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Abstract: Often discussed, the spatial extent and scope of the Khmer Rouge irrigation network has
not been previously mapped on a national scale. Although low resolution, early Landsat images
can identify water features accurately when using vegetation indices. We discuss the methods
involved in mapping historic irrigation on a national scale, as well as comparing the performance
of several vegetation indices at irrigation detection. Irrigation was a critical component of the
Communist Part of Kampuchea (CPK)’s plan to transform Cambodia into an ideal communist society,
aimed at providing surplus for the nation by tripling rice production. Of the three indices used,
normalized difference, corrected transformed, and Thiam’s transformed vegetation indexes, (NDVI,
CTVI, and TTVI respectively), the CTVI provided the clearest images of water storage and transport.
This method for identifying anthropogenic water features proved highly accurate, despite low spatial
resolution. We were successful in locating and identifying both water storage and irrigation canals
from the time that the CPK regime was in power. In many areas these canals and reservoirs are no
longer visible, even with high resolution modern satellites. Most of the structures built at this time
experienced some collapse, either during the CPK regime or soon after, however many have been
rehabilitated and are still in use, in at least a partial capacity.
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1. Introduction

It is well established that Landsat and other remotely sensed imagery can be used to study land use
change [1,2], agriculture [3], the impacts of climate change [4], and many other physical characteristics
of the Earth’s surface. Less emphasis has been placed on using older Landsat data to apply remote
sensing analyses to historical and political questions. Much as current satellite information can be
used to track destruction in Syria and genocide in Myanmar [5–7], remote sensing techniques can be
applied to older Earth observation data to enhance our understanding of political situations of the past.
This paper illustrates the benefits and drawbacks of using older, relatively low-resolution satellite
imagery from Landsats 1–3 to fill in gaps in the historical record. The information extracted from these
images will enhance our understanding of what was (literally) happening “on the ground” during
times when very little information was available to those outside of Cambodia’s borders.
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The U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA)
have been collecting satellite imagery since the first Landsat (originally named ERTS, for Earth
Resources Technology Satellite) was launched in 1972 [8]. Landsats 1–3 differ from more recent
satellites in spatial, spectral, and temporal resolution, as well as data quality and bit depth [9,10].
Although this presents challenges for remote sensing applications, the data from earlier Landsats are
still useful for many analyses and should not be overlooked. This paper will focus on the nature of the
early Landsat data used and the steps taken to prepare it.

The goal of this research was to determine the nature, extent, and relative success of all irrigation
features built through forced labor during the Khmer Rouge regime, which existed in Cambodia from
1975 to 1979. We applied vegetation indices to Landsat scenes from Cambodia in 1973 and 1979 to
highlight the presence of water over the entire country. By focusing on the low values in the index
range, we were able to identify pixels containing canals and reservoirs. By comparing the early and
later imagery we identified the water features that were built during the Khmer Rouge period. The goal
first and foremost was to provide an estimate of the scale of the Khmer Rouge irrigation development
that was as accurate as possible. The purpose of our survey was to answer the following questions:

How many kilometers and dikes were built, and how many new reservoirs were created during
the study period?

How large of an increase was this in comparison to pre-Khmer Rouge Cambodian
irrigation networks?

What was the relative success or sustainability of these irrigation features?
Our research has uncovered thousands of kilometers of canals and reservoirs that were constructed

between late 1975 to 1979 [11]. Many of the smaller canal networks cannot be detected in existing
satellite imagery, indicating that this tally is certainly an undercount of the features that were built at
the time.

1.1. Historical Background

After the capture of Phnom Penh in 1975, the Khmer Rouge, otherwise known as the Communist
Party of Kampuchea (CPK) began forcibly relocating the population to rural agricultural areas with the
goal of tripling rice production. This would have been accomplished by expanding irrigation systems
and increasing to three harvests a year instead of two. Pol Pot, the leader of the CPK, envisioned a
canal network arranged in 10-km grids, each with smaller 1 × 1 km canal grids nested inside them
(Figure 1a,b) and each again with 100 m × 100 m grids nested inside them. In this way, the entire
country could be supplied with water for rice [12–14]. This process of canal and dam building was
implemented in multiple locations at the same time. Many structures were built quickly, by hand,
without heavy equipment or expertise in the field [15].

Many claims about the extent and effectiveness of Khmer Rouge irrigation schemes reiterate
the standard total view (STV) put forth by Michael Vickery. This view generalizes the performance
of Khmer Rouge government control and of the Khmer Rouge irrigation development as connected
symptoms of a poorly managed regime doomed to failure [15–18]. Repeated flooding of the landscape
over the past 40 years has eroded the traces of many canals on the landscape, and continuous agriculture
combined with current increases in development and deforestation all work towards erasing the sites
that remain. No geospatial inventory of the structures built during that time period has been previously
undertaken [11].

The success or failure of these structures and the role their failure played in the overall failure
of the CPK regime has until now been a subject of much supposition and debate unsupported by
field observation or physical evidence. While previous inventories of the irrigation infrastructure
have been conducted by multiple sources [19–21], these have focused on repairing and expanding the
existing irrigation structures and the nature of water governance [19,22–24]. Conclusions about the
effectiveness and success of the Khmer Rouge irrigation plan cannot be definitively made without a
systematic, country-wide survey of the irrigation projects completed during the Khmer Rouge regime.
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Satellite remote sensing, although in its infancy at the time, recorded the landscape during this period
and provides rich opportunity for analysis of the state of Cambodian irrigation networks both before
and after the Khmer Rouge development. While current studies focus on rehabilitating what remains,
our study has found that even more dams, dikes, and canals were built that are nearly invisible today,
but appear clearly in the 1970s imagery. This study demonstrates that it is well worth putting in the
effort to extend analysis back into earlier data sets. Using data collected from Landsats 1–3, combined
with ground survey and personal interviews, we created a database of irrigation structures constructed
in Cambodia during the time the country was under CPK control.
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Figure 1. (a) 1979 satellite image at the borders of Kampong Chang and Kandal provinces, Cambodia;
(b) current satellite imagery from Esri. Both show the Khmer Rouge grid irrigation network. The inset
in Figure 1b shows smaller canals spaced 100 m apart within the 1 km grid.

1.2. Study Area

Cambodia has a tropical climate dominated by two main monsoon seasons, with 88% of the
precipitation for the region occurring between May and October. The majority of Cambodia is alluvial
plain, with a slope of less than 1%, and sandy well drained soils. As part of the lower Mekong
Watershed, the Tonle Sap River and the Tonle Sap Lake are part of a unique hydrological system
that changes flow direction with the arrival of the wet monsoon season. During the flood season,
the Mekong flow increases such that it forces a reversal in the flow direction of the Tonle Sap River away
from the Mekong Delta and back into the Tonle Sap Lake which serves as a collection reservoir for the
greater Mekong watershed. Over 50% of the sediment collected in the Upper Mekong Basin finds its
way into the Tonle Sap Lake, making it a nutrient rich source for the region’s fisheries. The Tonle Sap’s
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annual floodwaters also provide an ideal environment for the cultivation of floating rice. Forty percent
of Cambodia’s population relies on subsistence farming, mainly of rice. Only 7% of Cambodia’s
agriculture relies on irrigation [25–28].

2. Materials and Methods

2.1. Satellite Data Acquisition

Satellite imagery from Landsats 1–3 was downloaded from the USGS Earth Explorer website.
Landsat multispectral scanner (MSS) data was chosen as there are more datasets available than other
contemporaneous forms of imagery. Landsat has moderate temporal resolution (18-day revisits for
Landsat 1–3), and frequent revisits over the same area give more opportunities to gain cloud-free images.

Scenes were collected from the year 1973 to serve as “before Khmer Rouge” reference images,
and scenes from the year 1979 served as the “after”.

Landsat scenes were identified by path and row as opposed to specific latitude and longitude
coordinates. Fifteen individual path/row locations were required to cover the entire country of
Cambodia (Figure 2). Seven of the 1973 path/row locations and five of the 1979 locations had only one
usable scene.
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Figure 2. A mosaic of fifteen Landsat scenes was needed to provide national coverage of Cambodia.

Differences in Satellite Image Data Collection and Format

Early Landsat imagery differs from current imagery in several ways. Primarily, lower spatial
resolution and the inability to collect data in the 0.45 to 0.52 micrometer bandwidth (the blue band)
of the electromagnetic spectrum makes data from Landsats 1–3 incompatible with modern Landsat
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imagery [29]. Spectrally, the lack of a blue visible light band in the 1970s imagery prohibited true
color visualization, so all images discussed were first imported into Clark Lab’s TerrSet and made into
false color infrared composites. The spatial extent of Landsat 1–3 pixels also differs from later satellite
imagery. Earlier Landsats collected spatial information in a 79 × 57 m pixel format, post-processed to a
60 m pixel, whereas current Landsat imagery is a standard 30 m pixel for most spectral bands. In terms
of information, early Landsat scenes suffered from inconsistent data quality: band transmission errors
and other causes of striping resulted in poor image quality and data dropout. Earlier imagery was
collected in a four-band, eight-bit format [9,10].

2.2. Reference Data

Reference data included Google Earth imagery, ESRI basemap imagery, and primary data collected
in the field. During the 2015 and 2016 field seasons a preliminary set of known irrigation locations was
collected via ground survey. Points were taken at both surviving canal and dam locations and at the
locations of failed, or failing and eroding structures. Interviews with local residents provided rough
construction methods and dates, as well as location data for areas where irrigation structures were
no longer visible on the surface. Point data and attributes were then imported into ArcMap to aid in
visual recognition of irrigation features in the Landsat scenes. Once potential canals and reservoirs
were identified, they were then verified by comparison with known structures in both the Landsat data
sets and modern satellite imagery. Irrigation development has been a part of Cambodia’s history since
before 500 A.D., and large-scale ancient irrigation systems still dominate large parts of the landscape,
especially in the Siem Reap Province, home to Angkor Wat. Sources used to eliminate ancient canals
from the database included maps derived from French aerial reconnaissance in the 1930s as well as
recent work by Evans, Fletcher, Pottier, Kummu, and Penny [26,30,31]. Evans and Moylan’s [32] study
comparing historical imagery of Angkor hydraulic networks with their modern remnants and Khmer
Rouge alterations was particularly helpful.

2.3. Image Processing Workflow

Since the goal of the Khmer Rouge was to create a nationwide irrigation network, the scope of our
analysis needed to include the entire geographic area of Cambodia in order to calculate an estimate of
the canals and water storage features constructed [14,33]. Landsat data filled that requirement, with the
added advantage of having been collected during the time in question. Once acquired, the data was
processed as follows in Figure 3:

1. Import all bands into Terrset. Create false color near infrared rasters to load into ArcMap.
2. Geo-reference composite images and individual bands if necessary.
3. Import near infrared (NIR) and red bands into QGIS to run multiple vegetation index algorithms.
4. Import vegetation indices into ArcMap and manually digitize water features. See figures

for results.
5. Calculate total kilometers of canals and dikes built during the study period, and total number of

water storage features created.

To create three-band raster composites, Terrset was chosen due to its streamlined geotiff file
creation process. ArcMap’s integration of a world imagery basemap made rectifying imagery and
ground truthing irrigation features more efficient. QGIS’s System for Automated GIS Analysis (SAGA)
plugin, which calculated multiple vegetation indices simultaneously, sped up the image processing
step and allowed more time for comparative analysis.
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2.3.1. False Color Composites

The first step in building the image database involved filtering the images by cloud cover and
image quality in TerrSet. Due to the lack of a blue band in Landsats 1–3 data, 654/RGB (false color
infrared) images were created for each dataset. In this format, healthy vegetated areas appear as bright
red and clear water bodies as black or dark blue due to the ability of water to absorb infrared rays [8].
At this stage, defects common to early Landsat scenes, such as data banding, were obvious. In order to
maximize the cloud-free pixel area between the multiple images, all scenes were processed [34–36].
Cloud-free sections of an imperfect image, even if severely striped, filled in many missing data areas.
In Figure 4 the left side displays a severely banded image, yet the large reservoir in the southwest is
still easily visible.
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2.3.2. Georeferencing Images

While Landsat scenes are processed by USGS and NASA to align with a modern coordinate system,
early images do not always line up with the modern datums within a GIS. For this study, all composite
images were corrected to WGS 1984 UTM zone 48 North. Reference points were created using
identifiable landmarks that could be located in both the original Landsat scene and the modern ArcMap
satellite imagery data and rectifying the two images [8]. Roughly 100 reference points were required to
rectify each image. Cambodia’s lack of development and large forested areas made identification of
common landmarks difficult, and changes to the landscape made over almost 50 years made some
of the early landmarks indistinguishable. Once this process was completed for the composite image,
it was repeated on all the original data bands to create a new set of four geo-referenced bands and
one geo-referenced composite image. In addition to correcting spatial accuracy, this process removed
extraneous “no data” cells from the raster extent. The corrected images were then used as input for
vegetation difference indices.

2.3.3. Vegetation Index Analyses

Although false color infrared gave a quick visual baseline for each data scene, the low-resolution
imagery did not always give a clear indication of water containing areas. Due to seasonal variations in
flow and sediment load, water visibly varied in color from black to light greenish blue, or reddish
tan. Cloud shadows could also be mistaken for bodies of clear water when observed in NIR/R/G
format. In order to increase the visibility of water on the landscape, vegetation indices were run on
each Landsat scene. The normalized difference vegetation index, or NDVI, was used to extract water
features from the surrounding landscape. The NDVI was developed by Rouse [37] using MSS data
to minimize variations in reflectance measurements due to topographic effects and to enhance the
difference between vegetation and non-vegetated land areas [38]. NDVI is a ratio of the red and near
infrared (bands 5 and 6, respectively, in Landsats 1–3) [39]. It is one of the most commonly used
vegetation indices and is efficient at detecting irrigated land. It has the advantage of providing a
small range in values, −1.0 to 1.0, and a clear cutoff value, indicating that all values below 0 identify
non-vegetated land or water bodies [34,40]. Both the corrected transformed vegetation index (CTVI)
and the Thiam’s transformed vegetation index (TTVI) expand upon the NDVI, and are part of the
same family of slope-based vegetation indexes. The TVI was created to correct index values so that the
histogram reflected a more normal distribution. The CTVI altered the TVI in order to eliminate most
negative values and return a higher quality vegetation index (VI) image. Thiam found the results from
the CTVI to be too noisy, and overestimate greenness, so altered the TVI once again by dropping the
first part of the equation, resulting in the TTVI [39].

Vegetation indices were calculated in QGIS 2.18, an open source GIS program. QGIS provides
access to third party geoprocessing tools, offering the ease of a “black box” tool with supporting
documentation available to the user. By partnering with independent software providers in this way,
QGIS provides access to image filters, remote sensing workflows, and other raster analysis methods
that might not be available in any one GIS or remote sensing package. One of the third-party providers
is SAGA. Within QGIS, SAGA provides a module that computes seven slope-based vegetation indices
simultaneously. This gave us the opportunity to produce NDVI, CTVI (corrected transformed vegetation
index), and TTVI (Thiam’s transformed vegetation index) outputs for each of the downloaded scenes
quickly and efficiently. The vegetation index equations appear below.

The normalized difference vegetation index [37]:

NDVI =
NIR−R
NIR + R

. (1)
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The corrected transformed vegetation index [41]:

CTVI =
NDVI + 0.5

ABS(NDVI + 0.5)
|x|
√

ABS(NDVI + 0.5). (2)

Thiam’s transformed vegetation index [42]:

TTVI =
√

ABS(NDVI + 0.5). (3)

2.3.4. Visual Evaluation and Irrigation Mapping

All Landsat images and vegetation indices were resampled with bilinear interpolation and
stretched using standard deviation symbology in ArcMap, with a 30% increase in contrast. A diverging
color ramp was applied to highlight the contrasts between high and low index values. The images
that follow were produced from Landsat scene LM3137051979280AAA10 (Landsat scene names have
been reformatted since this data was originally acquired, the current Landsat product identifier for this
scene is LM03_L1TP_137051_19791007_20180420_01_T2).

Canals were mapped by comparing known locations from field data with both the before and
after data sets of satellite images, and using both the satellite basemap available in ArcMap and Google
Earth for reference. Canals were often confused with roads in the false color images, however the
vegetation index images provided clear differences in values between roads and water. When mapping,
binary color ramps were used to contrast the green vegetation along road edges (high NDVI values)
from water filled canals (low NDVI values). Uncertainty came in when viewing older canals full of
vegetation or eroded former canals that had been plowed over, which usually called for comparing the
three vegetation indices with each other and with modern Google Earth imagery. Figures 5 and 6 show
the results of the canal and water storage mapping.
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3. Results

3.1. Comparison of Index Performance

While all three of the vegetation indices listed provided an acceptable advantage over the false
color infrared in water detection, the index that most reliably detected water storage in most cases was
the CTVI. The CTVI output reliably identified even very small water bodies while still maintaining
distinct boundaries at the water’s edges. NDVI outputs often over emphasized water pixels, which
made it difficult to distinguish between healthy vegetation and water bodies. The TTVI results
tended to falsely identify clouds as surface water, which necessitated referring back to the false
color infrared composites for confirmation. This algorithm worked well for identifying water bodies,
but overrepresented wet soils and failed to clearly delineate between reservoirs and wet fields or
flood plains.

Figure 5 shows the 1979 false color infrared, CTVI, NDVI, and TTVI outputs for the same location
in Banteay Meanchey province, Cambodia. In false color, the land surface appears indistinct and
flooded, with blue coloring suggesting water across most of the image. The NDVI increases contrast
between water (blue) and land (yellow to brown), but the overall image is still hazy. Distinction between
water and farmland is clearer in the TTVI than the NDVI, but the TTVI tended to overemphasize
water. This can be seen in the lower left corner of the image, where the large blue (water) area has the
same index value on both sides of the dividing dike, a uniform blue shade across the entire section.
Contrast this to the same area in Figure 7a,b, where there is a stronger (darker) water reading on the
left side. This was a drawback when mapping water storage features, as it failed to pick up differences
in signal between wet land and deeper, stored water. However, the ability of the TTVI to clearly define
a contrast between water and land made it the most useful for mapping canals, as it successfully
separated the thin linear features from the surrounding landscape. The spectral signal of water is such
that it supersedes all other signals in a pixel, making even the five-meter wide canals detectable [11].
In the CTVI imagery (Figure 7d), containment dikes and reservoirs could be clearly distinguished from
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the surrounding flooded landscape, while the large blue area in the lower left corner clearly separated
the water storage section (left) with the inundated area on the right.
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Figure 7. 1979 image of Banteay Meanchey, Cambodia. False color infrared composite compared
to normalized difference vegetation index (NDVI), Thiam’s transformed vegetation index (TTVI),
and corrected transformed vegetation index (CTVI) results. In the false color image (a), haze obscured
flooded areas and boundaries between water and land were hard to define. In the NDVI (b), the contrast
between wet areas (blue) and farmland (yellow to brown) was much clearer, but boundaries still
remained blurred. The TTVI (c) isolated the water signal but overemphasized it. This could be seen
in the lower left corner of the image, where the large blue (water) area has the same index value on
both sides of the dividing dike, showing a uniform blue shade across the entire section. Contrast this
to the same area in (a,b), where there was a stronger (darker) water reading on the left side. CTVI
(d) results showed the clearest distinction between water storage and flooded fields, and proved the
most successful in defining borders between fields (pale blue) and water storage structures (darker
solid blue).

3.2. Linear Feature Detection

Even given modern imagery, canals varied in width and often had empty or missing sections
that made them hard to trace long distances. This was complicated by sun-glint or high sediment
load. While clear water absorbs most of the infrared that hits it, sediment filled water reflects more
light back to the sensor and often registers higher index values similar to bare ground. A particularly
effective example of this occurs in Banteay Meanchey Province, where two intersections presented
similarly in the false color imagery, however one intersection displays canals and the second did not.
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Figure 8 below shows both intersections as they appear in the Landsat 3 imagery (top left and right).
The paths of the two intersections are shown enlarged in blue below. At both locations, a diagonal line
cuts across the image from the east to the west. At intersection a (Figure 8a) a, this line is lighter and
almost white compared to the bright red vegetation surrounding it. Multiple perpendicular lines meet
or cross it, although these are faint and almost fade into the brown/red background. At intersection b
(Figure 8b), a similar line is evident. On the left it starts as a pale line edged in red running through a
mixed light blue and brown background. As you follow the line towards the right, it becomes lighter
and more pronounced against the bright red vegetation on the landscape. It, too, has a somewhat offset
intersection running through the center of the image, however these lines are not as precisely defined
and have a rougher outline than the lines at intersection a.
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Figure 8. Detail of Landsat 3 path/row 137 051, showing two similar intersections in the 1979 false color
imagery. Their paths are highlighted in blue below the Landsat image. Intersection a (a,c) displays
canals, and intersection b (b,d) was revealed to be roadways.

In Figure 9, Sites a and b display similar diagonal intersecting lines. In the top row, CTVI images
are displayed using a standard-deviation gamma stretch. The lower index values of Site a remain
lighter than the background values. Their light-yellow appearance indicates values in the middle of the
index value range. This contrasts with Site b, which displays the dark brown (high CTVI value) lines of
healthy vegetation, often found lining roadways. With the standard-deviation stretch, linear features
are clear and contiguous, with good definition while still retaining vegetation (b) and non-vegetation (a)
qualities. When the stretch was changed to a histogram equalized view (bottom row), linear definition
was compromised, but Site a’s canals appeared distinctly in blue, low index values, confirming the
presence of water. What can be seen of Site b’s linear features were much darker brown. This color
contrast in the CTVI highlighted the difference in infrared reflection between vegetation and water,
providing the information necessary to distinguish canals from roads.
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Figure 9. CTVI results for the same locations as in Figure 8, displayed with a standard deviation stretch
(a,b), and histogram equalized stretch (c,d).

Figure 10 shows Site a in 2019 Planet Labs imagery, with a 3 m spatial resolution, much higher
than the 1979 Landsat 3 imagery (60 m resolution). The major intersection that was at the center of
Figure 8a appears in the top right corner. This imagery illustrated just how difficult it was to find relict
canals in true color imagery, especially after 40 years had passed. There was still a need for CTVI
analysis even with high spatial resolution, as roads, canals, and vegetation can appear many different
ways in a single true-color image.

The red inset rectangle (Figure 10a) highlights a wide, dark green canal to the south of the gray
asphalt road on the left of the image. Close to the light-brown dirt road running north–south, canals
begin running on both the south and north banks. Once the asphalt road crosses the dirt road, the canal
south of the main road ends. The dirt road has a small tertiary canal in dark green running along its
west side. Dark green colors indicated that the canal was older and had been overgrown by vegetation.

The blue inset rectangle (Figure 10b) is less that 400 m away from the red inset, but the dirt road
running north–south at this location is a pale white line. The canal here also runs on the west side of
the road, but is fragmented, and has various levels of reflectance in each section. The northmost canal
section follows the dark green appearance of the previous wide canals. The section immediately to
the south is a light blue, due to sun-glint reflecting off the surface. The last section is as wide as the
light blue section above it, but the same color as the dirt road it runs beside. Contextually, the width,
location, and the knowledge that the soil was very silty can help to identify this section as canal and
not road. The light color can be explained by the fact that water very high in sediment reflects similarly
to soil in the visible spectrum. It requires CTVI analysis to verify this description, however.



Remote Sens. 2019, 11, 2397 13 of 21

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 24 

 

 
Figure 10. Modern imagery of the Banteay Meanchey Site a. Planet Labs imagery 3 m resolution. Red 
(a) and blue (b) insets provide closer view of canals and roads at the site. 

Figure 11 shows the intersection at Site b. The small red inset (Figure 11a) focuses on the road 
that crosses the image from west to east. This is a light beige dirt road flanked by houses on either 
side. Running vertically through the image is a natural waterway, in dark greens. This channel has a 
much more organic shape when contrasted to the manufactured canal to the east. In the CTVI and 
false color imagery, it was this channel to the west that appeared as a water on our Landsat imagery, 
and the more engineered canal to the east was not detected. The eastern canal may be more modern 
in construction. As to why the natural waterway appeared as vegetation in the CTVI image, 
comparing the color of the vegetation in the channel to the vegetation in the town to the east (top 
right corner of blue inset image), the natural waterway appears overgrown to the point where it 
would have a high enough infrared reflectance to register as vegetation as opposed to water. The 
more modern canal, highlighted in the blue inset (Figure 11b), is more to type, with a dark green 
channel and two light dirt roads on the east and west banks. As this channel proceeds north toward 
the town, however, we picked up sun-glint and sedimentation that made this wider canal section 
appear lighter and more similar to the dirt roads. 
  

Figure 10. Modern imagery of the Banteay Meanchey Site a. Planet Labs imagery 3 m resolution. Red
(a) and blue (b) insets provide a closer view of canals and roads at the site.

Figure 11 shows the intersection at Site b. The small red inset (Figure 11a) focuses on the road that
crosses the image from west to east. This is a light beige dirt road flanked by houses on either side.
Running vertically through the image is a natural waterway, in dark greens. This channel has a much
more organic shape when contrasted to the manufactured canal to the east. In the CTVI and false color
imagery, it was this channel to the west that appeared as a water on our Landsat imagery, and the more
engineered canal to the east was not detected. The eastern canal may be more modern in construction.
As to why the natural waterway appeared as vegetation in the CTVI image, comparing the color of the
vegetation in the channel to the vegetation in the town to the east (top right corner of blue inset image),
the natural waterway appears overgrown to the point where it would have a high enough infrared
reflectance to register as vegetation as opposed to water. The more modern canal, highlighted in the
blue inset (Figure 11b), is more to type, with a dark green channel and two light dirt roads on the east
and west banks. As this channel proceeds north toward the town, however, we picked up sun-glint
and sedimentation that made this wider canal section appear lighter and more similar to the dirt roads.

3.3. Canal and Water Storage Inventory

Excluding ancient Angkorian systems, we identified a total of 2540 km of canals in the “before”
dataset, and 9772 km of canals in the post-Khmer Rouge satellite data. This is an increase of over
7000 km between 1973 and 1979. Although canals as small as five meters across could be detected,
this is certainly an underestimate of the scope of the construction completed during this time. Field
surveys in areas where the grid system has been maintained indicate that these canals were spaced one
km apart, and smaller canals were spaced at 100 m intervals between them (see Figure 1).

Reservoirs increased from roughly 32 detectable in the pre-Khmer Rouge era to over 350 separate
reservoirs by 1979. A rough typology of storage types was created based on the method of water
containment and relationship of the water storage feature to both topography and hydrology of its
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location. Six types were identified: external storage, internal storage, segregated storage, linked storage,
topographically controlled storage, and large-scale canal systems. For a more in-depth discussion of
the typology characteristics, see Tyner et al. [11].Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 24 

 

 
Figure 11. Modern imagery of the Banteay Meanchey Site b. Planet Labs imagery 3 m resolution. Red 
(a) and blue (b) insets provide closer view of canals and roads at the site. 

3.3. Canal and Water Storage Inventory  

Excluding ancient Angkorian systems, we identified a total of 2540 km of canals in the “before” 
dataset, and 9772 km of canals in the post-Khmer Rouge satellite data. This is an increase of over 7000 
km between 1973 and 1979. Although canals as small as five meters across could be detected, this is 
certainly an underestimate of the scope of the construction completed during this time. Field surveys 
in areas where the grid system has been maintained indicate that these canals were spaced one km 
apart, and smaller canals were spaced at 100 m intervals between them (see Figure 1). 

Reservoirs increased from roughly 32 detectable in the pre-Khmer Rouge era to over 350 separate 
reservoirs by 1979. A rough typology of storage types was created based on the method of water 
containment and relationship of the water storage feature to both topography and hydrology of its 
location. Six types were identified: external storage, internal storage, segregated storage, linked 
storage, topographically controlled storage, and large-scale canal systems. For a more in-depth 
discussion of the typology characteristics, see Tyner et al. [11]. 

4. Discussion 

4.1. Accuracy Assessment  

To evaluate the success or sustainability of the irrigation features, first we looked at the larger 
structures as a whole—were the water storage features that we detected via the satellite imagery 
verified by ground-truthing? To what degree were the features detected—were structures 
identifiable “in toto” or were large components of irrigation systems missed by the CTVI index? The 
satellite mapping process revealed over 350 water storage features, all but one of which were Khmer 
Rouge constructed or improved. All of these were at least partially traceable in modern imagery, 
although not necessarily visible at ground level. Even for modern and rehabilitated dams, the amount 
of water stored at any given time varies, and a reservoir may be drained for irrigation use and sit 
empty until the next rainy season (an example of this was the Sla reservoir that was mapped with 

Figure 11. Modern imagery of the Banteay Meanchey Site b. Planet Labs imagery 3 m resolution. Red
(a) and blue (b) insets provide a closer view of canals and roads at the site.

4. Discussion

4.1. Accuracy Assessment

To evaluate the success or sustainability of the irrigation features, first we looked at the larger
structures as a whole—were the water storage features that we detected via the satellite imagery
verified by ground-truthing? To what degree were the features detected—were structures identifiable
“in toto” or were large components of irrigation systems missed by the CTVI index? The satellite
mapping process revealed over 350 water storage features, all but one of which were Khmer Rouge
constructed or improved. All of these were at least partially traceable in modern imagery, although
not necessarily visible at ground level. Even for modern and rehabilitated dams, the amount of water
stored at any given time varies, and a reservoir may be drained for irrigation use and sit empty until
the next rainy season (an example of this was the Sla reservoir that was mapped with very low water
levels during the 2018 field season). Because of this and the tendency of structures to erode in monsoon
season, the evidence of dams, dikes or gates at a site all served to verify previously existing water
storage. Of the reservoirs identified in the satellite imagery, 13 were verified as Khmer Rouge by
ground survey, and five were determined to have been canal structures. One was verbally confirmed
by a local resident, but unable to be reached by road. In addition, 14 new Khmer Rouge dams were
identified in a field survey, for a total of 27 dams ground-truthed. All but one of these were visible in
the 1979 imagery once we knew where to look based on ground data. When ground truthing canals,
276 satellite-identified points were surveyed as possible canals or canal fragments, and 272 of these
proved to be accurate. Table 1 shows the accuracy matrix comparing the satellite feature detection and
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the ground survey. The category “other” describes canals or dams that were not mapped previous to
the ground survey.

Table 1. Accuracy matrix of canals and storage points, when ground-truthed by GPS (Global Positioning
System).

GPS Points Ground-Truthed: Ground-Truthed: Ground-Truthed: Total User’s
Accuracy

Mapped As: Water Storage Canals/Partial Canals Other
Water Storage 14 4 0 18 14/18 = 77%

Canals/Partial Canals 3 272 1 276 272/276 = 98%
Other 16 1 0 17 N/A
Total 33 277 1 311

Producer’s accuracy 14/33 = 42% 272/277 = 98% N/A
Overall accuracy: 286/311 = 92%

Several factors contribute to the relatively low number and low accuracy of water storage data
points as compared to canal features. One, canal features were usually mapped at multiple points
along their length, at gates or culverts or failure points. This means that canal points were nearer to
each other and more numerous than water storage points. Often, during monsoon season canals over
topped or breached, leading to large flooded areas in the imagery that were seen as storage. Areas
where canals had broken or breached were sometimes mistakenly identified as individual reservoirs,
when in fact they were two parts of the same canal. These large flooded areas resulted from the failure
of the canal system transporting the water, rather than the storage features themselves. Finally, the size
and scope of some of the water storage features, especially those that were topographically constrained,
combined with the distance and limited time in the field prevented us from taking as many points as
would have been desirable for a larger reference data set. Most of the water storage features (373 in
total) were verified through satellite imagery available on Google Earth.

Separating individual canals even in modern imagery is often impossible, especially if those
images were taken during flood season. For reference we used a combination of government and
NGO (non-governmental organization) reports on scheme conditions and improvement plans. We
then compared the canal networks detected in the 1979 CTVI imagery with modern networks known
to have been modified from original Khmer Rouge construction. Following Treffner [43], we focused
on identifying irrigation schemes and sub-projects rather than individual canals. Much of the data
available consisted of lists of irrigation projects by district without location information, with details
given only on planned rehabilitation project sites. Given these limitations, of the over 9000 km of
canals traceable in the 1979 imagery, 897 km were linked to 32 irrigation schemes, in 11 provinces.

4.2. Success or Failure?

In terms of judging the success or failure of the Khmer Rouge structures, we looked at factors that
would apply to any irrigation structure. Did the structure perform its most basic function? If it was a
canal, did it transport water to the intended area? If it was a water storage feature, how effective were
the structures (dam, gates, or culverts) at retaining and distributing water as needed?

At three water storage sites, containment dams were not completed before the fall of the Khmer
Rouge regime. These structures were all in the CPK Northwest zone, which remained under the
influence of the Khmer Rouge until 1998 [24]. Two of these were large topographically constrained
structures, Kampong Puoy and Trapaeng Thmar, with dikes stretching over 6 km and 13 km, respectively.
The third was the Prek Chik irrigation diversion dam, secondary intake structure for the large-scale
Damnak Ampil/April 17th canal system, which stretched over 48 km. The Damnak Ampil was both
unable to cope with heavy monsoon rains, which led to frequent canal breaching due to overland
flow, and too large and permeable to distribute enough water to farmers along its length during the
dry season. Both this dam and a nearby dam to the northeast, Thleam Ma’oam, collapsed repeatedly
during construction. We were unable to procure details for each of the water storage sites visited,
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but of the 11 dams for which we have failure information, five lasted fewer than three years, two failed
after roughly six years, and only two lasted more than a decade. Seven were left unused or abandoned
at some point, five of those permanently.

Functionally, at nineteen of the water storage sites the dams are at least partially operable at the
current time, and most of these have been rehabilitated at least once. Erosion around gate structures
and inoperable gates were the primary complaints. At Trapaeng Thmar, the largest water storage site,
water distribution, gate repair, and canal maintenance has been fractious and plans for rehabilitation
poorly understood since construction [43]. This area of Cambodia suffered from conflict between
Khmer Rouge splinter groups and the government until 1998. As of 2010 only upstream farmers could
benefit from the reservoir during the dry season [43]. The projected goal for the Trapaeng Thmar project
by the Khmer Rouge was to irrigate 3000 ha. At present the upstream irrigated land has increased
from 50 hectares to 300 hectares, but downstream fields remain unirrigated and with no more access to
water during the dry season than in the 1970s. In southwest Cambodia, Kep province, four Khmer
Rouge reservoirs were linked along a single river. Upstream of this cascade system a large, post-Khmer
Rouge dam (Chamka Bey) was built that funneled more water than the next dam downstream could
hold, resulting in breaching of the dam at Kraal Kau Ta Pom and downstream flooding [44]. In the case
of the Damnak Ampil irrigation scheme, as of 2009 water did not reach the secondary canals due to
their deterioration [19]. The permeability of the canals causes high water loss and neither upstream or
downstream residents are able to access water to farm dry season rice [45]. The Jan 6th/Traing Krasaing
system has repeatedly breached since its construction due to monsoon-related runoff, and despite
being in a water-rich area only supplies water to 3% of its potential service area [46]. Table 2 lists the
conditions of water storage sites that we were able to visit.

Even more fundamental than whether a particular structure still functions is whether or not it
still exists. Figure 12 shows Kep Province, Cambodia, where many reservoirs were visible in the 1979
imagery that were barely traceable in modern imagery. Field survey and local interviews confirmed
that multiple reservoirs, seen as dark blue or black in the 1979 near infrared image (Figure 12a) were
built by the Khmer Rouge; these are visible as blue in the 1979 CTVI images (Figure 12b). In the high
resolution images from Planet Labs (Figure 12e,f), the two reservoirs in the lower left corner are no
longer visible. In the northeast, a large dike south of the river can be traced, but does not hold water.
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Table 2. List of water storage dams identified, in terms of stability.

Dam Name Year Built Years Functional
(Best Estimate) Status Condition

6th January Dam 1976 2
Rehabilitated, washed away same
place 1979. Repeats annually. “Has
never really worked.”

In use.

Daem Pring 1977 unknown In use. In use; rehabilitation unknown.

Damnak
Ampil/17th April 1976–77 0 “Every rainy season gates would fail

within three days.”

In use; still breaching during
monsoon season, unable to
provide enough water to farmers
in dry season.

Kamping Puoy 1977–78 unfinished Not finished before fall of regime.

Kampong
Trauhoung 1973 Abandoned Abandoned

Kandall Tuol 1973 17 Floodgate collapsed 1990s. Abandoned

Kbal Houng 1976 3 Destroyed by explosives for fishing. Partially operable. Gates broken.

Kdol unknown Abandoned Abandoned

Khang Tbou unknown Not visible on current landscape. Abandoned

Khum 1977 3 Collapsed in 1980s after scavenging. In use; rehabilitation
date unknown.

Koh Ph Dao 1973 6 Abandoned before 1980, never rebuilt. Abandoned

Koh Saom 1974 unknown In use; expanded since Khmer
Rouge period, date unknown.

Kraal Kau Ta Pom 1977 3 Collapsed in 1980s after fall of regime. In use; rehabilitated 1998.

Nimitt 1976 unknown In use.

O Daung 1977 unknown “Floodgate did not work well.” In use; rehabilitation unknown.

O Thmar 1976 unknown Ongoing piping and erosion of dike. In use; recent rehabilitation, heavy
erosion occuring.

O Touk 1978 6 Destroyed by explosives for fishing. In use; rehabilitation
date unknown.

Okrasa 1976–77 2 Flood gate collapsed, fixed,
collapsed again. In use.

Prek Chik 1977 unfinished Not finished before fall of regime, left
unused until rehabilitated in 2003. In use; under major rehabilitation.

Proteh Krola unknown In use; rehabilitation unknown.

Rom Chlech 1977 unknown

Rones 1974–75 25 Deteriorated after fall of regime,
collapsed 2000s.

In use; rehabilitation
date unknown.

Roung 1975 unknown Partially operable; no known
rehabilitation.

Sla Reservoir Dam 1977 unknown In use; ongoing rehabilitation.

Thleam Ma’oam 1976 0
Collapsed multiple times due to
heavy monsoon flows while
under construction.

In use; new dam, new dike, heavy
erosion along main canal.

Trapaeng Thmar 1976 unfinished

Not finished before fall of regime, left
unused. Deliberatedly breached to
distribute water because gates were
never installed.

In use, recent new gates built;
restored 1987, 2004.

Veal Vong 1976 unknown In use; recent new gate installed.

Figure 13 shows water storage sites in Banteay Meanchey, Cambodia, to the east and southeast of
a large reservoir called Trapaeng Thmar. The 1979 imagery is shown in false color infrared (Figure 13a)
and CTVI (Figure 13b). Two reservoirs can be detected in the early imagery, they are shown enlarged in
Figure 13c,d. The reservoir directly to the east (d) stretches north to south over 16 km, and the southeast
reservoir (c) measures over 11 km. Figure 13e, shows Planet Labs’ false color infrared imagery from
the same location in 2019. The former water storage shows up as bright, bare land. It is difficult to
locate the previous location of the southern reservoir. The Planet Labs’ 2019 CTVI (Figure 13f) image
makes it clear that there is no water storage at either location currently.
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Figure 13. Landsat images (60 m resolution) and Planet Labs imagery (3 m resolution) of the Trapaeng
Thmar and Banteay Meanchey water storage areas, from 1979 and 2019, respectively. (a) 1979 imagery
in false color infrared; (b) 1979 CTVI image; (c) and (d) are close-up images of the 1979 water storage
features; (e) is the 2019 high resolution false color image, and (f) the same imagery, CTVI processed.

Applying vegetation indices to pre-Landsat 4 imagery gave us the unique ability to view these
irrigation systems immediately after their construction. This allowed us to view the structures in their
original configurations, before floods, failures, and multiple rehabilitations altered their function or
layout. However, challenges to using this data exist and we are still experimenting with ways to make
this process more efficient and productive.

The ability to automatically detect irrigation features would greatly speed up the process.
Multispectral classification was attempted, but large pixel size combined with poor quality data
rendered it unsuccessful. In the future we hope to use Hexagon KH-9 imagery from the same time
period to provide a higher resolution view of the area. Extracting raster attributes in ArcMap in order to
create water-only rasters has been promising. By removing all but the values below the average value
in the CTVI rasters, we are left with a raster of only water storage and flooded features. This works well
to isolate even very small reservoirs. Unfortunately, the canal values are too close to the surrounding
wet soil values to be able to separate the two. An image convolution filter might improve results.
Several cloud removal processes have been attempted but many require multiple images of the same
area or the use of the blue spectral band, which is unavailable in early Landsat imagery [47]. We have
tried a partial homomorphic filter process with limited success [48]. Braaten et al.’s [49] cloud and
cloud shadow identification algorithm is a promising alternative.

5. Conclusions

While the STV maintains that these structures failed due to lack of planning, improper design,
or unskilled workmanship, it is apparent that, while faulty, many of the structures are still being used
for their intended purpose. In some cases, even when completely rebuilt, as in the case of the Damnak
Ampil intake dam or the dam at Thleam Ma’om, the locations and general layout rely on the systems
initially put in place during the Khmer Rouge period. In cases like Trapaeng Thmar, functionality
has been partially improved by the completion of control gates to release water downstream, but the
access to irrigation water remains problematic. This is as often as much a failure of current planning
or lack of cooperation between villages as it is hydraulic in nature [24]. Our field work has observed
significant erosion in canals that have been widened and improved within the last few years, due to
the inherent instability of the alluvial soil. Without entirely lining canals with stone or concrete, it is
hard to see how any canal, modern or Khmer Rouge, could withstand the fluctuations in flow during
the monsoon season.
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Germann and Epp [50] emphasize that one of the singular qualities of an archaeological site is
that the physical context of a site contributes as much information as the objects that are found there.
Watershed development can irrevocably destroy that context as well as bury or wash away a site’s
material artifacts. While they focus on the damage that reservoir and watershed development cause to
the archaeological material contained within the site, in the case of the Cambodian dams and canals,
the sites themselves are the material culture. Our study has shown that often these structures have been
built, washed away, and rebuilt multiple times. The history of their construction and reconstruction is
inseparable from the history of the people killed during their production [51,52]. The best physical
record that we have of their production is recorded in the Landsats 1–3 imagery. It is important that
we continue to salvage what we can to fill this gap in our historical knowledge by retrieving as much
information as possible from these images.
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