regarded as the transformation function, and the gray value of the transformed image can be
written as:

q(i) =
i

∑
k=0

pr(rk) =
i

∑
k=0

nk
n

(6)

where i = 0, 1, 2, . . . , 255, n is the number of the image elements, nk is the number of elements of the
grayscale rk, and p(rk) is the probability of the k−th grayscale.

Then, the gray value of the transformed SAR image is transformed into the range of [0, 255]
according to:

s(i) = 255 · q(i) (7)

It can be seen that the grayscale distribution of SAR image after histogram equalization is close to
uniform distribution, and the image contrast is adjusted, which lays a foundation for the following
uniform threshold selection in image segmentation.

2.2. Threshold Segmentation

SAR images are normalized after the histogram equalization, and the target regions of interest
in SAR images are extracted by selecting uniform thresholds. Suppose that Q is the SAR image after
equilibrium normalization, (x, y) is any pixel of the image Q, and P is the SAR binary mask image after
threshold segmentation. If Q(x, y) < η, then P(x, y) = 0 and this pixel is regarded as the background;
if Q(x, y) ≥ η, then P(x, y) = 1 and this pixel is recognized as the target. η is the uniform threshold.

2.3. Morphological Filtering

To reduce the speckle noise and unsmoothness of the target edge in the SAR binary mask image,
some filtering operations are needed to smooth and suppress speckle noise. Morphological filtering is
utilized here. Set B(x, y) be the structural element, corrosion and expansion can be defined respectively
as [35]:

(QΘB)(x, y) = min{Q(x−m, y− n)− B(x, y), (x, y) ∈ DB} (8)

(Q⊕ B)(x, y) = max{Q(x−m, y− n) + B(x, y), (x, y) ∈ DB} (9)

where DB is the image region corresponding to the structural element B(x, y). If the size of DB is
M× N, then 1 ≤ m ≤ M, 1 ≤ n ≤ N. Open and closed operations can be defined respectively as:

Q ◦ B = (GΘB)⊕ B (10)

G•B = (G⊕ B)ΘB (11)
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Open operations can remove isolated points and burrs. Closed operations can fill the small holes
in the body, close the small cracks, connect the adjacent objects, and smooth the boundary.

Figure 1 is the flow chart of the SAR image preprocessing using the threshold segmentation
method. First, histogram equalization and normalization are adopted to the original SAR image to
make the image grayscale distribution close to the uniform distribution. Then use the median filtering
to smooth the normalized image. Second, select an appropriate threshold to make the SAR image
binary and segment the SAR image background and the target of interest. Third, in order to solve the
problem of speckle noise and burrs on the edge of the target in binary images, the closed operation
of morphological filtering is utilized to obtain the SAR binary mask image. Finally, the original SAR
image is multiplied by the SAR binary mask image to obtain the segmented SAR image.
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3. SAR Image Enhancement Based on SRGAN

Due to the high cost for high-resolution SAR image acquisition and the poor feature
characterization ability of low-resolution SAR image, it is difficult to obtain ideal results using the
original image to target classification problem directly. This paper applies the technique of the SRGAN
into the problem of low-resolution SAR image enhancement. Through the study of confrontation
between the generator and discriminator, SAR image of high visual resolution is obtained and the
capacity of the characteristics of the original SAR image feature is enhanced. Then the enhanced SAR
image is sent into a classifier for classification to improve the accuracy of target recognition.

3.1. Structure of SRGAN

SRGAN is a GAN-based network optimized for a new perceptual loss by introducing the idea of
super-resolution. The idea of a GAN comes from Nash equilibrium in game theory, which consists of a
generator and a discriminator and predicts the potential distribution of real images and generates new
images through the iterative advertised learning between them. The training and learning purpose of
the generator is to generate realistic images as much as possible to cheat the discriminator, while the
discriminator is to distinguish real images from false images generated by the generator as much as
possible. They finally reach the state of Nash equilibrium. At last, the generator produces false images
enough to confuse the human eyes, and the discriminator is also difficult to distinguish real images
and false images [31].

Traditional super-resolution problems generally consider small magnification. The cost function
of the traditional method is generally based on the MSE, which makes the reconstructed result have
a higher signal to noise ratio (SNR). When the image magnification is above 4, the reconstructed
image will lack high frequency information, appear to have an overly smooth texture, and lose some
sense of authenticity in details. The training process of SRGAN is still a dynamic game process. The
inputs of GAN are real samples and noise, while the inputs of SRGAN are original SAR images and
low-resolution SAR images [33]. At the same time, the loss function of SRGAN contains not only the
anti-loss of GAN but also content loss, which increases the similarity between the reconstructed SAR
image and the original segmented SAR image in the feature space.

The architecture of SRGAN is shown in Figure 2. The generator contains five residual block
subnetworks with the same structure. The number of convolutional kernels is 64, the size is 3 × 3, after
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which, the BN layer and the rectified linear unit (ReLU) nonlinear activation layer are connected. The
ReLU is a piecewise function:

σ(x) = max{0, x} (12)

Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 23 

 

The architecture of SRGAN is shown in Figure 2. The generator contains five residual block 
subnetworks with the same structure. The number of convolutional kernels is 64, the size is 3 × 3, 
after which, the BN layer and the rectified linear unit (ReLU) nonlinear activation layer are connected. 
The ReLU is a piecewise function: 

{ }( ) max 0,x xσ =  (12) 

The schematic diagram of a residual block is shown in Figure 3. It contains two convolutional 
layers and two BN layers and one ReLU activation layer. From Figure 3, the residual network 
connects the input X  and the output node ( )F X  through the structure of skip mapping. It 
transforms the optimization function into the residual function:  

( ) ( )= −F X H X X  (13) 

where ( )H X  is the expected output. At this point, we only need that ( )F X  approaches to zero to 
get an identical mapping, which greatly reduces the difficulty of training and it is easy to achieve 
network optimization. The addition of residual blocks solves the problem of network saturation 
degradation when the network structure is deepened [36]. 

In
pu

t  
LR

 Im
ag

e

Co
nv

Re
LU

Co
nv

BN

El
em

en
tw

ise
 S

um

Co
nv

O
ut

pu
t H

R
 Im

ag
e

n64s1 n64s1 n64s1 n256s1 n3s1
Residual Blocks

Co
nv

Pi
xe

lsh
uf

fle
r

Re
LU

 
(a) 

Co
nv

Le
ak

y 
R

eL
U

Si
gm

oi
d

In
pu

t I
m

ag
e  

De
ns

e(
10

24
)

Le
ak

y 
R

eL
U

De
ns

e(
1)   L

R
 ?

 H
R?

 

n64s1 n64s2 n512s1 n512s2

Co
nv

Le
ak

y 
R

eL
U

BN

 
(b) 

Figure 2. Architecture of SRGAN (“n” is the no. of feature maps, “s” is the stride of each convolutional 
layer): (a) generator, and (b) Discriminator. 

C
on

v

B
N

R
eL

U

C
on

v

B
N

E
le

m
en

tw
is

e
Su

mX
( )F X

( )H X

 

Figure 3. Schematic diagram of a residual block. 

  

Figure 2. Architecture of SRGAN (“n” is the no. of feature maps, “s” is the stride of each convolutional
layer): (a) generator, and (b) Discriminator.

The schematic diagram of a residual block is shown in Figure 3. It contains two convolutional
layers and two BN layers and one ReLU activation layer. From Figure 3, the residual network connects
the input X and the output node F(X) through the structure of skip mapping. It transforms the
optimization function into the residual function:

F(X) = H(X)− X (13)

where H(X) is the expected output. At this point, we only need that F(X) approaches to zero to get an
identical mapping, which greatly reduces the difficulty of training and it is easy to achieve network
optimization. The addition of residual blocks solves the problem of network saturation degradation
when the network structure is deepened [36].
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Figure 3. Schematic diagram of a residual block.

After the residual block structure, two PixelShuffler layers are connected to realize upper sampling
of low-resolution SAR images and the reconstruction of original segmented SAR images. SRGAN
improves the SAR image resolution at the last layer, which greatly saves the computing time and
memory [26].
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The discriminator contains eight convolutional layers and two fully connected layers. Finally, a
sigmoid function is used to activate the discriminator. Its structure is similar to that of VGG network,
except that the activation function of convolutional layer is a leaky ReLU function, and basic modules
of VGG network will be introduced in detail in Section 4.

3.2. Loss Functions of SRGAN

In order to represent the improvement of visual resolution, the perceptual loss function lSR is
defined in SRGAN, whose expression can be written as:

lSR = lSR
Cont + 10−3lSR

Gen (14)

where lSR
Cont is the content loss, and lSR

Gen is the adversarial loss.
Content loss reflects the difference between the input of the low-resolution SAR image and the

output of the reconstructed SAR image produced by the generator. The content loss function lSR
X based

on MSE can be expressed as:

lSR
Cont =

1
a2WH

aW

∑
x=1

aH

∑
y=1

[
IHR
x,y − GθG

(
ILR
)

x,y

]2
(15)

where a is the time of upper sampling; W and H represents the dimensions of the low-resolution SAR
image; IHR

x,y is the pixel value of the original segmented SAR image, which is the input as high-resolution
SAR image at the point (x, y); ILR is the low-resolution SAR image, which is the down sampling image;
and GθG

(
ILR)

x,y is the pixel value of the reconstructed high visual resolution SAR image generated

according to the low-resolution SAR image ILR and the high-resolution image IHR at the pixel point
(x, y).

The adversarial loss function lSR
Gen can be expressed as:

lSR
Gen =

N

∑
n=1
− log DθD

[
GθG

(
ILR
)]

(16)

where DθD

[
GθG

(
ILR)] represents the probability that the discriminator regards the image generated

by the generator GθG

(
ILR) as the high-resolution image IHR.

The training process of SRGAN can be summarized as the optimization problem of network
parameter θ̂G:

θ̂G = argmin
1
N

N

∑
n=1

lSR
(

GθG

(
ILR
n

)
, IHR

n

)
(17)

where ILR
n and IHR

n are the n−th low-resolution SAR image and the n−th high-resolution SAR image,
GθG is the discriminant model, and N is the number of SAR images in the training set.

After the network converges, input the high-resolution SAR image as the low-resolution SAR
image into the trained SRGAN model to improve the visual resolution of the high-resolution SAR
image further, make the target texture clearer, enhance the feature expression ability of the image,
and improve the accuracy of SAR target recognition. The original segmented image is input to the
SRGAN twice. It is inputted to the SRGAN as the high-resolution SAR image for the first time in the
process of training, which is utilized for the low-resolution SAR image to learn the high frequency
information, detailed edge information, and the precise texture of the high-resolution SAR image.
While it is inputted to the SRGAN as the SAR image to be enhanced for the second time in the process
of testing.
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4. SAR Image Classification Based on DCNN

The image classification method based on deep learning can automatically learn the spatial
information and texture characteristics of images to avoid the intricacies of manual feature extraction
and feature selection, reduce the influence of subjective factors on the classification results, and
improve the universality of the classification algorithm. The most common method is CNN. Generally
speaking, the accuracy of target classification can be improved by deepening the network properly. As
is known, less layers means faster training. However, the CNN with less layers cannot be compared
with DCNN in terms of the recognition accuracy. VGGNet is a typical DCNN developed by the
University of Oxford visual geometry group and researchers at Google DeepMind. VGGNet explored
the relationship between the deepness and the performance of the CNN. Through stacking the small
convolutional kernels of 3 × 3 and maximum pooling layers of 2 × 2 repeatedly, VGGNet successfully
constructs the CNN with 16 and 19 layers, which are called VGG16 and VGG19, respectively. VGGNet
won the second class prize in classification project and the first class prize in the positioning project of
the ILSVTC 2014 competition [37]. VGGNet is one classic DCNN structure with good generalization.
Its structure diagram is shown in Figure 4, which is mainly composed of 13 convolutional layers, 5
pooling layers, and 4 full connection layers [38]. We have added one full connection layer based on the
VGG16. The following parts give the detailed description of VGGNet.
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SAR images need to be pre-processed before training and testing. According to the experience,
we take the original image minus its mean as input to conduct training and testing in order to improve
the stability of training and testing.

4.1. Forward Propagation

4.1.1. Convolutional Layer

The convolutional layer is a key layer for feature extraction. It extracts features by convolving the
feature map of the output with the previous layer. In the process of network training, the convolutional
kernel is updated continuously through the learning of feature maps. If different convolutional kernels
are used for each convolution operation, with the deepening of network layers, more and more
parameters need to be trained. In order to reduce the number of the training parameters of the network,
CNN adopts the weight-sharing operation. In the VGGNet, the convolutional kernel is set to 3 × 3.
Convolutional layer operations include convolution and activation, and the convolution process can
be expressed as:

z(l)j = ∑
i

q(l−1)
i (x, y) ∗ w(l)

ij (x, y) + b(l)j

= ∑
i

F
∑

m,n=0
q(l−1)

j (m, n)w(l)
ij (x−m, y− n) + b(l)j

(18)

where (x, y) is any pixel of a SAR image, q(l)i is the i−th feature map of the l−th layer, w(l)
ij is the

convolutional kernel connecting the i−th input feature map to the j−th output feature map on the
l−th layer, F is the size of the convolutional kernel, b(l)j is the j−th bias of the l−th layer, and ∗ denotes
the 2-D convolution operation. In order to increase the nonlinear characteristic of the network and
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make the model have stronger classification expression ability, each convolutional layer needs to
connect the nonlinear activation function layer:

q(l)j (x, y) = σ
(

z(l)j

)
(19)

where σ is the nonlinear activation function ReLU. When mapped to a higher dimensional space, the
final decision surface is decomposed into multiple planes. As the neural network deepens, multiple
piecewise planes are required to fit the final decision surface and realize nonlinear classification.
Convolutional kernels and bias are the parameters to be trained.

4.1.2. Pooling Layer

In order to reduce the number of the training parameters, the pooling layer is added after the
convolutional layer to realize the “compression” of the information in the local field of vision. Pooling
is divided into maximum and average pooling. Maximum pooling returns the maximum value in the
pooled window, while average pooling returns the average value in the pooled window. Here, we use
the maximum pooling:

q(l)j (x, y) = max
m,n=0,...,P−1

q(l)j (x + m, y + n) (20)

where P is the size of pooling window.
After several convolutional and pooling layers, the features of the image are extracted and learned.

4.1.3. Activation Function

The softmax activation layer is the last layer of the entire network, mainly completing the
classification task, and its output is the posterior probability of each class of sample:

p
(

yi

∣∣∣q(L)
)
=

exp
(

q(L)
i

)
∑K

j=1 exp
(

q(L)
j

) (21)

where yi denotes the predicted label of the i−th class; q(L) is the input of the softmax layer, and it is
computed by the previous fully connected layer; q(L)

i is the weight sum of the i−th node of the output
of the last fully connected layer; K is the number of class; and L is the number of the layer.

Through the softmax function, the output of the model is normalized into a probability vector, and
the label corresponding to the maximum of posteriori probability is the predicted class of this sample.

4.1.4. Loss Function

After forward propagation, some rules are needed to update the network parameters. The
common loss functions contain the MSE and cross-entropy loss functions. Compared with the
MSE function, the cross-entropy loss function can better reflect similarity of training sample and
model distribution:

L(W,b) = −
K

∑
i=1

y(i) log p
(

yi

∣∣∣q(L); W, b
)

(22)

where W and b are weight sets and bias sets of all the layers in DCNN respectively, and y(i) is the real
label of the i−th class.

The cross-entropy loss function measures the difference between the real and the predicted labels.
The training process of network can be summarized as the optimization problem of the minimizing
loss function.
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4.2. Back Propagation

The output layer results are the predicted results of the network. The error term of the network
output layer can be obtained through comparing the predicted results with the real results:

δL
i = −

[
y(i) − p

(
yi

∣∣∣q(L)
)]

(23)

If the (l + 1)−th layer is a convolutional layer, then the error item of the i−th feature map of the
l−th layer is decided by the error item of the (l + 1)−th layer and the convolutional layer:

δ
(l)
i = σ′

(
q(l)i

)
�∑

j
δ
(l+1)
j w(l+1)

ii (24)

where σ′(·) is the derivative of the ReLU activation function, and � is the dot product operator.
If the (l + 1)−th layer is a pooling layer, then the error item of the i−th feature map of the l−th

layer can be obtained using:
δ
(l)
i = σ′

(
q(l)i

)
�Up

(
δ
(l+1)
j

)
(25)

where Up(·) represents the upper sampling operation.
According to the error term of all layers, the gradients of the weight and the bias of each layer can

be calculated using:
∂L

∂w(l)
ji

= q(l−1)
i δ

(l)
j (26)

∂L

∂b(l)j

= ∑
x,y

δ
(l)
j (x, y) (27)

Using the gradient descent method to update the weight and bias of the network:

w← w− η
∂L
∂w

(28)

b← b− η
∂L
∂b

(29)

where η is the learning rate.
Through forward and back propagation, the network finally converges and stable network

parameters are obtained. The SAR images to be tested are input to the DCNN to obtain their
class attributes.

4.3. The Flow Chart of the Proposed Method

Figure 5 is the flow chart of ATR for SAR image based on SRGAN and DCNN. First, in order
to obtain the corresponding low-resolution SAR image, the segmented SAR image is four-fold
down-sampled. The segmented SAR image, as the high-resolution image, and the low-resolution
SAR image are input into SRGAN for training. After the countermeasure between the generator and
the discriminator of SRGAN, the Nash equilibrium is finally achieved and the well-trained SRGAN
model is obtained. Second, the segmented SAR image as the low-resolution SAR image is input into
the trained SRGAN model again to improve its visual resolution to achieve image enhancement and
obtain the final enhanced SAR image. Third, the enhanced SAR image after the pre-processing of
subtracting mean value is divided into a training set and a test set, where the training set is sent to
the DCNN to train its network parameters and learn the intrinsic features of the SAR image until
convergence. Finally, the test set is sent to the trained DCNN, and the classification results are output
to achieve a good classification of the SAR targets.
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5. Experiments and Results

This paper utilizes the open data set, MSTAR, for the verification of the effectiveness of the
proposed algorithm. The MSTAR data set was gathered in 1995 and 1996 separately by Sandia X-band
(9.6 GHz) HH-polarization spotlight SAR and contains ten categories of ground military vehicles. The
pitching angles were 15◦, 17◦, 30◦, and 45◦. The azimuth angles ranged from 0◦ to 360◦. The original
SAR image resolution was 0.3 m × 0.3 m and the image size was 128 × 128. These ten categories of
ground military targets include BTR-70, BTR-60, BMP-2, T-72, T-62, 2S1, BRDM-2, D-7, ZIL-131, and
ZSU-234. Figure 6 shows the optical images and the corresponding SAR images of the ten categories
of targets. It can be seen that the resolution of SAR images is low, the targets’ edge information is not
clear, and it is not easy to extract the detailed information of the images.
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Figure 6. Ten classes of target images from MSTAR: (a) 2S1, (b) BMP-2, (c) BRDM-2, (d) BTR-60,
(e) BTR-70, (f) D-7, (g) T-62, (h) T-72, (i) ZIL-131, and (j) ZSU-234.
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Experiments were conducted under SOC and EOCs [39]. SOC means that the targets of the
training set and the test set have the same serial number and target configuration, but they have
different azimuth and pitch angles. The differences between the training set and the test set under
EOCs were large, and different controlling variables could be set such as pitch angle, configuration
variant, and version variant.

5.1. SAR Image Threshold Segmentation Based on Histogram Equilibrium Normalization

Each type of target in the MSTAR data set is collected in a specific environment, and it is pointed
out that these background clutter alone has an recognition accuracy of about 30% to 40% [24]. In view
of this situation, the image background improves the recognition accuracy of the target to some extent.
However, in the actual situation, the background of the target will vary with the specific environment.
Therefore, in order to reduce the interference of the clutter of the target background on the classification
results, the image needs to be segmented.

In order to facilitate the determination of the uniform segmentation threshold, first, the histogram
equalization for the original SAR image was done, and then the before and after histogram results
were compared, as shown in Figure 7. Figure 7a is the grayscale histogram distribution of the SAR
image before equalization, and Figure 7b is the grayscale histogram distribution of the SAR image after
equalization. From Figure 7, the grayscale distribution of the original SAR image was not uniform,
where most of the pixels were concentrated in the range of 0 to 150, and the grayscale distribution of
the SAR image after the histogram equalization was relatively even, facilitating the subsequent fixed
threshold segmentation.
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Figure 7. SAR image gray histogram distribution: (a) before the equalization, and (b) after
the equalization.

Taking 2S1 for example, Figure 8 gives the process of the SAR image threshold segmentation.
Figure 8a is the original SAR image before the histogram equalization; Figure 8b is the SAR image after
equilibrium normalization, where it had a more even grayscale distribution; Figure 8c is the SAR image
after median filtering, where the gray value was smoothed; Figure 8d is the SAR image after threshold
segmentation, where it can be seen that there is a lot of speckle noise in the image; Figure 8e is the SAR
image after morphological filtering, where the background speckle noise was well suppressed; and
Figure 8f is the SAR image after segmentation, where the details and edge information of the target
were well preserved.
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after segmentation.

5.2. SAR Image Enhancement Based on SRGAN

In view of the high acquisition cost of high-resolution SAR images and the inconspicuous target
edge features of low-resolution SAR images, an SRGAN-based SAR image enhancement method
is proposed in this paper to improve the SAR image feature characterization ability, and then the
enhanced SAR image was sent to the classifier to improve the accuracy of target classification. The
generator of SRGAN adds the upper sampling layer at the end to keep the image size consistent with
the original image.

Generally, we use peak signal to noise ratio (PSNR) to measure the quality of reconstructed
images. Figure 9 gives the variation curve of PSNR with number of training epoch during SAR image
reconstruction based on SRGAN. From Figure 9, in the process of network training, the PSNR of the
low-resolution SAR image was improved with the training epoch, and the image visual resolution
is improved.
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Figure 9. The PSNR of the reconstructed SAR image.

Figure 10 expresses the SAR image enhancement through SRGAN. Figure 10a shows the SAR
image after segmentation, where its size was 78 × 78; Figure 10b is the low-resolution SAR image
with quadruplet sampling, where the size became 19 × 19 and the image looks very blurred with a lot
of information being lost; Figure 10c gives the reconstructed SAR image after SRGAN convergence,
where the size was restored to 78 × 78. Compared with Figure 10a, it was very close to the original
segmented image in visual sense and visual perception. It proved that SRGAN has learned the features
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of the original segmented image in the training process. Sending the original segmented SAR image
(Figure 10a) into the trained SRGAN again, the enhanced SAR image was obtained, as shown in
Figure 10d, where the size became 312 × 312. From Figure 10d, the texture information of the target
surface was expressed in detail, the edge features are more obvious, and the visual resolution of the
image was improved, which provides strong support for the classification and recognition of the target.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 23 
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5.3. Experiments and Results under SOC

To verify the effectiveness and robustness of the proposed method, we conducted experiments in
two different conditions, SOC and EOCs.

Table 1 is the description of the training set and test set under SOC. The training set contains 10
classes of targets, the pitch angles of targets in the training set were all 17◦, the pitch angles of targets
in the test set are all 15◦. The sample numbers of each class in the training set and test set are shown in
Table 1. The training set is sent into the DCNN to be trained to obtain the stable network parameters.
After that, the test set is sent into the trained DCNN to obtain the final classification results.

Table 1. Description of training and test sets under SOC.

Training Set Test Set

Class No. of Samples Pitch Angle No. of Samples Pitch Angle

2S1 299 17◦ 274 15◦

BMP-2 233 17◦ 196 15◦

BRDM-2 298 17◦ 274 15◦

BTR-60 256 17◦ 195 15◦

BTR-70 233 17◦ 196 15◦

D-7 299 17◦ 274 15◦

T-62 299 17◦ 273 15◦

T-72 232 17◦ 196 15◦

ZIL-131 299 17◦ 274 15◦

ZSU-234 299 17◦ 274 15◦

Figure 11 is the visualization result of the first 16 feature maps of five convolutional layers after
sending the enhanced SAR image of 2S1 into DCNN. Figure 11a shows the feature map of the 1st
convolutional layer, Figure 11b gives the feature map of the 3rd convolutional layer, Figure 11c is the
feature map of the 5th convolutional layer, Figure 11d shows the feature map of the 8th convolutional
layer, and Figure 11e gives the feature map of the 11th convolutional layer. From Figure 11, with
the deepening of the layers, the SAR image feature characterization ability got stronger and stronger,
proving that our network has learned the SAR image features.
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Figure 11. SAR image feature map visualization of the (a) 1st, (b) 3rd, (c) 5th, (d) 8th, and (e) 11th
convolutional layer of 2S1.

Figure 12 gives the comparison of convergence of DCNN with and without image enhancement.
The solid line is the convergence curve of training accuracy with training epoch without image
enhancement, and the dashed line denotes the convergence curve of training accuracy with training
epoch with image enhancement. From Figure 12, the training accuracy reached a stable 100% after
15 epochs without SAR image enhancement. The convergence speed became very fast after image
enhancement based on SRGAN. The training accuracy reached 100% at the fifth epoch for the first
time, and it was stable after the ninth epoch. This fully proves that the features of the SAR image after
enhancement were easier to extract and learn than the one without enhancement.
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Table 2 is the confusion matrix of the recognition results of 10 classes of targets under SOC. Here,
“Acc” is the abbreviation of accuracy. The SAR image average recognition accuracy of the 10 classes
using the proposed method was as high as 99.31%, among which, the 2S1, BTR-70, T-72, and ZIL-131
recognition accuracy reached 100%. However, BRT-60 had the lowest recognition accuracy, which was
mainly because some samples of BRT-60 were wrongly classified as ZSU-234. When the pitch angle
was 17◦, these two classes of target images had a great deal of similarity, as shown in Figure 13.
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Table 2. The confusion matrix under SOC based on the proposed method.

Class 2S1 BMP-2 BRDM-2 BTR-60 BTR-70 D-7 T-62 T-72 ZIL-131 ZSU-234 Acc (%)

2S1 274 0 0 0 0 0 0 0 0 0 100
BMP-2 0 195 1 0 0 0 0 0 0 0 99.49
BRDM-2 0 1 273 0 0 0 0 0 0 0 99.64
BTR-60 0 0 1 186 1 0 0 2 0 5 95.38
BTR-70 0 0 0 0 196 0 0 0 0 0 100

D-7 0 0 0 0 0 272 1 1 0 0 99.27
T-62 0 0 0 0 0 0 272 1 0 0 99.63
T-72 0 0 0 0 0 0 0 196 0 0 100

ZIL-131 0 0 0 0 0 0 0 0 274 0 100
ZSU-234 0 0 0 0 0 1 0 0 0 273 99.64
Average 99.31
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5.4. Experiments and Results under EOC1

For SOC, the pitch angles of the training set and the test set were different, but the difference
was not large. However, the SAR image was very sensitive to many factors, and in order to verify the
robustness of the method proposed in this paper, MSTAR data sets were tested in different EOCs. The
EOCs need to set three different experimental conditions: different pitch angles (EOC1), and different
configurations and different versions (EOC2).

There were four classes of targets in EOC1, including 2S1, BRDM-2, T-72, and ZSU-234. The
number of samples of each class and the corresponding pitch angles in the training set and test set are
shown in Table 3. The pitch angles of the training set and test set samples differed by 13◦. The postures
of the training samples and testing samples were more different than the SOC.

Table 3. Description of training and test sets under EOC1.

Training Set Test Set

Class No. of Samples Pitch Angle No. of Samples Pitch Angle

2S1 299 17◦ 288 30◦

BRDM-2 298 17◦ 287 30◦

T-72 691 17◦ 288 30◦

ZSU-234 299 17◦ 288 30◦

Table 4 is the confusion matrix under EOC1 based on the proposed method. It can be seen from
Table 4, after image enhancement, that the recognition rate of each class of target was above 97%, and
the average recognition accuracy reached 99.05%. Although there was a large difference of pitch angles
between the training set and test set, the better recognition result under EOC1 was still obtained, which
proves the robustness of the propose method.
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Table 4. The confusion matrix under EOC1 based on the proposed method.

Class 2S1 BRDM-2 T-72 ZSU-234 Acc (%)

2S1 295 1 0 2 98.96
BRDM-2 1 286 0 0 99.65

T-72 5 0 281 0 97.57
ZSU-234 0 0 0 288 100
Average 99.05

5.5. Experiments and Results under EOC2

EOC2 is divided into different configurations and different versions. The target type, the number
of samples, and the corresponding pitch angles of the training set and test set are shown in Tables 5–7,
respectively. The training sets are the same for the two EOC2’s, including BMP-2, BRDM-2, BTR-70,
and T-72. For the configuration variants, the test samples only included variants of T-72. For version
variants, the test samples only included variants of T-72 and BMP-2.

Table 5. Training set under EOC2.

Class No. of Samples Pitch Angle

BMP-2 233 17◦

BRDM-2 298 17◦

BTR-70 233 17◦

T-72 232 17◦

Table 6. Test set under EOC2 (configuration variant).

Class No. of Samples Pitch Angle

T-72/S7 419 15◦, 17◦

T-72/A32 572 15◦, 17◦

T-72/A62 573 15◦, 17◦

T-72/A63 573 15◦, 17◦

T-72/A64 573 15◦, 17◦

Table 7. Test set under EOC2 (version variant).

Class No. of Samples Pitch Angle

BMP-2/9566 428 15◦, 17◦

BMP-2/C21 429 15◦, 17◦

T-72/812 426 15◦, 17◦

T-72/A04 573 15◦, 17◦

T-72/A05 573 15◦, 17◦

T-72/A07 573 15◦, 17◦

T-72/A10 567 15◦, 17◦

Table 8 shows the confusion matrix under EOC2 (configuration variant) based on the proposed
method. Under the configuration variant condition, the final recognition accuracy reached 99.27%,
among which the T72/S7 and T72/A32 recognition accuracy reached 100%.
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Table 8. The confusion matrix under EOC2 (configuration variant) based on the proposed method.

Class Variant BMP-2 BRDM-2 BTR-70 T-72 Acc (%)

T-72

S7 0 0 0 419 100
A32 0 0 0 572 100
A62 0 8 0 565 98.60
A63 0 10 0 563 98.25
A64 0 3 0 570 99.48

Average 99.27

Table 9 is the confusion matrix under EOC2 (version variant) based on the proposed method, and
the final average recognition accuracy was 98.92%. Among them, the recognition accuracy of A07 in
T-72 was low, which was 96.68%. This was mainly because some T-72/A07 was wrongly classified as
BRDM-2. Figure 14 gives the images of T-72/A07 and BRDM-2. It can be seen that these two classes
had similarities in visual scene. There were residual regions due to the insufficient segments.

Table 9. The confusion matrix under EOC2 (version variant) based on the proposed method.

Class Variant BMP-2 BRDM-2 BTR-70 T-72 Acc (%)

BMP-2
9566 427 0 0 1 99.77
C21 429 0 0 0 100

T-72

812 0 0 0 426 100
A04 0 15 0 558 97.38
A05 0 0 0 573 100
A07 1 18 0 554 96.68
A10 0 8 0 559 98.59

Average 98.92
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Table 10 is the comparison of different methods, namely traditional CNN, A-ConvNets,
LM-BN-CNN, and the proposed method in this paper. Under SOC, the recognition accuracy of
the proposed method was 4.5% higher than the traditional CNN, 4.3% higher than A-ConvNets,
and 2.9% higher than LM-BN-CNN. Under EOC1, the recognition accuracy of the proposed method
was 10.6% higher than the traditional CNN, 10.0% higher than A-ConvNets, and 7.4% higher than
LM-BN-CNN. In the case of EOC2 (configuration variant), the recognition accuracy of the proposed
method was 12.6% higher than the traditional CNN, 12.0% higher than A-ConvNets, and 10.1% higher
than LM-BN-CNN. In the case of EOC2 (version variant), the recognition accuracy of the proposed
method was 12.9% higher than traditional CNN, 11.8% higher than A-ConvNets, and 10.3% higher
than LM-BN-CNN. It can be seen that the proposed method had stronger feature expression ability
and better generalization performance, and the recognition results were superior to A-ConvNets and
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LM-BN-CNN. The advantages of the image enhancement are obvious, and it has better classification
recognition ability when the number of target categories was fewer.

Table 10. Comparison of different methods.

Methods SOC EOC1
EOC2

(Configuration
Variant)

EOC2
(Version Variant)

Traditional CNN 94.79 88.44 86.72 85.99
A-ConvNets 95.04 89.05 87.31 87.08
LM-BN-CNN 96.44 91.66 89.15 88.60
The proposed

method 99.31 99.05 99.27 98.92

To sum up, under SOC, EOC1, and EOC2, the recognition accuracies of the proposed method in
this paper were all above 98%, showing good feature expression ability and classification ability. The
convergence speed of the SAR image with segmentation and enhancement was faster than the SAR
image with only segmentation and without enhancement, the network was more stable, and the image
features were easier to extract. There were two main reasons: First, the proposed algorithm eliminates
the influence of background noise using image segmentation method and decreases the computational
complexity. Second, and most importantly, the proposed algorithm adopts a super-resolution technique
to improve the visual resolution of the targets in SAR images, where the detailed information becomes
more obvious, such that the learning feature ability of the network is improved and the difference
between different targets can be captured well, thus the recognition rate is increased. Therefore, the
proposed ATR method for SAR images based on SRGAN and DCNN has effectiveness, robustness,
and good generalization performance.

6. Computational Complexity Analysis

The number of parameters P of CNN is related to the depth and the number of channels of the
network:

P ∼ O

(
L

∑
l

K2
l · Cl−1 · Cl

)
(30)

where L is the number of convolutional layer, Kl is the side length of the convolution kernel of the
l−th convolutional layer, and Cl is the channel number of the output of the l−th convolutional layer.
The number of parameters of the neural network is mainly determined by the parameters of the
convolutional layer. Each neuron in the BN layer contains two trainable parameters, and the number
of bias parameters of each layer contained in the convolutional layer is relatively small, meaning both
can be ignored here. After the calculation, the number of parameters in the SRGAN generator was
about 1.22 M, the number of parameters of the discriminator was about 4.68 M, and the total number
of parameters of SRGAN was about 5.90 M. While the number of parameters of VGGNet was about
37.69 M.

The time complexity of the network is related to the network depth, the number of network
channels and the size of the feature graph:

T ∼ O

(
L

∑
l

F2
l · K

2
l · Cl−1 · Cl

)
(31)

where Fl is edge length of the feature map of the l−th convolutional layer. The experiments in this
paper all adopted an Ubuntu system, AMD Ryzen 7 1700X processor, with a memory of 32 GB, NVIDIA
GTX1080Ti GPU, and the TensorFlow framework. The training time of each target model in SRGAN
was about 17 min, the training time of classification and recognition VGGNet for 10 classes was 20 min,
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and the testing time of both was at the second level. Therefore, the proposed method fully meets the
requirements of real-time performance and can be applied to the ELINT/EW equipment working in
real conditions or other actual applications.

7. Conclusions

In view of the difficulty in obtaining high-resolution SAR image and poor feature characterization
ability of low-resolution SAR image, which leads to the low SAR recognition rate, this paper proposes
an ATR method for SAR images based on SRGAN and DCNN. First, the original SAR image is
preprocessed by the threshold segmentation based on histogram equalization and morphological
filtering to extract the target area of interest and reduce the impact of SAR image background, target
shadow, and speckle noise on the recognition results. Second, the SAR image after segmentation is
enhanced using SRGAN to make the texture of the target clearer and the features easier to be extracted
and learned. Third, the enhanced SAR image is trained and tested by using the DCNN, and better
classification results are obtained. Finally, the MSTAR data set is utilized for verification. Under the
SOC and EOCs, the recognition of the proposed method in this paper was superior to the existing
traditional CNN, A-ConvNets, and LM-BN-CNN, which proves the effectiveness, robustness, and
good generalization performance of our proposed method.
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