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Abstract: Remote sensing (RS) image processing can be converted to an optimization problem, which
can then be solved by swarm intelligence algorithms, such as the artificial bee colony (ABC) algorithm,
to improve the accuracy of the results. However, such optimization algorithms often result in a
heavy computational burden. To realize the intrinsic parallel computing ability of ABC to address the
computational challenges of RS optimization, an improved multiagent (MA)-based ABC framework
with a reduced communication cost among agents is proposed by utilizing MA technology. Two types
of agents, massive bee agents and one administration agent, located in multiple computing nodes are
designed. Based on the communication and cooperation among agents, RS optimization computing is
realized in a distributed and concurrent manner. Using hyperspectral RS clustering and endmember
extraction as case studies, experimental results indicate that the proposed MA-based ABC approach
can effectively improve the computing efficiency while maintaining optimization accuracy.

Keywords: remote sensing; optimization; parallel processing; multiagent

1. Introduction

Image processing is of great importance for remote sensing (RS) applications [1], such as
classification [2], clustering [3–5], and endmember extraction [6,7]. Recently, many RS image processing
problems have been converted to optimization problems to improve the results’ accuracy [8,9]. For example,
an RS clustering problem can be converted to an optimization problem that minimizes the distance between
the pixel and the cluster center [10] and an RS endmember extraction problem to a problem that minimizes
the remixed error [11,12]. Because these RS optimization problems are nonlinear and are difficult to solve
using traditional linear approaches, the artificial bee colony (ABC) algorithm, an outstanding swarm
intelligence (SI) algorithm, has been widely used for its ability to address nonlinear problems [5,13–16].
Experiments have demonstrated the improved results achieved by utilizing this intelligent algorithm.

However, using ABC to solve RS optimization problems is a computationally expensive task [17,18]
because ABC is an iterative-based stochastic search algorithm that is usually executed sequentially in a
central processing unit (CPU). In each iteration, each bee in the population must execute time-consuming
operations, such as RS optimization’s fitness evaluation, to obtain new solutions [18]. Therefore,
as these operations’ complexity and the RS image volume increase, the computational burden increases
substantially, resulting in poor performance.

To contend with the aforementioned computational challenges, efforts have been made to establish
parallel computing approaches. The technique of employing graphics processing units (GPUs) is a
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widely used approach [6,19–21]. A GPU has a massively parallel architecture consisting of thousands
of small arithmetic logic units (ALUs), which are efficient for handling computing-intensive tasks
simultaneously [22]. With GPU-based RS optimization, the data processing behaviors of each individual
in SI algorithms that contain large volumes of calculations, especially the most computationally intensive
fitness evaluation, are offloaded onto the GPUs’ threads for parallel computation [6,18]. During such
parallel computation, an RS image is usually divided into many subimages, and multiple threads
execute the same computation on different RS subimages in parallel. However, since in a bee swarm
each individual’s behavior is operated on an entire RS image, after multiplying the number of subimages
by the number of individuals, the number is often greater than the number of threads that the GPU
hardware can provide; as a result, it is hard to implement multiple individuals’ calculation behavior
in parallel.

To efficiently achieve parallel execution of individuals’ behavior, a multiagent (MA)-based ABC
approach for RS optimization was proposed by utilizing distributed parallel computing based on the
CPU [17]. This approach treats food sources and bees in ABC as different agents, which are distributed
and concurrently behave in multiple processor units (computers or hosts). By communicating through
the network, different agents interact with each other to obtain an optimal solution, thus significantly
increasing the computation efficiency. However, the agents’ behaviors designed in [17] are relatively
redundant, resulting in increased communication costs for its dispersed agents’ behaviors, which is
further analyzed in Section 3.

To further increase the computational efficiency of RS optimization while using the ABC algorithm,
this paper proposes an improved MA-based ABC approach by appropriately integrating agents’
behaviors to reduce communication among agents. The effectiveness and efficiency of the new method
are demonstrated based on RS image clustering [5] and endmember extraction [16]. The remainder of
this paper is organized as follows. Section 2 presents relevant theory pertaining to remote sensing
optimization, the ABC algorithm, and multiagent system technology. Then, the basic concept of the
improved MA-based ABC approach and the framework design are described in detail in Section 3.
Section 4 introduces two RS optimization tasks as case studies, clustering and endmember extraction.
The corresponding experiments and results are presented in Sections 5 and 6. Finally, a discussion and
a conclusion are provided in Sections 7 and 8.

2. Theory

2.1. Remote Sensing Optimization

Many RS-related problems, such as clustering, endmember extraction, and target detection,
essentially involve maximizing or minimizing results on certain indexes by computation. For example,
for clustering, researchers usually try to minimize the distance among points within a cluster or
maximize the distance among multiple classes. In addition, endmember extraction requires maximizing
the spectral angle, maximizing the internal maximum volume, or minimizing the external minimum
volume of points in spectral spaces. By treating these indexes as objective functions, these problems
can be abstracted as optimization problems and expressed as follows:

min/max f (x)
st. x ∈ Ω

(1)

where f (x) is the objective function of an optimization problem, x is a solution, and Ω represents the
constraints that the solution must satisfy.

2.2. The ABC Algorithm

The ABC algorithm [23] is a method for finding an optimal solution to an optimization problem
by simulating the foraging behavior of a bee colony in nature. In the ABC algorithm, each scout bee
randomly generates a feasible solution (food source) initially. Then, employed bees search around their
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corresponding food sources (feasible solutions) to generate new solutions with the participation of
randomly selected neighborhood solutions. Once all of the food sources are updated with those with
better fitness values, each onlooker bee pseudorandomly selects a food source (a feasible solution),
searches around it to generate a new solution, and updates the food source with the better solution.
If a food source is not updated for a long time, it will be abandoned, and a new food source will be
obtained by a scout bee’s random selection. The bees’ behaviors will be iterated until an optimal
solution is found. The entire procedure is depicted in Figure 1.
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Figure 1. The procedure of the artificial bee colony (ABC) algorithm.

2.3. Multiagent System

An agent is a software component that has autonomy in providing an interoperable interface for a
system [24]. The use of a multiagent system (MAS) is a technique for modeling complex problems.
An MAS is constructed by multiple autonomous agents that interact with each other directly by
communication and negotiation or indirectly by influencing the environment to fulfill local and
global tasks [24–26]. Combining an MAS with swarm intelligence algorithms, such as ABC, in a
distributed and parallel manner can be effective to shorten the computational time of a complex
optimization problem [27]. Usually, the individuals in swarm intelligence algorithms can be treated as
a series of heterogeneous agents in an MAS involving different computing processors with diverse
goals, constraints, and behaviors. By collaborating among these agents, the optimal solution can
be achieved in a distributed manner. For example, in [17], each artificial bee and food source are
implemented as independent software agents who run separately and simultaneously in an MAS,
with an administration agent controlling the flow work of the RS clustering algorithm. One major
advantage of such an MAS is a reduction in computational time because the computational burdens
are offloaded onto different processors. Furthermore, the failure of one agent will not disturb the entire
algorithm’s calculat9ion, which is helpful for ensuring the robustness of the optimization framework.
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3. Framework Design

The design of the improved MA-based ABC framework mainly consists of three parts: agents’
role design, communication design, and behavior design. This section first elaborates the design of
each part and then compares this improved framework with the former framework proposed in [17].

3.1. Agents’ Role Design

Two types of agent roles are designed in this framework, massive bee agents and one administration
agent. These agents are located in different computing nodes within the same network through which
they can communicate with each other via messages. The agents’ role design is depicted in Figure 2.
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In [17], bee agents are only responsible for a neighborhood search to generate new solutions in
the employed and onlooker bee phase, which introduces an extra communication cost, as indicated
in Section 2. In this paper, we redesign the bee agent with the potential to decrease the frequency of
communication. In addition to a neighborhood search, each bee agent has more tasks to be executed
to maintain its corresponding solution, which include (1) generating a random solution in the initial
phase and the scout bee phase, (2) evaluating the solutions’ fitness, (3) updating the maintenance
solution, and 4) recording the number Nlimit, which indicates that a solution has not been updated,
to control the initiation and termination of the scout bee phase. These four behaviors are assigned to
food source agents in [17].

Similarly to [17], the administration agent is responsible for the overall control of the algorithm, which
includes the following functions: (1) exerting control over agents’ lifecycle, namely, generating new bee
agents in different computing nodes during the initial stage and killing them at the end of the algorithm;
(2) executing data initialization; (3) determining the solutions participating in the neighborhood search;
(4) performing iteration and convergence control; and (5) recording and outputting the optimal solution.
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3.2. Agents’ Communication Design

In this paper, a message-passing mechanism is adopted for the smooth implementation of the
algorithm. All agents communicate with each other through the network by messages. According to
the standard of agent communication language (ACL), each message contains at least five fields: the
sender, the receivers, contents, language, and a communicative act [24].

For example, in ABC’s employed bee phase, the administrator agent will pass a neighborhood
solution to each bee agent before executing the neighborhood search. Therefore, the sender of the
message is the administrator agent, and the receiver is a bee agent. The message content contains
the neighborhood solution, which is coded in the language of Java by serialization in our design.
Under these circumstances, the sender (the administrator agent) wants the receiver (a bee agent) to
perform an action (begin its neighborhood search); thus, the communicative act should be set as
REQUEST. However, in certain other situations, the sender only wants the receiver to be aware of a
fact, such as a bee agent notifying the administrator agent while completing a scout bee behavior; thus,
the communicative act should be set as INFORM.

3.3. Agents’ Behavior Design

The agents’ behavior in an MA framework is tightly coupled with the procedure of the ABC
algorithm. There are five phases in ABC: the initial phase, the employed bee phase, the onlooker bee
phase, the scout bee phase, and the convergence judgment phase (Figure 3).

(1) Initialization phase
First, we launch an administration agent and set initial parameters, including MA-related data,

such as the number of bee agents, the network address list of computing nodes that can participate in
the parallel computation, and RS-optimization-related initial data, such as the number of clustering
centers in the problem of hyperspectral image clustering.

Then, the administration agent will generate multiple bee agents in different computing nodes
according to the parameters of the network address list and pass the RS-optimization-related initial
parameters to each bee agent.

After receiving the initial parameters, each bee agent will generate a random solution.
(2) Employed bee phase
First, the administration agent will pass to each bee agent a random neighborhood solution

through the network. Then, the kth bee agent maintaining solution Xk =
{
xk,1, xk,2, · · · xk,m×L

}
with

fitness f itk will receive the solution Xs as a neighborhood solution, where m× L is the dimension and
k , s. The kth bee agent then executes a neighborhood search to generate a new candidate solution X′k
according to Equation (2)

X′k,r = Xk,r + Φk,r × (Xk,r −Xs,r) (2)

where r is a random dimension index selected from the set {1, 2, · · · , m× L} and Φk,r is a random
number within [−1, 1]. For a minimal optimization problem, when a new solution X′k is generated,
its fitness f it′k will be calculated via Equation (3) after its objective function value U(k′) is obtained.
Then, a greedy selection will be used to improve the fitness of the kth bee agent’s solution. If f it′k is
better than the original solution’s fitness f itk, the solution will be replaced by the new one; otherwise,
the parameter Nlimit = Nlimit + 1. Later, the updated solution will be passed to the administrator agent
through the network.

f it′k =
1

1 + U(k′)
(3)

It should be noted that the objective function calculation U(k′) is a problem-focused process. How
the solution’s objective function value is calculated is irrelevant in the MA framework, since only its
function value is needed to evaluate the fitness. However, the objective function calculation could be
loosely coupled with the MA-based approach by providing each agent with the calculation interface.
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Figure 3 The overall workflow of agents’ behaviors for remote sensing (RS) clustering. 
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(3) Onlooker bee phase
Once the administrator agent receives all bee agents’ fitness, a random selection probability for

each bee agent will be calculated according to Equation (4).

pk =
f itk

BN∑
k′=1

f itk′

(4)

where pk is the selection probability of the kth bee agent, f itk is the fitness value, and BN is the bee
agent number. The probability gives a solution with better fitness a greater chance of being selected by
an onlooker bee than the solutions with worse fitness.

Then, the administrator agent will pass to each bee agent two solutions, Xk and Xr, where Xk is
obtained by roulette wheel selection according to the selection probabilities and Xr is selected randomly.
Later, each bee agent will execute a neighborhood search according to Equation (2) and calculate the
new generated solution’s fitness via Equation (3). If the new solution’s fitness is worse than solution Xk,
then Nlimit = Nlimit + 1; otherwise, the new generated solution will be transferred to the kth bee agent
to replace the original solution. Finally, all bee agents’ solution will be transferred to the administrator
agent to help it update each bee’s best-so-far solution.

To further improve the parallel computation of the entire framework, the employed and onlooker
bee phases could be carried out simultaneously.

(4) Scout bee phase
After the onlooker bee phase, each bee agent will judge whether its parameter Nlimit exceeds

the value of a predefined number limit. If the parameter exceeds the value, the original solution is
abandoned, and a new solution will be generated randomly.

(5) Convergence judgment phase
If the iteration meets the convergence condition, the administrator agent will kill all bee agents

and export the best-so-far solution in its memory as the optimal solution. Otherwise, the employed
bee, onlooker bee, and scout bee operations will be executed repeatedly.

3.4. Computational Complexity

If the numbers of employed and onlooker bees number are both BN, the maximum iteration
number is T, the parameter related to a scout bee’s behavior of abandoning a solution is Nlimit,
a solution’s dimension (for example, the number of endmembers and clustering centers in the problem
of endmember extraction and clustering) is M, and the number of parallel computing nodes is
C(C ≤ BN), the time complexity of the framework can be represented in Table 1, where g(∗) is the
complexity of the RS optimization objective function value calculation.

Table 1. The Time Complexity of the Framework.

Complexity Description

Initialization phase M×BN
C Generate BN solutions of M dimensions in parallel.

Employed bee phase T×BN× g(∗)
C

Generate BN new solutions by neighborhood search, and calculate
the objective function values in T iterations in parallel.

Onlooker bee phase
T×BN× g(∗)

C

Scout bee phase
BN Calculate BN solutions’ fitness.

[ T
K ]×M×BN

C
In the worst case, BN bees abandon original solutions every K

iterations and generate new solutions of M dimensions in parallel.

Total BN × (1 +
(1+[ T

K ])×M+2×T× g(∗)
C )

3.5. Comparison

In the MA-based ABC proposed in [17], a food source agent is only responsible for a solution’s
maintenance and a bee agent is only responsible for the neighborhood search (shown in Figure 4a).
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Because a bee agent does not store a solution, whenever it executes a neighborhood search in the
employed and onlooker bee phases, it has to solicit two solutions from two different food source agents
through the network (shown as step 1 in Figure 4a). Subsequently, the new generated solution should
also be passed to its corresponding food source agent to update solutions (shown as step 3 in Figure 4a).
The frequent communications in the MA-based ABC reduce the computational performance.

In the improved MA-based ABC framework proposed in this paper, each agent exhibits both
behaviors (solution maintenance and neighborhood search), and its neighborhood search can be
directly executed on its maintenance solution, which means that only one neighbor solution has to
be passed to an agent in all of the employed phases (shown in Figure 4b) and parts of the onlooker
bee phases (if one of the two randomly selected solutions for a bee happens to be maintained by the
bee). Thus, the frequency of transferring solutions among agents will be effectively reduced, which is
helpful for improving the efficiency of parallel computation.
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To quantitatively analyze the improvement, the number of transferred solutions among agents
in one iteration can be listed as shown in Table 2, which indicates that the improved framework
proposed in this paper will spend less time on communication than the former framework [17] does,
thus achieving higher efficiency.

Table 2. The Number of Transferred Solutions among Agents in one Iteration.

Algorithm Phase The Behaviors of Agents The Former
Framework in [17]

The Improved Framework in
This Paper

Employed bee
The administrator agents passing solutions to each employed bee agent 2BN BN(1)

Each employed bee agent passing a solution to a food source agent BN 0
Passing solutions to the administrator agent BN BN

Onlooker bee

The admin agents passing solutions to onlooker bee agents 2BN BN+BN × p1
(2)

Each onlooker bee agent passing a solution to a food source agent BN 0
Onlooker bee agents passing solutions to other bee agents 0 BN × p2

(3)

Passing solutions to the administrator agent BN BN
Sum 8BN 4BN + 2BN × (P1 + P2)

Note: (1) In the employed bee phase, because each bee agent maintains a solution, only one neighborhood solution
has to be transferred from the administrator agent to each bee agent; thus, the number of transferred solutions
among agents is BN, where BN is the number of bees. (2) In the onlooker bee phase, two solutions (Xk and Xr) must
be transferred to each bee agent. If one of the two solutions happens to be the solution maintained by the bee agent,
there is no need to transfer the solution. Fraction p1(0 ≤ p1 ≤ 1) can be imported to describe the probability of this
possibility. p1 = N′

BN , where N′ is the number of bees whose maintaining solution happens to be one of the two
solutions in their onlookers’ neighborhood search. Thus, the total number of transferred solutions is BN+BN × p1.
(3) For a bee agent, if its new generated solution X′ is better than Xk, and Xk is another bee agent’s maintaining
solution, X′ must be transferred. The fraction p2(0 ≤ p2 ≤ 1) is defined to describe the probability of this possibility.
Thus, the number of transferred solutions under such circumstances is BN × p2.
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4. Case Studies

To validate the effectiveness and efficiency of the proposed MA-based ABC approach while
solving the computational challenges of RS optimization, an image clustering problem considering
Markov random fields (MRFs) [5] and endmember extraction [16] are taken as case studies.

4.1. RS Optimization for Clustering

The model aims to minimize the total MRF classification discriminant function value, which can
be summarized as the following optimization problem:

min U =
n∑

i=1
Uiωi (5)

s.t. ωi = argmin j
{
Ui j

}
(6)

Ui j = di j + βbi j = ‖ri − c j‖2 + β
∑
∂i

(1−δ( j,ω∂i)) (7)

di j = d(ri, c j) = ‖ri − c j‖2 (8)

bi j =
∑
∂i

(1−δ( j,ω∂i)) (9)

1 ≤ j ≤ m (10)

where Ui j is the MRF classification discriminant function, a combination of spectral and spatial
similarity (shown in (5)). The Euclidean distance di j between the pixel ri and the cluster center c j,
shown in (8), reflects the degree of spectral similarity between ri and class X j. bi j represents the spatial
similarity between pixel ri and class X j, which can be obtained by Function (9). ∂i represents a pixel
in the neighborhood of ri, ω∂i represents the class of that pixel in the neighborhood of ri, and δ(·, ·)
represents the Kronecker function. The parameter β is used to control the influence of the spatial
information during classification, i is the number of pixels in the RS image, and j is the number of
clusters. The objective function calculation of this model is detailed in [5].

4.2. RS Optimization for Endmember Extraction

One RS optimization for endmember extraction can be modeled to minimize the volume of
endmembers and the root-mean-square error (RMSE) value of the extracted results. The model can be
expressed as follows.

min f (E) = V(
{~
e j

}M

j=1
) + µRMSE(

{~
ri
}N

i=1
,
{~
e j

}M

j=1
) (11)

~
ri =

M∑
j=1

αi j
~
e j + εi (12)

M∑
j=1

αi j = 1,∀i (13)

αi j ≥ 0,∀i,∀ j (14)

V(
{~
e j

}M

j=1
) =

1
(M− 1)!

∣∣∣∣∣∣det
([

1 1 · · · 1
~
e1

~
e2 · · ·

~
eM

])∣∣∣∣∣∣ (15)

RMSE(
{~
ri
}N

i=1
,
{~
e j

}M

j=1
) =

1
N

N∑
i=1

||
~
ri −

M∑
j=1

α̂i j
~
e j||2 (16)
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{~
e j

}M

j=1
represents the M endmembers in the dimension-reduced hyperspectral image

{~
ri
}N

i=1
with N

pixels; αi j is the abundance, which represents the proportion of the j-th endmember in the i-th pixel;

and εi is the random error. V(
{~
e j

}M

j=1
) is the volume of the simplex whose vertices are

{~
e j

}M

j=1
.

5. Experiments

5.1. Experimental Data

5.1.1. Dataset 1

The Pavia dataset with a spatial resolution of 1.3 m was collected by the Reflective Optics System
Imaging Spectrometer (ROSIS) over the University of Pavia, Italy, in 2001. The dataset contains
103 bands (after the removal of the water vapor absorption bands and bands with a low signal-to-noise
ratio (SNR)) with a wavelength range of 430–860 nm and covers an area of 610× 340 pixels. A false color
composite image (bands 80, 45, and 10) is shown in Figure 5a. The ground truth dataset, which contains
nine classes, is shown in Figure 5b.
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5.1.2. Dataset 2

The Indian Pine dataset with a spatial resolution of 20 m was obtained by the airborne visible/infrared
imaging spectrometer (AVIRIS) in 1992. The dataset contains 169 bands (after the removal of the water
vapor absorption bands and low-SNR bands) with a wavelength range of 400–2500 nm and covers an
area of 145 × 145 pixels. A false color composite image (bands 54, 33, and 19) is shown in Figure 6a.
The ground truth dataset, which contains 16 classes, is shown in Figure 6b.
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5.2. Experimental Design

5.2.1. Comparison Experiments

All experiments were carried out in multiple computing nodes with the same hardware
configuration shown in Table 3. The MA framework was developed in the language of Java by
using the Java Agent Development (JADE) platform, and all objective function calculations were coded
in MATLAB and imported into the MA framework as a JAR package.

Table 3. The Hardware Configuration Used in the Experiments.

Number of
Cores

Number of
Threads CPU (GHz) Bus Speed

(MHz) Multiplier RAM (GB)

4 4 3.4 100 30 8

For each dataset, two comparison experiments were designed to validate the MA-based ABC
approach in two respects: optimal solution accuracy and calculation efficiency. The accuracy of the
optimal solutions is evaluated by comparing with the original algorithms implemented on a single
computer. The calculation efficiency is evaluated by comparing with the MA framework proposed in [17].

Notably, weight values are involved in both case studies; for example, the β in formulation (7) and
µ in formulation (1), which affect the solution quality and the convergence speed. However, the goal of
the experiments designed here is to prove that the solution accuracy will not decrease under different
frameworks with the same parameter settings but that the calculation efficiency will be improved.
Thus, both the weight values in the two case studies are set to 1000 according to [5]. It should be noted
that the weight value setting may not be the best choice for all RS datasets and case studies.

5.2.2. Evaluation Criteria

Two types of criteria are used to evaluate the accuracy and efficiency.
(1) Accuracy criteria
• RS optimization for clustering
For the RS optimization problem of image clustering considering MRF, four criteria are chosen

to evaluate the results’ accuracy: (1) purity, (2) normalized mutual information (NMI), (3) adjusted
random index (ARI), and (4) segmentation accuracy (SA).

Purity is a simple and transparent measure for evaluating how well the clustering matches the
ground truth data, which can be calculated as follows:

purity(C, G) =
1
N

∑
j

max
k
|c j ∩ gk| (17)

where C =
{
c1, c2, · · · cJ

}
is the set of clusters and G =

{
g1, g2, · · · gK

}
is the set of classes of the ground

truth. c j is the set of image pixels in cluster j, and gk is the set of pixels in class k. The closer the value of
purity is to 1, the better the cluster result is. High purity is easy to achieve when the number of clusters
is large, but purity cannot be used to trade off the quality of clustering against the number of clusters.

To make this tradeoff, NMI can be introduced.

NMI(C, G) =

∑
j

∑
k

P(c j ∩ gk) log
P(c j∩gk)

P(c j)P(gk)

−
∑
j

P(c j) log P(c j)
(18)
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where P(c j),P(gk), and P(c j ∩ gk) are the probabilities of a pixel being in cluster c j, class gk, and the
intersection of c j and gk, respectively. The value of NMI is normalized within the range [0,1]. A large
value of NMI corresponds to a high-quality result.

ARI is used to evaluate the degree of consistency between the classification results and the test
samples. The clustering result and the ground truth data are two different class partitions of pixels.
For an image with n pixels, a contingency table, such as that shown in Table 4, can be obtained by
calculating the parameters a, b, c and d according to [28].

Table 4. Contingency Table of the Clustering Result and Ground Truth Data.

Clustering Result

Ground Truth Data Pixel Pair with the
Same Class Label

Pixel Pair with
Different Class Labels

Pixel pair with the same class label a b
Pixel pair with different class labels c d

The ARI is calculated as follows:

ARI =

(
n
2

)
(a + d) − [(a + b)(a + c) + (c + d)(b + d)](
n
2

)2

− [(a + b)(a + c) + (c + d)(b + d)]

(19)

The value of the ARI lies between 0 and 1. The higher the ARI value is, the better the classification
result is.

The criteria for SA, an evaluation index for the classification accuracy, can be obtained by the
power of spectral discrimination (PWSD), which is one way to measure the degree of difference
between two different cluster centers for the same pixel. For pixel xi and cluster centers c j1 and c j2 , the
PWSD Ω(c j1 , c j2 ; xi) is as follows:

Ω(c j1 , c j2 ; xi) = max{
SAM(c j1 , xi)

SAM(c j2 , xi)
,

SAM(c j2 , xi)

SAM(c j1 , xi)
} (20)

where SAM(c j, xi) = cos−1
(

cT
j ·xi

‖c j‖2·‖xi‖2

)
is the spectral angle distance between xi and c j. For an RS image,

SA can be formulated as follows [29]:

SA =
1
n

n∑
i=1

m∑
j=1, j,ωi

Ω(cωi , c j; xi)

m− 1
(21)

As the distinction between cluster centers and pixels increases, the corresponding values of
PWSD and SA also increase. Therefore, large SA and PWSD values correspond to a high-quality
clustering result.

• RS optimization for endmember extraction
For the RS optimization problem of endmember extraction, the RMSE is a commonly used

accuracy criterion. The RMSE quantifies the error between the original hyperspectral image and
the remixed image, which represents the generalized degree of image information provided by the
extracted endmembers [30]. The RMSE is calculated by Equation (16).

(2) Efficiency criteria
We use the classical notions of speedup and computational efficiency.
The speedup SC = T1/TC of a distributed application measures how much faster the algorithm

runs when it is implemented on multiple computing nodes than it does on a single computing node.
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The computational efficiency eC = SC/C measures the average speedup value in a computation
clustering environment. Here, C is the number of computing nodes, T1 is the execution time on a
single computing node, and TC is the algorithm’s execution time on C computing nodes.

6. Results

6.1. Accuracy

According to the logic of the ABC algorithm, there is no difference in accuracy between the
improved framework reported in this paper and the algorithm without MA technology. In other words,
the different parallel design will not affect the algorithm’s accuracy, which is validated in this section.

6.1.1. Accuracy of Clustering

The MA-based ABC framework coupled with the ABC-MRF-cluster algorithm in [5] and the
ABC-MRF-cluster without using MA technology were run 10 times for comparison.

The median, mean, and standard deviation of the objective function and the t-test value are listed
in Tables 5 and 6. The values of the ARI and PWSD are similar and remain stable, which means that
the accuracy of ABC-MRF-cluster classification accelerated by MA technology is nearly the same as
that of ABC-MRF-cluster classification executed on a single computer. Additionally, both standard
deviations of the objective function, which are much smaller than the mean and median value, prove
the algorithm’s stability. Furthermore, the t-test values, which can be used for evaluation if two sets of
data are significantly different from each other, are calculated. The p-values of all criteria between
the ABC-MRF-cluster and the MA-based ABC are much greater than the threshold value of 0.05,
which proves that there is no notable difference between the optimization results of the MA-based
ABC framework and the ABC algorithm without MA technology. Therefore, we can conclude that the
MA-based approach will not affect the optimization accuracy.
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Table 5. Accuracy Statistics of the multiagent (MA)-based ABC Framework and the ABC-MRF-cluster in [5] for Dataset 1.

ARI PWSD NMI Purity

MA-Based ABC
Framework ABC-MRF-Cluster MA-Based ABC

Framework ABC-MRF-Cluster MA-Based ABC
Framework ABC-MRF-Cluster MA-Based ABC

Framework ABC-MRF-Cluster

Median Value 0.3088 0.3189 5.9785 5.8356 0.5505 0.5595 0.5796 0.5916
Mean Value 0.3113 0.3212 5.8737 5.8034 0.5552 0.5590 0.5843 0.5891

Standard Deviation 0.0174 0.0229 0.5475 1.3014 0.0111 0.0112 0.0192 0.0213
p-value 0.0930 0.8182 0.2280 0.4029

MRF, Markov random field.

Table 6. Accuracy Statistics of the MA-based ABC Framework and the ABC-MRF-cluster in [5] for Dataset 2.

ARI PWSD NMI Purity

MA-Based ABC
Framework ABC-MRF-Cluster MA-Based ABC

Framework ABC-MRF-Cluster MA-Based ABC
Framework ABC-MRF-Cluster MA-Based ABC

Framework ABC-MRF-Cluster

Median Value 0.2164 0.2148 6.2587 6.0156 0.4458 0.4460 0.4013 0.3985
Mean Value 0.2210 0.2206 6.5233 6.5073 0.4510 0.4492 0.4118 0.4031

Standard Deviation 0.0132 0.0145 0.8342 1.3508 0.0119 0.0095 0.0323 0.0238
p-value 0.9439 0.9750 0.7061 0.4996
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6.1.2. Accuracy of Endmember Extraction (EE)

The MA-based ABC framework improved upon in this paper coupled with the ABC-EE algorithm
in [16] and the ABC-EE without using MA technology were run 10 times for comparison. The accuracy
statistics are shown in Table 7. The p-value of the RMSE between the ABC-MRF-cluster and MA-based
ABC are greater than the threshold value of 0.05, which also proves that there is no notable difference
between the optimization results of the MA-based ABC framework and the ABC algorithm without
MA technology.

Table 7. Accuracy Statistics of the MA-based ABC Framework and ABC-EE in [16].

RMSE
RMSE for Dataset 1 RMSE for Dataset 2

MA-based ABC Framework ABC-EE MA-Based ABC Framework ABC-EE

Median Value 386.54 390.24 110.49 123.99
Mean Value 375.13 393.83 125.30 139.85

Standard Deviation 151.98 133.11 41.32 49.03
p-value 0.54 0.19

EE, endmember extraction.

6.2. Efficiency

6.2.1. Efficiency of Clustering

(1) Comparison with the framework proposed in [17]
To validate the improvement in the enhanced MA-based ABC framework, a comparison with

the former framework proposed in [17] was made to solve the same RS optimization in the same
computing environment and under the same parameter settings. When performing all the experiments,
all of the bee agents were uniformly distributed on each computation node and the administrator
agent was randomly distributed on one node.

The comparison results are shown in Table 8. In the one-node computation environment,
the computation time consumed per iteration of the improved framework is shorter than the former
framework, with an average computing efficiency promotion gap of 5.83% for dataset 1 and 6.57% for
dataset 2. With the increase in the number of computation nodes, the average efficiency gap between
the improved and the former framework becomes increasingly large, exceeding 50% when there are 20
nodes for dataset 1 and dataset 2. The results indicate that the improved MA-based ABC framework is
more efficient than the framework proposed in [17].
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Table 8. Efficiency Statistics of the Improved MA-based ABC Framework and the Framework Proposed in [17] for Clustering.

Computing
Environment

Population of
Bees

Average Computation Time per Iteration for Dataset 1 Average Computation Time per Iteration for Dataset 2

Former
Framework

(second)

Improved
Framework

(second)

Promotion
GAP

Average
Promotion

GAP

Former
Framework

(second)

Improved
Framework

(second)

Promotion
GAP

Average
Promotion

GAP

1 Node
Computation

10 24.43 23.36 4.58%
5.83%

5.59 5.34 4.75%
6.57%20 50.91 47.66 6.82% 11.58 10.69 8.32%

40 96.07 90.56 6.08% 24.78 23.24 6.64%

2 Nodes
Computation

10 13.72 12.20 12.49%
13.71%

3.30 3.09 6.88%
16.13%20 27.79 24.56 13.13% 7.54 5.89 27.85%

40 57.48 49.75 15.52% 13.31 11.72 13.65%

5 Nodes
Computation

10 9.40 7.16 31.24%
21.72%

1.54 1.14 34.82%
25.91%20 14.35 12.05 19.12% 3.16 2.46 28.71%

40 27.54 23.99 14.79% 6.73 5.89 14.21%

10 Nodes
Computation

10 4.62 3.28 40.92%
40.02%

1.05 0.74 42.41%
48.93%20 9.98 7.24 37.77% 1.88 1.20 56.09%

40 17.47 12.35 41.38% 3.47 2.34 48.30%

20 Nodes
Computation

10 - - -
50.29%

- - -
56.91%20 7.41 4.94 50.05% 1.35 0.85 59.45%

40 9.54 6.34 50.52% 2.05 1.33 54.37%

Note: “-” indicates that no experiments are carried out under the corresponding circumstances.
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(2) Influence of the quantity of computation nodes
To better analyze the influence of the quantity of computation nodes participating in the MA-based

ABC framework for RS optimization, a series of comparison experiments were performed by setting the
population of ABC to 10, 20, and 40 in different computation environments with 1, 2, 5, 10, and 20 nodes.
Each experiment was performed 10 times. The statistical results are shown in Figure 7 and Table 8.

As shown in Figure 7, regardless of how many bees are involved in the computation, the average
computation time per iteration decreases dramatically as the number of computation nodes increases.
Moreover, each bee’s average computation time in one iteration was calculated (Table 8). This finding
indicates that the speedup of the improved MA-based ABC algorithm increases significantly with the
increase in the number of nodes in the parallel computation environment. However, the computational
efficiency of each node’s performance nonlinearly decreases due to the increased communication cost
among nodes within the network when adding more nodes.
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The statistical values of the improved MA-based ABC framework’s efficiency criteria are presented
in Table 9. When increasing the number of computing nodes, the speedup increases significantly since
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all calculations can be carried out at multiple nodes concurrently. In addition, the results also show
that with the increase in the number of nodes, the computational efficiency of a node decreases, as a
higher network communication cost to other nodes is generated.

Table 9. Statistical Values of the Improved MA-based ABC Framework’s Efficiency Criteria.

Computing
Environment

Dataset 1 Dataset 2

Average
Computation

Time per
Iteration per Bee

Speedup Computational
Efficiency

Average
Computation

Time per
Iteration per Bee

Speedup Computational
Efficiency

1 node 2.3277588 1.00 1.00 0.54966283 1.00 1.00
2 nodes 1.2306427 1.89 0.95 0.298756997 1.84 0.92
5 nodes 0.6394509 3.64 0.73 0.128231976 4.29 0.86
10 nodes 0.3329333 6.99 0.70 0.064166337 8.57 0.86
20 nodes 0.2026791 11.48 0.57 0.037837861 14.53 0.73

6.2.2. Efficiency of Endmember Extraction

Let there be 60 bees in experiments for both datasets; a comparison between this improved
framework and the former framework in [17] can be made in different parallel environments with 1, 2,
5, 10, and 20 computing nodes.

The efficiency statistics of these two frameworks for endmember extraction are recorded in
Table 10. Clearly, the computation time per iteration of the improved framework is shorter than that
of the former framework for both datasets. In particular, as more nodes are added in the computing
environment, the efficiency advantage of the improved framework becomes more prominent.

Table 10. Efficiency Statistics of the Improved MA-based ABC Framework and the Former Framework
Proposed in [17] for Endmember Extraction.

Computing
Environment

Computation Time per Iteration for Dataset 1 Computation Time per Iteration for Dataset 2

Former
Framework

(second)

Improved
Framework

(second)

Promotion
Gap

Former
Framework

(second)

Improved
Framework

(second)

Promotion
Gap

1 node 20.73 20.31 2.03% 26.00 25.58 1.66%
2 nodes 10.39 10.18 2.08% 13.36 13.18 1.40%
5 nodes 4.31 4.13 4.35% 5.92 5.32 11.24%

10 nodes 2.26 2.06 9.31% 3.01 2.68 12.19%
20 nodes 1.19 1.03 15.13% 1.68 1.42 18.36%

The speedup and computational efficiency are calculated as depicted in Figure 8. By analyzing
lines of the same color, it can be found that, with the increase in the number of computing nodes,
the speedup increases dramatically, but the computational efficiency decreases because of the rising
communication cost among different nodes. Comparing lines containing the same shapes (circles or
rectangles) indicates that the improved framework outperforms the former framework with a higher
speedup value and a lower efficiency descent rate. By observing lines of the same type, it can be
observed that both the speedup and computational efficiency tendencies of dataset 1 are much better
than those of dataset 2. The reason is that the amount of time used to calculate the objective function
value for dataset 1 is less than that used to calculate dataset 2 after sampling, and the communication
cost for dataset 1 occupies a higher proportion of the total calculation cost, which results in a greater
computational improvement by saving on the same communication cost.
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7. Discussion

7.1. Stability

In this paper, the failure of a single computing node does not lead to the failure of the overall
computation, which provides the proposed computational framework with good computational
stability. Such stability is achieved by predefining a time limit t for each node’s calculation. When the
management agent does not receive the results returned by bee agents within the time after a calculation
instruction is sent, it can be concluded that the node’s calculation or the network communication failed.
In this case, the administrator agent can resend calculation instructions to obtain the correct calculation
results from bee agents.

7.2. Scalability

The computational framework proposed maintains good scalability. Any newly added bee agent
can perform optimization together with other previously deployed bee agents as long as the agent is
deployed in the same communication network and registered at the management agent. Therefore,
the number of computation nodes of the parallel computation is easily increased, and the computation
scale is easily expanded. Similarly, if certain computing nodes are not needed to participate in parallel
computing, their network IP addresses can be deleted from the management agent.

7.3. Flexibility

Hyperspectral RS image clustering and endmember extraction were applied to validate the
performance of an MA-based ABC approach. However, the parallel computing framework proposed
in this paper can be easily applied to many other RS optimization problems. In this framework,
all the behaviors of the managing agent, as well as the communication behaviors of the bee agents
and the neighborhood search behaviors, are universal and can be used for most RS optimization
problems. We can solve different RS optimization problems by modifying each bee agent’s objective
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function calculation method and its required parameters. Therefore, the parallel computing framework
proposed in this paper has good flexibility.

8. Conclusions

In this paper, an improved parallel processing approach involving the integration of an ABC
optimization approach and multiagent technology is proposed. Taking hyperspectral RS image
clustering and endmember extraction as examples, two types of agents are designed: an administrator
agent and multiple bee agents. By executing the behaviors of each agent and the communication
among agents, an optimal result without sacrificing accuracy can be obtained by parallel computation
with dramatically increased efficiency. Moreover, a series of experiments proves that the improved
MA-based ABC framework can achieve a greater enhancement in parallel computational efficiency
than the framework proposed in [17] can. Moreover, the integration of MA and GPU technology by
offloading each individual’s behaviors to the GPU’s arithmetic logic units under this MA-based ABC
framework could be a more efficient approach, which should be further studied.
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