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Abstract: Large amounts of farmland loss caused by urban expansion has been a severe global 

environmental problem. Therefore, monitoring urban encroachment upon farmland is a global 

issue. In this study, we propose a novel framework for modelling and monitoring the conversion of 

cultivated land to built-up land using a satellite image time series (SITS). The land-cover change 

process is modelled by a two-level hierarchical hidden semi-Markov model, which is composed of 

two Markov chains with hierarchical relationships. The upper chain represents annual land-cover 

dynamics, and the lower chain encodes the vegetation phenological patterns of each land-cover 

type. This kind of architecture enables us to represent the multilevel semantic information of SITS 

at different time scales. Specifically, intra-annual series reflect phenological differences and 

inter-annual series reflect land-cover dynamics. In this way, we can take advantage of the temporal 

information contained in the entire time series as well as the prior knowledge of land cover 

conversion to identify where and when changes occur. As a case study, we applied the proposed 

method for mapping annual, long-term urban-induced farmland loss from Moderate Resolution 

Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series 

in the Jing-Jin-Tang district, China from 2001 to 2010. The accuracy assessment showed that the 

proposed method was accurate for detecting conversions from cultivated land to built-up land, 

with the overall accuracy of 97.72% in the spatial domain and the temporal accuracy of 74.60%. The 

experimental results demonstrated the superiority of the proposed method in comparison with 

other state-of-the-art algorithms. In addition, the spatial-temporal patterns of urban expansion 

revealed in this study are consistent with the findings of previous studies, which also confirms the 

effectiveness of the proposed method. 

Keywords: satellite image time series; conversion of cultivated land to built-up land; hierarchical 

hidden semi-Markov model; land-use/land-cover change 
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1. Introduction 

Urbanization is characterized by population shifts from rural to urban areas and the expansion 

of urban land. During the past few decades, the unprecedented urbanization process and its impact 

on massive farmland loss have drawn wide attention around the world [1–4]. In particular, China 

has been experiencing widespread, large-scale farmland loss due to urban sprawl since the 

implementation of the Reform and Opening-Up Policy in late 1970s [5,6]. From 1978 to 2016, the 

urbanization level in China has increased from 17.9% to 57.4% [7], while cultivated land is the major 

land source for newly urbanized areas [8–10]. Over that period, enormous amounts of cultivated 

land have been converted into residential, industrial, commercial, infrastructure and institutional 

uses resulting from the driving forces of population growth and economic development. Due to the 

huge population and the scarce land per capita, cultivated land is especially precious in China 

[11,12]. The severe situation of farmland shrinkage not only threatens the country’s food security, 

but also seriously affects the social stability. In this regard, accurate mapping and monitoring the 

conversion of cultivated land to built-up land is crucial to urban planning and farmland 

preservation.  

Remote sensing techniques are effective for monitoring land-use/land-cover (LULC) change on 

a large scale. Many studies have been conducted to explore the process of urbanization and the 

subsequent land-cover changes in many regions based on remote sensing imagery [13–16]. Most of 

these studies extracted change information by classifying one image per year. However, new 

construction sites are easily confused with fallow or post-harvest cultivated land at any given time of 

a year, which makes it almost impossible to distinguish them using a single medium-resolution 

satellite image [17]. Therefore, bitemporal satellite images are inadequate in capturing farmland 

changes in urbanized regions. In the view of this, making use of the seasonal information contained 

in dense time stacks of satellite images is more advantageous [18]. Satellite image time series (SITS), 

which provide more vegetation phenology information, have been used for farmland change 

detection [19]. 

Basically, there are two strategies to detect land-cover changes supported by SITS [20]. When it 

comes to the first strategy, independent classifications are applied to intra-annual time series that 

generate a series of annual land-cover maps. Then, change detection analysis is performed by 

pairwise comparison [21–23]. However, there is an inherent limitation of these methods. Errors in 

the initial classification phase are compounded, leading to unreliable post-classification comparison 

results [24]. To cope with this problem, temporal filtering is frequently used after classification to 

remove invalid land-cover transitions from built-up land to other classes [25,26]. This technique is 

based on a common assumption that the progress of urbanization is irreversible [27]. With respect to 

the second strategy, a base land-cover map is initially obtained by classification, and then it is 

updated with the temporal change information derived from the newly incoming observations. For 

instance, the Continuous Change Detection and Classification (CCDC) algorithm is effective for 

detecting many kinds of changes [28], which has been applied to monitoring long-term urban 

land-cover dynamics [29]. The basic idea of CCDC is to fit a simple harmonic model with cloudless 

time series in the initial phase, and then continuously detect changes when the difference between 

the observed and predicted values of a pixel exceeds a given threshold for consecutive times. Chen et 

al. modified the CCDC algorithm by using a multi-harmonic model to fit the complex phenological 

profiles in cultivated land [19]. However, the existing studies tended to assume that the 

spectral-temporal characteristics of cultivated land are similar. Little attention has been paid to the 

intra-class variations of cultivated land resulting from different crop types, cultivation practices, 

irrigation schemes, and soil background effects, etc. Therefore, the existing methods may fail to deal 

with the complicated phenological patterns among croplands at regional scales.  

Hidden Markov models (HMMs) have been reported to be useful in modelling vegetation 

phenology with SITS in many studies [30–33]. These methods assume that the sequence of 

observations can be considered as random variables obeying the Markovian hypothesis. In this 

regard, the vegetation phenological cycle is simulated using state transitions in each HMM. This 

allows us to make use of a group of models instead of a generalized model to describe various 
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phenological patterns within the same land-cover type, thereby significantly reducing the effect of 

intra-class variations. Since HMM cannot realistically simulate the duration of phenological stages 

(the state sojourn time is geometrically distributed in an HMM), in a previous work we introduced a 

hidden semi-Markov model (HSMM) instead of the classical HMM for land-cover classification and 

change detection, to take into consideration the duration of each phenological stage [34]. 

The processes of LULC change are convenient to be considered as stochastic processes and 

quantitatively modelled by a Markov chain [35]. When a series of annual land-cover maps are 

obtained, the Markov modelling result acts as a transition matrix which represents the change 

probability from each land-cover type to each other during a certain time interval. It is assumed that 

the transition matrix only depends on the length of the time interval and will remain stable for a long 

time. Hence, it can be used to predict future land-cover changes. A common application is to 

combine a Markov chain with cellular automata (CA) to generate the CA-Markov model [36]. The 

model uses the transition matrix of the Markov chain as transformation rules to constrain the 

simulation of land-cover changes by CA, thereby greatly improving the temporal accuracy of 

land-cover change predictions [36]. This approach has gained widespread popularity in the 

spatiotemporal modelling of urban expansion process [37–39].  

Inspired by the existing studies, we propose a novel method that exploits a hierarchical HSMM 

to model and detect the conversion of cultivated land to built-up land using long-term SITS. Our 

model incorporates the knowledge of land-cover transition matrix and vegetation phenology into 

the model to enhance the change detection accuracy. Hierarchical hidden Markov models, originally 

proposed by Fine et al. [40], extended the classical HMM by modelling both the hierarchy of states 

and transitions between them. It provides a way to infer semantic information of complex 

multi-level sequences, which is suitable for modelling hierarchical structures that naturally exist in 

many domains, such as speech recognition [41], DNA sequences [42], activity recognition [43], and 

residential load monitoring [44]. However, to the best of our knowledge, it has not yet been used to 

study LULC change processes with SITS. 

In our work, the land-cover change process is modelled by a two-level hierarchical HSMM, 

which is composed of two Markov chains with hierarchical relationships. As shown in Figure 1, the 

upper chain (the top layer in the right figure) depicts annual land-cover dynamics (i.e., stable 

cultivated land, cultivated land to built-up land, and stable built-up land), while the lower chain (the 

middle layer in the right figure) encodes the phenological patterns of each land-cover type. The 

remote sensing observations (the bottom layer in the right figure) are random variables emitted by 

the hierarchical model. This kind of architecture enables us to represent the multi-level semantic 

information of SITS at different time scales. Hence, considering both the intra-annual series that 

reflect phenological differences and the inter-annual series that reflect land-cover dynamics [20], we 

can take advantage of the temporal information contained in the entire time series as well as the 

prior knowledge of land cover transition to identify where and when changes occur. 
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Figure 1. We deconstruct the urbanization process into three hierarchical layers, shown in the right 

figure. The top layer represents the annual land-cover dynamics, namely, stable cultivated land, 

cultivated land to built-up land, and stable built-up land. The middle layer represents the 

phenological cycles of vegetation growth for each land cover type. The bottom layer denotes the 

temporal evolution of spectral reflectance or spectral index. 

As a case study, we applied the proposed method on Moderate Resolution Imaging 

Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series from 2001 

to 2010 in the Jing-Jin-Tang district, China to identify newly built areas within the 2000 farmland 

extent. The approach proposed in this research will be effective for conducting large-scale, long-term 

cultivated land monitoring in rapidly urbanizing regions. The change detection results will be 

valuable for studies related to urban evolution and its environmental impacts. 

2. Study Area and Datasets 

2.1. Study Area 

The Beijing-Tianjin-Hebei Urban Agglomeration is located in the North China Plain, which 

consists of 13 cities. This region has gone through a long progress of industrialization and has 

become the biggest urbanized region in China [11]. Our study area consists of three main cites in the 

Beijing-Tianjin-Hebei Urban Agglomeration, namely, Beijing, Tianjin, and Tangshan. The enclave 

belonging to Langfang in Hebei province, located between Beijing and Tianjin, is also within the 

study area (Figure 2). The entire region is often called the Jing-Jin-Tang district, covering 

approximately 42,000 km2 (38°30′N—41°8′N, 115°17′E—119°30′E).  
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Figure 2. The location and elevation of the study area. 

Beijing, the capital city of China, plays the role of political, cultural and international 

communication center of the whole country. Tianjin, bordered by Beijing to the northwest, is the 

biggest coastal open city in northern China. Tangshan, located to the west adjoins Beijing and 

Tianjin, is among the most important heavy industrial cities in China. The study area is lying north 

of the North China Plain, located at the south side of the Yanshan Mountains, embraced by the 

Taihang Mountains to the west and the Bohai Sea to the east. The dominated land-cover type in this 

region is cultivated land, followed by forest and built-up land, as well as a small portion of water 

bodies, grassland, and bare land. The major crops are wheat and maize, planted mainly in the plain 

areas. Within the study area, large zones of cultivated land have been occupied due to urban 

expansion since 1979 [45]. The conversion of cultivated land to built-up land accounted for over 70% 

of the total farmland loss, and this proportion is even higher in the plain areas [11,46]. This makes 

the Jing-Jin-Tang district an ideal verification site to apply our method considering the high-speed 

and large-scale LULC change. 

2.2. Datasets and Pre-processing 

2.2.1. MODIS NDVI Time Series 

The NDVI Time Series, spanning for the period from 2001 to 2011, from MODIS/Terra 16-day 

L3 Global 250 m products (MOD13Q1) are used in our study. The selection of these data is based on 

the following two observations. First, the long time-span and wide swath coverage of MODIS 250 m 

Vegetation Index (VI) dataset enable large-scale, long-term LULC change monitoring. Second, 

compared to data acquired by medium-resolution satellite sensors (such as Landsat TM/ETM+), the 

temporal-resolution of MODIS images is sufficiently high to composite time series at regular time 

intervals, which is important for retrieving comparable phenological information among different 

years. 

Four MODIS tiles (h26v04, h26v05, h27v04, h27v05) covering the full study area were used. The 

tiled NDVI images were first re-projected to the UTM projection (WGS-84 Zone 50N) using the 

MODIS Reprojection Tool (MRT), and then mosaicked and subset over the study area for each 

composite period. A total of 23 images were obtained for each year and sequentially stacked into 

11-year time series. Outliers caused by residual cloud and snow/ice were masked off according to 

the MODIS VI-quality layers. Finally, Harmonic Analysis of Time Series (HANTS) was performed 

on the data to deal with missing values [47]. Six harmonics was chosen to reproduce multiple 
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agricultural growing seasons [48]. A HANTS-corrected image is shown in Figure 3. As it can be 

noticed, abnormal NDVI values caused by cloud contamination have been adjusted. 

 

Figure 3. Gap filling using Harmonic Analysis of Time Series (HANTS) processing, where (a) is the 

original MODIS NDVI layer and (b) is the cloud-free image processed by HANTS. 

2.2.2. Auxiliary Data 

Three 100 m land-use maps of the year 2000, covering the entire study area, were used in this 

study as auxiliary data. They were obtained from the National Science & Technology Infrastructure 

of China [49]. The land-use maps were mosaicked and resampled to 250 m resolution to be 

consistent with the MODIS imagery, in order to create a reference map. The land-use nomenclature 

adopted in the reference map is the one of the National Land Use Remote Sensing Classification 

Scheme of Chinese Academy of Sciences, which is grouped in a two-level hierarchy, including 6 

first-level classes (cultivated land, forest, grassland, water bodies, built-up land, and unused land) 

and 25 second-level classes [50]. In this work, we generated a mask that excluded forest, grassland, 

water bodies, and unused land, so as to focus our analysis on the process of urbanization-induced 

farmland loss. We also included built-up land in the mask to avoid confusion between cultivated 

land and built-up land in the beginning period due to spatial inconsistency and resampling.  

A series of Landsat-5 TM images over the study area (Path123/Row32; Path122/Row32; 

Path122/Row33) were used for sample collection. These images were acquired during the growing 

seasons from 2001 to 2010, with a cloud cover less than 30%. They were used for selecting training 

and testing samples and determining the time of change. For example, a newly built airport 

occupying cultivated land was observed around 2004 in Figure 4. 

 

Figure 4. Landsat-5 TM images used for sample collection. 
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3. Methodology 

The proposed method includes four steps: (1) sample collection; (2) training time series 

clustering; (3) hierarchical HSMM definition and training; (4) hierarchical HSMM-based change 

detection. The overall workflow is illustrated in Figure 5. 

 

 

Figure 5. Flowchart of the proposed algorithm. 

3.1. Sample Collection 

Due to the lack of ground truth data, we collected training and validation datasets through 

human interpretation of the Landsat images with guidance of Google Earth to lower uncertainty 

[51,52]. The training and testing samples are distributed evenly throughout the study area. To be 

consistent with a 250 m MODIS pixel size, each sample has a size of at least eight by eight pixels. All 

the samples are firstly digitalized on the Landsat images using the ENVI ROI tool, and then they are 

imported into Google Earth to confirm whether their class labels have changed from one year to 

another. All the samples have been validated independently by two researchers. Finally, the samples 

are mapped to MODIS imagery via georeferencing. 

For the training samples, only regions where the land-cover types are persistent throughout the 

entire study period have been selected. In addition, to exclude areas with mixed land covers, we 

only considered samples for which the class label is unique. In total, we manually selected 2301 

pixels of cultivated land and 2221 pixels of built-up land for the training set.  

The validation samples were collected by visual interpretation of the first and last dates of 

Landsat-5 TM images. The samples belong to two categories: (a) stable pixels where farmland areas 

were persistent during the period of analysis; and (b) changed pixels which have converted from 

cultivated land to built-up land. In total, we manually selected 1463 stable pixels and 769 changed 

pixels in the validation set. For all the changed pixels, the years in which the changes occurred have 

been visually interpreted from the MODIS NDVI time series, supported by Landsat and Google 

Earth images. 

The spatial distribution of the training and validation samples are shown in Figure 6. 
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Figure 6. The spatial distribution of the training and validation samples. (a) Training dataset; (b) 

validation dataset. (The digitalized polygons are buffered 500 meters to show more clearly). 

3.2. Training Time Series Clustering 

As discussed in the introduction section, the spectra-temporal profiles of cultivated land are 

often very heterogeneous. In the case of built-up lands, they may also contain different kinds of 

urban plants with distinct phenological patterns. Therefore, in order to describe the complicated 

intra-class spectra-temporal characteristics, we use the K-Means algorithm to cluster the training 

samples of cultivated land and built-up land separately, thereby grouping the NDVI profiles with 

similar phenological patterns into clusters [30]. To deal with temporal distortions and irregular 

sampling, we use the dynamic time warping (DTW) measure to compare the similarity between two 

time-series [53]. The size of the warping window is set to 2 to limit the search of the alignment path, 

thereby the NDVI values of two sequences with a time delay of over a month could not be aligned 

together. 

Here, the number of clusters K has been set to five. Figure 7 shows the averaged NDVI profiles 

for each land-cover type. As it can be seen, the NDVI profiles of built-up land are characterized by 

smooth curves with slight seasonal fluctuations (Figure 7b), whereas cultivated land is characterized 

by more rugged NDVI profiles with at least one narrow peak (Figure 7a), corresponding to single or 

double crops. The difference in the phenological pattern of cultivated land and built-up land is 

important for distinguish them. 

 

Figure 7. The averaged NDVI profiles for cultivated land and built-up land derived from the training 

time series, where (a) is for cultivated land and (b) is for built-up land. 
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3.3. Hierarchical Hidden Markov Model Definition and Training 

3.3.1. Hierarchical HSMM Definition 

As discussed in the introduction section, hierarchical HMM extends the classical HMM and 

provides better modelling of sequences with hierarchical structures. A hierarchical HMM includes 

multiple levels of hidden states, which belong to two categories: the states at the lowest level are 

termed production states, and the states at higher levels are called internal states. Each internal state 

has its own substates. An internal state recursively activates one of its substates until a production 

state is reached. Only production states can emit observations. A transition between higher level 

states is activated only when the lower level model reaches an “end” state. The end state cannot emit 

observations. It only controls the termination of state transitions in the current level. Each level of a 

hierarchical HMM can be regarded as a “flat” HMM and is subject to Markovian hypothesis. 

Hierarchical HMM can correlate structures existing relatively far apart in the observation sequences, 

while preserving the computational tractability of simple Markov processes as well as being able to 

handle statistical inhomogeneity commonly occur in many complex time series data [40]. A 

hierarchical HMM can be represented as a dynamic Bayesian network (DBN), which speeds up the 

model inference and improves its practicability [54].  

Since different vegetation phenological patterns within the same class will cause distinct 

seasonal variations in the NDVI profiles, with regards to the complexity and inherent hierarchical 

structure in the SITS coming from land-cover transitions and vegetation changes, the classical HMM 

or HSMM is limited. Therefore, in this study, we model the conversion from cultivated land to 

built-up land as a two-level hierarchical HMM, as illustrated in Figure 8. The model definition is 

given as follows. 

 

Figure 8. Model topology of the proposed two-level hierarchical hidden semi-Markov model. A state 

in the top-level HMM corresponds to a certain land-cover type (CL: cultivated land; BU: built-up 

land), and its substates in the bottom-level denote the phenological stages. 

1) The top-level HMM 

The top-level HMM represents inter-annual land-cover changes, the states in this level are 

internal states. In Figure 8, “CL” denotes cultivated land, and “BU” denotes built-up land. The solid 

lines between states in the top-level HMM denote the valid land-cover change directions, and the 

self-loop for each state indicates that no change happen during two consecutive years. Since a 

change from built-up land to cultivated land will not occur in reality, there is no transition from BU 

to CL. It should be noted that in the illustrated graph, CL and BU are abstract states that composed 

of a group of real states, respectively. Each state represents a specific phenological pattern that 
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belongs to cultivated land or built-up land. The states belonging to the same class are fully 

connected (Figure 9). In this way, the intra-class variations are encoded in the proposed model. 

 

Figure 9. The top-level states belonging to CL (or BU) are fully connected with each other. Each state 

represents a certain vegetation phenological pattern.  

The top-level HMM can be viewed independently as a simple Markov chain modelling the 

land-cover dynamics. We consider equal-probable prior distribution for all the top-level states, 

which is not re-estimated during the training process. 

2) The bottom-level HSMM 

The bottom-level HSMM represents the annual cycle of vegetation phenology. The states in 

this level are implicitly related to crude phenological stages of a certain plant, and they are 

determined by their parent state in the top-level. The bottom-level states are production states, each 

of them produces a sequence of observations (NDVI values). The duration of a state indicates the 

length of a phenological stage, which is modelled by single Gaussian distributions. A left-right 

model topology with no skip path is chosen to be consistent with the annual phenological 

transitions.  

To summarize, an observation sequence is generated by the constructed hierarchical HSMM in 

the following manner. First, one of the states, q, in the top-level HMM is chosen at random. Next, 

the first substate of q in the bottom-level HSMM is entered. A sequence of observations is emitted 

according to the observation probability distribution before the state transit to the next state. The 

bottom-level state then shifts from left to right until the end state is reached. Then the control 

returns to q, and the model chooses the next top-level state according to the corresponding state 

transition matrix. The newly chosen top-level state will start a new recursive observation generation 

process, and so on. Through the established model, we can infer the most probable hidden state 

with the highest likelihood at any time slice.  

3.3.2. Dynamic Bayesian Network Representation of the Proposed Hierarchical HSMM 

Following the principles of representing a hierarchical HMM as a DBN [55,56], we construct the 

equivalent DBN representation of the proposed two-level hierarchical HSMM, as shown in Figure 

10.  

In the DBN, a set of variables  1 2 2, , , , ,D D
t t t t t t tQ Q F Q F O   are maintained at each time slice t . 

These variables are illustrated as nodes in the graph of Figure 10, and their cause-effect relationships 

are represented as edges (starting node of an edge causes the ending node). 1
tQ  is the current state 

variable in the top-level HMM. 2
tQ  is the current substate in the bottom-level initialized by 1

tQ . 2
tF  

is a binary indicator variable that is “on” (set to 1) if the state transition terminates at time t in the 

bottom-level HSMM, otherwise it is “off” (set to 0). D
tQ  is the state duration variable representing 

the residual time of current state 2
tQ  until time t. D

tF  is a binary indicator variable that is on when 
2
tQ  has reaches the end of its duration, otherwise it is off. Last, tO  is the observed NDVI value, 

which is determined by both its ancestor states, i.e., 1
tQ  and 2

tQ . 
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Figure 10. The equivalent dynamic Bayesian network (DBN) representation of the proposed 

two-level hierarchical HSMM, unrolled for two time slices. The semantics of a DBN is defined by 

unrolling the two-time-slice Bayesian network (2TBN) until we have T time slices, where T denotes 

the length of the time series. 

The conditional probability distributions (CPDs) of nodes in the DBN can be derived from the 

parameters of the proposed hierarchical HSMM.  

The CPD of the top-level variable 1
tQ  is defined as: 

 
 

 
1 1 2

1

, if 1
| ,

, if 0

T

t t t

i j f
P Q j Q i F f

i j f


 
    



A
 (1)

with  ,i j  the Kronecker delta function which has the value 1 if i j , otherwise 0. TΑ  denotes 

the state transition matrix for the top-level HMM. 

The CPD of the bottom-level variable 
2
tQ  is defined as: 

 
 

 

 

1 2

2 2 2 1
1 1 2 1 1 2

2

if 1, and 1

| , , , , if 0, and 1

, if 0

B
k

D B
t t t t t k

j f f

P Q j Q i F f F f Q k i j f f

i j f





 

  


       




Α  (2)

where B
k  is the initial state distribution of the bottom-level HSMM given that the parent variable is 

in state k , and B
kA
  is the rescaled version of the state transition matrix, excluding the end state. 

When 0D
tF  , the bottom-level variable 2

1tQ   remains in the same state to the next time slice. When 

1D
tF  , there are two possibilities: if 2 1tF  , the top-level variable 1

1tQ   will convert to state k  at 

time t+1 and initialize a new semi-Markov chain according to the initial state distribution; if 2 0tF  , 
1

1tQ   will remain in the same state at time t+1 while 2
1tQ   will shift to a new substate.  

Since a left-right model topology is assumed for all the bottom-level HSMMs, 2 1tF   only if 

the rightmost state reaches the end of its duration. Hence, the CPD 2
tF  is written as: 

   

   

2 2

2 2 2 2

, if 1
1| ,

0 if 0

0 | , 1 1 | ,

D
t t t

D D
t t t t t t

i N f
P F Q i F f

f

P F Q i F f P F Q i F f

 
    



       

 (3)
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where N  is the number of states in the bottom-level HSMM. 

The CPDs of the state duration variable D
tQ  and the indicator variable D

tF  are defined as: 

 
 

 
,2 1

1 1 1

if 1
| , , ,

, 1 if 0

k iD D D
t t t t t

D d f
P Q d Q d F f Q i Q k

d d f
  

 
      

  
 (4)

   

   

1| ,0

0 | 1 1|

D D
t t

D D D D
t t t t

P F Q d d

P F Q d P F Q d

  

     
 (5)

where ,k iD  is the state duration distribution given that 1
1tQ   is in state k  and 2

1tQ   is in state i . 

When 0D
tF  , D

tQ  decreases by one each time. When 1D
tF  , 2

1tQ   will convert to the next state at 

time t+1, and a new sample is drawn from the state duration distribution. When D
tQ  decreases to 

zero, then 1D
tF  , otherwise 0D

tF  . 

Finally, the CPD of observation tO  is defined as: 

   2 1 2
, ,| , ; ,t t t k i k iP O y Q i Q k y       (6)

where  , ,, k i k i   is a Gaussian function with mean ,k i  and variance 2
,k i , given that 1

1tQ   is in 

state k  and 2
1tQ   is in state i . 

3.3.3. Hierarchical HSMM Construction 

We construct the proposed hierarchical HSMM in a “bottom-up” manner. First, we derive the 

parameters of the bottom-level model from a group of pre-trained HSMMs. Second, the state 

transition matrix in the top-level HMM, which corresponds to the land-cover transition 

probabilities, is learned using unlabeled time series. 

1. HSMM Model Selection and Training 

To avoid the pseudo changes caused by the intra-class variations, we should train an individual 

HSMM for each phenological pattern. Based on the time series clustering results, we train an HSMM 

for each cluster individually, making use of the training samples. The entire 11-year NDVI time 

series are used for model fitting to avoid phase shifts among different years. We utilize the Akaike 

Information Criterion (AIC) to determine the optimal model structure, i.e., the number of hidden 

states in an HSMM. The AIC value is defined by the maximum likelihood of the model, coupled 

with a penalty term which takes into account of the model complexity [57]: 

 ˆlog L p
AIC

T

 
  (7)

where  ˆL   denotes the likelihood of the model with parameter ̂ ; p  is the number of model 

parameters. The best model that minimizing Equation (7) is chosen.  

Once a group of well-trained HSMMs are learned, the parameters of the proposed model in the 

bottom-level are obtained referring to Equations (1–6). 

2. Land-Cover Change Probabilities Estimation 

We randomly selected 3000 unlabeled, evenly distributed pixels to estimate the land-cover 

transition probabilities, according to the reference map. Their 11-year time series are fed to the DBN 

to optimize the state transition matrix in the top-level HMM, which has been randomly initialized. 

As some of those pixels have experienced a farmland-to-urban change during 2001–2011, the change 

probability of the study area over the period of analysis is estimated from the data. It should be 

noted that since the change probability from built-up land to cultivated land is initialized to zero, it 

is not updated during the model training procedure. 
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3.4. Hierarchical HSMM-based Change Detection 

Once the proposed hierarchical HSMM is learned, we can use the model to identify 

farmland-to-urban changes from long-term SITS. Given the time series of a pixel, the most probable 

sequence of states is estimated by the junction tree (jtree) algorithm [54]. Hence, we can obtain the 

land-cover change history of the pixel over the entire study period. The time slice when the top-level 

state converts from CL to BU is the detected change time. Since the intra-class variations is not 

viewed as a real land-cover change, our algorithm is robust to inter-annual changes across different 

crop species and cultivation practices. 

For example, Figure 11 illustrates an NDVI time series and the estimated state sequence. 

5-states is chosen in the bottom level HSMM. We use different colors to differentiate CL and BU in 

the top-level HMM: red represents CL while green represents BU. It can be seen clearly that our 

method not only can estimate the phenological transitions, but also correctly identify the land-cover 

change round 2005. 

 

Figure 11. The NDVI time series of a pixel (in blue solid line); the estimated state sequence in the 

bottom-level HSMM (in circle solid line) whose parent states in the top-level are distinguished by 

different colors: red represents cultivated land, green represents built-up land. 

4. Results 

In this section, we first illustrate the results of model selection, and then we apply the method to 

real-world dataset for mapping newly built areas encroached onto farmland in the Jing-Jin-Tang 

district. 

4.1. Model Selection for HSMM 

The goal of this experiment was to select the best number of states in the bottom-level HSMM to 

simulate the seasonal variations of intra-annual NDVI time series. For this purpose, a series of model 

learning procedure were carried out on the training data, each one with a variable number of states, 

N, ranging from 2 to 8. Since accurate parameter initialization is essential for satisfying model fitting, 

we fitted an HSMM 50 times with random initialization to obtain the optimal model parameters for 

each cluster. For each model structure, the AIC value defined in Equation (7) was evaluated.  

The obtained results are shown in Figure 12. It can be noticed that for both classes, the best 

value of N ranges from 4 to 7. For most clusters, the AIC values do not improve much by using more 

than 5 states. It means that the performance improvement brought to the model by adding more 

states is trivial. Therefore, 5 has been considered as the optimal number of states for the bottom-level 

HSMM. 
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Figure 12. Akaike Information Criterion (AIC) values for different model structures, where (a) is for 

cultivated land and (b) is for built-up land. 

4.2. Change Detection Accuracy and Method Comparisons 

In this experiment, we mapped cultivated land and built-up land by the proposed algorithm 

from 2001 to 2010 for the entire study area. To verify the effect of incorporating the land-cover 

conversion information, we compared our method with the post-classification algorithm based on 

HSMM: for each pixel, the intra-annual NDVI time series in 2001 and 2010 were classified 

individually and then compared to detect changes. We also compared our method with two other 

algorithms that were previously used for time series change detection, i.e., random forests (RF) [58] 

and CCDC [28]. The RF classifier was made of 5000 single trees and trained with all the NDVI 

observations in each year (23-dimensional features). The RF classifications resulted in 11 annual 

maps spanning from 2001 to 2011. We also assessed the results of RF with a 3-year temporal filtering 

[25], denoted as RF-TF in the following. For CCDC, the threshold used for change detection was set 

to the RMSE. When a change was identified, the online change detection process in CCDC is 

terminated and the change time is recorded.  

For all the methods, confusion matrices were generated to calculate the user's and producer's 

accuracy, the overall accuracy, and the Kappa coefficients. In addition, the temporal accuracy was 

assessed for all the changed pixels that were correctly detected. Here, the term “temporal accuracy” 

is defined as the proportion of pixels that have the same change year between the detection results 

and the reference data [28]. 

4.2.1 Accuracy Assessment for Change Location 

The land-cover maps for 2001 and 2010 obtained by the proposed algorithm are shown in 

Figure 13. By visual comparison, we found that the classification results were very close to the 

ground truth. In order to compare the differences between different methods, three subset images 

are illustrated in Figure 14. As it can be seen, the proposed method performs relatively better in 

identifying partially changed pixels. In particular, the proposed method is more sensitive to linear 

man-made structures such as roads (areas of B and D), exposed construction sites (areas of A and E), 

as well as urban areas with mixed covers (area of C). 
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Figure 13. MODIS pseudo-color composite images and corresponding land-cover maps for 2001 and 

2010 generated from the proposed algorithms. (a,b) MODIS 250 m images acquired in August 2001 

and August 2010, respectively; (c,d) the produced land-cover maps. 

The performance of these methods was evaluated on the validation set, and the results are 

listed in Table 1-5. It is clear the proposed algorithm has achieved the highest precision with overall 

accuracy of 97.72% and Kappa coefficient of 0.950. Compared to the HSMM-based post-classification 

algorithm (with the overall accuracy of 93.19% and Kappa coefficient of 0.846), it can be seen that 

due to the use of land-cover transition knowledge, all the accuracy metrics have been improved 

greatly. Both commission and omission errors for changed pixels deceased, resulting in the 

producer’s accuracy raising from 85.57% to 96.75%, and the user’s accuracy increasing from 94.13% 

to 96.62%. The results from RF-TF are also better than RF, with the overall accuracy of 97.04%, and 

Kappa coefficient of 0.933, which are comparable with the proposed algorithm. It demonstrates that 

post-classification algorithm based on RF-TF is also effective in differentiating farmland-to-urban 

changes from no-change with all the intra-annual NDVI observations. However, though temporal 

filtering can somewhat improve the accuracy, the omission errors in RF-TF are still relatively high, 

for some farmland pixels are misclassified to built-up land from the very beginning (mainly due to 

cropland abandonment). The misclassifications in the initial phase cannot be corrected even though 

some abandoned croplands were re-cultivated latter. CCDC performs the worst in comparison to the 

other algorithms, with the lowest overall accuracy of 92.97%, and Kappa coefficient of 0.842. This is 

because the simple harmonic model adopted by CCDC is incompatible with the complex 

phenological dynamics of cultivated land with more than one growing season [19]. 
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Figure 14. The subset images of the land-cover maps for 2010 (overlaid on the Landsat TM images). 

(a) Land-cover maps generated from the proposed algorithm are shown in the first column; (b) 

Land-cover maps generated from RF-TF are shown in the second column; (c) Land-cover maps 

generated from CCDC are shown in the third column. Areas showing inconsistent classification 

results are marked with ellipses and are indexed as A-E, whose corresponding Google Earth 

high-resolution images are shown in the rightmost column. 

Table 1. Change detection assessment of the proposed method. 

Prediction 
Reference  

Stable pixels Changed pixels Total User’s Accuracy (%) 

Stable pixels  1437 25 1462 98.29 

Changed pixels 26 744 770 96.62 

Total 1463 769 2232 - 

Producer’s Accuracy (%) 98.22 96.75 - - 

Overall Accuracy = 97.72%  Kappa coefficient = 0.950 

Table 2. Change detection assessment of HSMM-based post-classification algorithm. 

Prediction 
Reference  

Stable pixels Changed pixels Total User’s Accuracy (%) 

Stable pixels  1422 111 1533 92.76 

Changed pixels 41 658 699 94.13 

Total 1463 769 2232 - 

Producer’s Accuracy (%) 97.20 85.57 - - 

Overall Accuracy = 93.19%  Kappa coefficient = 0.846 

 



Remote Sens. 2019, 11, 210  17 of 26 

 

Table 3. Change detection assessment of the RF algorithm. 

Prediction 
Reference  

Stable pixels Changed pixels Total User’s Accuracy (%) 

Stable pixels  1443 64 1507 95.75 

Changed pixels 20 705 725 97.24 

Total 1463 769 2232 - 

Producer’s Accuracy (%) 98.63 91.68 - - 

Overall Accuracy = 96.24%  Kappa coefficient = 0.916 

Table 4. Change detection assessment of the RF-TF algorithm. 

Prediction 
Reference  

Stable pixels Changed pixels Total User’s Accuracy (%) 

Stable pixels  1446 49 1495 96.72 

Changed pixels 17 720 737 97.69 

Total 1463 769 2232 - 

Producer’s Accuracy (%) 98.84 93.63 - - 

Overall Accuracy = 97.04%  Kappa coefficient = 0.933 

Table 5. Change detection assessment of the CCDC algorithm. 

Prediction 
Reference  

Stable pixels Changed pixels Total User’s Accuracy (%) 

Stable pixels  1409 103 1512 93.19 

Changed pixels 54 666 720 92.50 

Total 1463 769 2232 - 

Producer’s Accuracy (%) 96.31 86.61 - - 

Overall Accuracy = 92.97%  Kappa coefficient = 0.842 

The omission errors of the proposed algorithm are mainly due to the mixture of different land 

covers within the same pixel. In Figure 15a, a large part of the area is covered with grasses and 

shrubs, so the magnitude of the NDVI decrease is relatively small. With respect to the commission 

errors, they mostly result from the following reasons: 1) abandoned or unused farmland (farmland 

areas that have not been cropped for more than two years); 2) a sharp drop in the peak of the NDVI 

profile; 3) the coverage of greenhouse. First, the NDVI profiles of abandoned or unused farmland are 

easily confused with construction sites. For example, in Figure 15b, the farmland fields have been 

abandoned during the entire study period, resulting in the corresponding pixel misclassified as 

built-up land in all scenes. The reason is that it is hard to distinguish between bare land and built-up 

land due to their similar spectral signatures and the coarse spatial resolution of MODIS, as previous 

research has confirmed [59,60]. Second, the intra-annual NDVI time series completely inconsistent 

with the seasonal variations of cultivated land could also lead to false change alarms. In Figure 15c, 

the NDVI time series of the pixel drop dramatically in 2007, leading the model to infer a land-cover 

change. This phenomenon may be caused by farmland fallowing, meteorological disasters, crop 

diseases and insect pests, etc. Third, the spectral and temporal characteristics are quite similar 

between plastic greenhouses and man-made infrastructures [61]. It is almost impossible to 

distinguish farmland covered by greenhouses from built-up land only from the NDVI time series 

(Figure 15d). 
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Figure 15. Four plots (a-d) of the misclassified pixels against the background of Google Earth 

high-resolution images, the NDVI time series of the corresponding MODIS pixel (on the left), and the 

pixel locations in the Google Earth images (red polygons in the right images). Example (a) shows 

omission errors due to mixture of different land covers within the same pixel. Examples (b-d) show 

commission errors resulting from abandoned farmland (b), abnormal decrease of the NDVI profile 

(c), and the coverage of greenhouse (d), respectively. 

4.2.2. Accuracy Assessment for Change Year 

The temporal accuracy was assessed through the proposed algorithm, RF-TF, and CCDC. The 

results are given in Table 6. Among the 744 changed pixels that have been detected by the proposed 

algorithm, the change times of 555 pixels are the same as the visual interpretation results, and the 

temporal accuracy is as high as 74.60%, greater than 70.56% of RF-TF and 48.65% of CCDC. It 

demonstrates that the detection accuracy of the proposed method is much better than its competitors 

in the temporal domain. 
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Table 6. The accuracy assessment of change detection in the temporal domain. 

Prediction. 
Reference Temporal 

Accuracy (%) 

Temporal 

Accuracy ± 1 yr (%) Correct Total 

The proposed method 555 744 74.60 86.29 

RF-TF 508 720 70.56 85.83 

CCDC 324 666 48.65 74.77 

The temporal errors of the proposed algorithm are mostly due to the fact that urban 

construction projects within a 250 m by 250 m MODIS pixel could take more than one year to 

complete. The initial change time of a partially changed pixel is difficult to identify, since the 

magnitude of change in the NDVI time series is slight. However, most of the changes may be 

detected later when it is totally changed. In addition, during the process of cultivated land turning 

into built-up land, the fields usually first become bared or covered with weeds, which may lead to 

inaccurate detection. If we relaxed the precision to ±1 year, the temporal accuracy increased 

significantly for all the algorithms (Table 6). The proposed algorithm is still the best performer at 

86.29% accuracy, while RF-TF is at 85.83% and CCDC is at 74.77%. 

5. Discussion 

5.1. Urban Expansion Patterns in the Jing-Jin-Tang District 

Based on the above results, the annual land-cover change detection results produced by the 

proposed algorithm are shown in Figure 16. Between 2001 and 2010, the total area of 

urbanization-induced farmland loss was reached by 2514 km2, accounting for 11.9% of the total 

cultivated land areas in 2001. The largest amount of farmland loss occurred during 2001–2004 and 

2008–2010.  

For Beijing, 16.3% of the cultivated land areas have changed to built-up areas. According to 

Figure 17(a), the new built-up areas were developed almost in every direction, radiating outward 

from the existing urban centers. In comparison, cultivated lands distributed in the outer suburbs 

have changed little. It demonstrates that Beijing has reflected a typical mononuclear polygon 

urbanization pattern, as reported in [62]. In 2001–2010, the city’s 5th and 6th Ring Roads were built 

around the urban core, which has greatly improved the traffic efficiency of Beijing. This led to the 

economic development along the roads and rapid urbanization progress. Due to this effect, most of 

the newly urbanized regions were concentrated between the 4th and 6th Ring Roads, as mentioned 

in [63]. 

For Tianjin, 11.2% of the cultivated land areas has changed to built-up areas. According to 

Figure 17(b), the newly built areas were extended eastward from the main urban district towards the 

coastline. The area is concentrated in the Dongli district, along the Beijing-Tianjin-Tanggu 

Expressway. These results are consistent with the ones obtained in [62] that with the simultaneous 

urban growth in the main city and the Binhai New Area, the latter in the southeast coast is gradually 

combined with the former into a line from 2000 to 2010. Moreover, according to the Urban Master 

Plan of Tianjin (2005-2020), the axis along the Haihe River and the Beijing-Tianjin-Tanggu 

Expressway is taken as the main shaft of urban development [63], therefore, the observed 

phenomenon is likely to continue in the future. 

For Tangshan, 9.9% of the cultivated land areas have converted to built-up areas. According to 

Figure 17(c), the urban expansion in Tangshan toke both around the city's urban core and in the 

suburbs, reflecting a compact, multiple-nuclei urbanization pattern. Some hotspots were clearly 

delineated, including: (a) the Phoenix New Town, the Tangshan Fengnan Economic Development 

Zone, and the Kaiping High-tech Zone around the main urban district; (b) the transportation hub in 

the Fengrun district. From this phenomenon, we can draw the following conclusions: with the 

urban-rural population growth, increasing residential land assumption has been one of the major 

reasons for urban expansion in Tangshan. In addition, demand for industrial land was another 
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driving force accompanied by the construction of new industrial parks. Finally, it is found that the 

transport infrastructure played a role in the distribution of newly urbanized areas. 

In summary, the results show that the spatial characteristics of urban expansion in the 

Beijing-Tianjin-Tangshan district is closely linked to the urban planning policy and the traffic 

infrastructure. 

 

Figure 16. Long-term mapping of urban expansion patterns of the entire study area from 2001 to 

2010. The main urban districts in (a) Beijing, (b) Tianjin, and (c) Tangshan. 
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Figure 17. The change detection results in the main urban district in Beijing, Tianjin, and Tangshan 

from 2001 to 2010. (a) The change detection result in Beijing (top) and the corresponding Landsat-5 

TM image acquired in August 8, 2010 (bottom). (b) The change detection result in Tianjin (top) and 

the corresponding Landsat-5 TM image acquired in October 4, 2010 (bottom). (c) The change 

detection result in Tangshan (top) and the corresponding Landsat-5 TM image acquired in October 4, 

2010 (bottom). 

5.2. Strengths and Limitations of the Proposed Algorithm 

The proposed algorithm has been designed for long-term urbanization-induced farmland loss 

monitoring based on SITS. In comparison with other state-of-the-art algorithms, this method has 

some remarkable advantages. First, no threshold is needed for the change detection process. In 

CCDC, the change threshold is a critical parameter and should be carefully selected. If it is set 

smaller, the omission errors are reduced at the expense of more commission errors, or vice versa. 

The proposed method saves the effort of threshold filtering and suppresses the omission errors and 

commission errors as well. Second, the proposed model takes into consideration of the intra-class 

variations in cultivated land. The proposed hierarchical HSMM encodes the complex phenological 

patterns in cultivated land induced by various crop types or cultivation practices, which makes it 

robust to pseudo changes. Third, the proposed method makes full use of the temporal information of 

the entire time series to infer the land-cover type of a pixel at each time slice. In comparison, both 

post-classification (i.e., RF-TF and HSMM) and profile-based algorithms (i.e., CCDC) identify the 

class label of a pixel using only a few observations before or after the current time. This explains why 

the proposed algorithm can improve the temporal accuracy. 

Despite the above-mentioned strengths, there still exist some limitations. The primary 

limitation of the proposed algorithm is that we consider only cultivated land and built-up land, 

while other classes are ignored in the established hierarchical HSMM to simplify the model 

structure. Hence, the proposed method is more applicable to areas where farmland-to-urban is the 

dominant type of land-cover dynamics, which is the case in many fast-urbanized regions in 

developing countries. However, other land-cover changes (especially from cultivated land to bare 

land) may affect the results of the analysis. Fortunately, this is not an inherent limitation of the 

hierarchical HSMM itself. This problem could be solved by incorporating all related land-cover 

types into the model.  
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6. Conclusions 

Better knowledge of the extent and spatial patterns of urbanization-induced farmland loss is 

important to assess the environmental outcomes of the urban expansion process and to predict 

future urban development. We developed a methodology to identify urban encroachment onto 

farmland areas using MODIS NDVI time series. Specifically, the farmland-to-urban change process 

is modelled by a two-level hierarchical HSMM: the bottom layer represents vegetation phenological 

stages and their durations using HSMMs; the top layer represents the land-cover conversions where 

each state is made of a sequence of phenological stages. Land-cover changes are detected by 

inferring whether the states in the top layer has changed. This hierarchical architecture enables us to 

encode the multi-level semantic information of SITS at different time scales. Specifically, 

intra-annual series reflect phenological differences and inter-annual series reflect land-cover 

dynamics. In this way, we can make use of these information to determine the change locations and 

times. As case study, we applied the proposed method to detect transitions from cultivated land to 

built-up land in the Jing-Jin-Tang district, China from 2001 to 2010. The performance of the proposed 

method is evaluated and compared with other algorithms. The experimental results demonstrate 

that the proposed method is superior in detection accuracy in both spatial and temporal domains. In 

addition, the spatial-temporal patterns of urban expansion revealed in this study are consistent with 

the findings of previous studies, which also confirms the effectiveness of the proposed method. The 

long-term urban expansion mapping results achieved by the proposed method can serve as a 

baseline for socio-economic analysis as well as for studies of landscape dynamics and urban 

planning. 

There are still many aspects that we can improve in the current work. (1) The influence of mixed 

pixels can be greatly reduced by using data with a higher spatial resolution, such as images from 

sensors like Sentinal-2. The accumulation of imagery by these newly launched satellites will provide 

purer observations and will improve the performance of the proposed method. (2) The proposed 

method does not directly link the plant phenology to the model. Though some studies have 

proposed to learn species-specific HMMs for crop classification and phenology monitoring [32,33], 

they are not compatible with coarse resolution remote sensing observations. In the MODIS imagery, 

each pixel reflects the integrated response across various species [64]. In this regard, we propose to 

use K-Means to group the NDVI profiles of each class into clusters with homogeneous phenological 

behaviors. Since incorporating knowledge of plant phenology into the model will offer potential for 

more accurate cultivated land discrimination, as well as making the model inference results easier to 

understand, this may be a promising avenue for further research on high-resolution SITS. (3) In 

addition to urban expansion monitoring, the proposed method is also applicable for many other 

environmental issues, such as monitoring abandoned cultivated land, soil erosion and 

desertification, deforestation, and changes in continental coastline, etc. These studies may be 

conducted in our future works to broaden the application scope of the proposed method. 
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