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Abstract: Detecting topographic changes in an urban environment and keeping city-level point
clouds up-to-date are important tasks for urban planning and monitoring. In practice, remote sensing
data are often available only in different modalities for two epochs. Change detection between
airborne laser scanning data and photogrammetric data is challenging due to the multi-modality of
the input data and dense matching errors. This paper proposes a method to detect building changes
between multimodal acquisitions. The multimodal inputs are converted and fed into a light-weighted
pseudo-Siamese convolutional neural network (PSI-CNN) for change detection. Different network
configurations and fusion strategies are compared. Our experiments on a large urban data set
demonstrate the effectiveness of the proposed method. Our change map achieves a recall rate of
86.17%, a precision rate of 68.16%, and an F1-score of 76.13%. The comparison between Siamese
architecture and feed-forward architecture brings many interesting findings and suggestions to the
design of networks for multimodal data processing.

Keywords: change detection; multimodal data; convolutional neural networks; Siamese networks;
airborne laser scanning; dense image matching

1. Introduction

Detecting topographic changes and keeping topographic databases up-to-date in large-scale urban
scenes are fundamental tasks in urban planning and environmental monitoring [1,2]. Nowadays,
remote sensing data over urban scenes can be acquired through satellite or airborne imaging, airborne
laser scanning (ALS), synthetic aperture radar (SAR), etc. In practice, the remote sensing data available
at different epochs over a same region are often acquired with different modalities (i.e., with different
platforms and sensor characteristics). Such heterogeneity makes the detection of changes between
such multimodal remote sensing data very challenging.

This paper aims to detect building changes between ALS data and airborne photogrammetric
data. This is applicable to the situation of several mapping agencies, where laser scanning data are
already available as archive data, while aerial images are routinely acquired every one or two years
for updates. On the one hand, since acquiring the aerial images is much cheaper than acquiring the
laser points [3], aerial photogrammetry is widely used for topographic data acquisition. On the other
hand, since the ALS data are generally more accurate and contain less noise compared to dense image
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matching (DIM) data [4], the fine ALS data can be used as the base data and be updated using dense
matching points in the changed areas.

A traditional photogrammetric pipeline takes two-dimensional (2D) multi-view images as inputs
and outputs 3D dense matching point clouds with true colors, 2.5D digital surface models (DSMs),
and 2D orthoimages. Quantitative comparisons of the point clouds from ALS and dense matching
are found in [5–8]. Point clouds from laser scanning and dense matching differ in geometric accuracy,
precision (i.e., noise level), density, the amount and size of data gaps, and available attributes.

Figure 1 illustrates the data differences between laser scanning points and dense matching points.
Some differences are related to data accuracy such as (1) vertical deviation in which Zhang et al. [4]
reported that the vertical accuracy of ALS points is better than ±5 cm, while the vertical accuracy of
dense matching points produced by state-of-the-art dense matching algorithms can be better than one
ground sampling distance (GSD), which is usually 10–20 cm for airborne platforms. The dense matching
errors from semi-global matching [9,10] in a whole block show a normal distribution. Therefore, it is
hard to find a global threshold for the vertical deviation in change detection. (2) Horizontal deviations
between two data sets cause elongated areas with false changes along the building edges in the DSM
differencing map. Therefore, again, it is difficult to set a global threshold to distinguish changed and
unchanged points using DSM differencing.
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Figure 1. Comparison between point clouds from airborne laser scanning and dense image matching.
All samples are from our study area. (a) Roof surface; the top right figure shows the airborne laser
scanning digital surface model (ALS-DSM) and dense image matching (DIM)-DSM heights along the
yellow profile on the left panel. The bottom right figure shows the ALS (red) and DIM (white) points;
(b) vegetated land; (c) building with trees in the courtyards. From left to right in (b) and (c): ALS point
cloud, DIM point cloud from bird-view, and the orthoimage. The color coding from blue to red in the
ALS point cloud indicates increasing height.

Other differences include (3) noise level which on smooth terrain and roof surfaces, dense matching
points usually contain much more noise than the laser scanning points. Dense matching is problematic
when the image contrast is poor (e.g., along narrow alleys and in shadow areas), whereas low contrast
or illumination is not a problem for laser data acquisition. (4) Data gaps exist in both data types.
The data gaps in laser points mainly occur due to occlusion or pulse absorption by the surface material
(e.g., water [11]), while data gaps occur in dense matching points mainly due to poor contrast. (5) Point
distribution on trees requires comparing the point clouds distributed on trees, where the laser points are
distributed over the canopy, branches, and the ground below, while for dense matching, usually only
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points on the canopy are generated. Specifically, the point density on the trees from dense matching is
largely affected by image quality, seasonal effects, and leaf density.

Apart from the aforementioned data problems, object-based change detection becomes more
challenging due to the complexity of the scene. First, false positives may appear if the shape of
a changed object is similar to a building, for example, changes of scaffolds, trucks, containers, or even
terrain height changes in construction sites. Second, changes on a connected object might be mixed; for
instance, one part of a building could be heightened while another part lowered. This paper presents
a robust method for multimodal change detection. The contributions are as follows:

• We propose a method to detect building changes between ALS data and photogrammetric data.
First, we provide an effective solution to convert and normalize multimodal point clouds to
2D image patches. The converted image patches are fed into a lightweight pseudo-Siamese
convolutional neural network (PSI-CNN) to quickly detect change locations.

• The proposed PSI-CNN is compared to five other CNN variants with different inputs and
configurations. In particular, the performance of the pseudo-Siamese architecture and feed-forward
architecture are compared quantitatively and qualitatively. Different configurations of multimodal
inputs are compared.

This paper is organized as follows: Section 2 reviews the related work. Section 3 presents the
methods. Section 4 provides details on the study area and experimental settings. Section 5 presents the
results and analyses. Section 6 concludes the paper.

2. Related Work

2.1. Multimodal Change Detection

Change detection is the process of identifying differences in an object by analyzing it at different
epochs [12]. The input data of two epochs can be either raw remote sensing data or object information
from an existing database. Change detection can be performed either between 3D data or by comparing
3D data of a single epoch to a bi-dimensional map [13]. Zhan et al. [14] classified the change detection
methods into two categories based on the workflow: Post-classification comparison (e.g., [15,16]) and
change vector analysis (e.g., [17–19]).

In post-classification comparison, independent classification maps are required for both epochs.
Change detection is then performed by comparing the response at the same location between the two
epochs. When the data of two epochs are of different modalities, both training and testing have to
be performed at each epoch separately, thus requiring a large computational effort. Moreover, errors
tend to be multiplied along object borders due to misclassification errors in the single classification
maps [20]. Vosselman et al. [13] proposed a method to update 2D topographical maps with laser
scanning data. The ALS data were first segmented and classified. The building segments were then
matched against the building objects of the maps to detect the building changes. Malpica et al. [21]
detected building changes in a vector geospatial database. The building objects were extracted from
satellite imagery and laser data using a support vector machine (SVM).

In contrast, change vector analysis relies on extracting comparative change vectors between the
two epochs and fuses the change indicators in the final stage [22,23]. Compared with post-classification
comparison, change vector analysis directly makes a comparison between the data of both epochs.
However, traditional change vector analysis is sensitive to data problems and usually causes many false
detections, especially when the data of two epochs are in different modalities. The most widely-used
change vector analysis between 3D data sets is DSM surface differencing, followed by point-to-point or
point-to-mesh comparison [5,8]. To reduce the number of false positives, direct comparison methods are
often followed by post-processing methods or are combined with other change detection frameworks.

Considering detecting changes between multimodal 3D data, Basgall et al. [24] compared laser
points and dense matching points with the CloudCompare software. Their study area was small and
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only one changed building was studied. Also, the method proposed was not automatic, since the
changed building was detected through visual inspection. Qin and Gruen [3] detected changes between
mobile laser points and terrestrial images at street level. Image-derived point clouds were projected to
each image by a weighted window-based Z-buffering method. Then over-segmentation-based graph
cut optimization was carried out to compute the changed area in the image space. Evaluation results
showed that 81.6% changed pixels were correctly detected. Du et al. [25] detected building changes in
outdated dense matching point clouds using new laser points, which is the reverse setup compared
with our work. Height difference and gray-scale dissimilarity were used with contextual information
to detect changes in the point cloud space. Finally, the preliminary changes were refined based on
handcrafted features. The limitation of the approach raised by the authors was that the boundary of
changed buildings could not be determined accurately. Additionally, the method required human
intervention and prior knowledge in multiple steps. By contrast, our method aims at a method for
multimodal change detection, which requires minimal human intervention and generates reliable
change locations.

2.2. Deep Learning for Multimodal Data Processing

Recently, deep CNNs have demonstrated their superior performance in extracting representative
features for various computer vision tasks (e.g., image classification, semantic segmentation, and
object detection [26–28]). As a specific CNN architecture, Siamese networks (SI-CNN) perform
well in applications which compute similarity or to detect changes between two inputs. Outputs
from SI-CNNs can be patch-based single-valued or dense pixel-by-pixel maps, depending on the
specific architecture. In patch-based prediction, SI-CNN has been widely used in handwritten digit
verification [29], face verification [30,31], character recognition [32], patch-based matching [33], and
RGB-D object recognition [34]. In the case of dense predictions, the SI-CNN was used in wide-baseline
stereo matching [35,36].

In the remote sensing domain, deep learning has also been used to process two sets of input in
change detection and image matching. He et al. [37] used a SI-CNN to find corresponding satellite
images with complex background variations. The coordinates of the matching points were searched
using a Harris operator followed by a quadratic polynomial constraint to remove false matches.
Similarly, Lefèvre et al. [38] used a SI-CNN to detect changes between aerial images and street level
panoramas reprojected on an aerial perspective. AlexNet [39] was used in the two branches for
feature extraction and the Euclidean distance was used to determine the similarity between the two
views. Mou et al. [40] identified corresponding patches between SAR images and optical images
using a pseudo SI-CNN (pseudo indicates that the weights in the two branches are unshared). The
weights in the two branches are unshared so that different parameters are applied to extract features
from multimodal inputs. The feature maps from the two Siamese branches were concatenated, which
worked as a patch comparison unit. Although SAR images and aerial images involved heterogeneous
properties, they achieved an overall accuracy of 97.48%.

Some recent studies obtained dense per-pixel change maps by using a Siamese fully convolutional
neural network (FCN). Zhan et al. [14] maintained the original input size in each convolutional layer in
the two branches followed by a weighted contrastive loss function. The pixels with a distance measure
higher than a given threshold were regarded as changed. The acquired change maps were then
post-processed by the K-nearest neighbor approach. Daudt et al. [41] adopted a different architecture
combined with convolutional blocks and transpose convolution blocks to output full change maps
between satellite images. Mou et al. [16] proposed to learn spectral-spatial-temporal features using
a recurrent neural network (RNN) for change detection in multispectral images. This end-to-end
architecture can adaptively learn the temporal dependence between multi-temporal images. In our
work, we also propose a light-weighted SI-CNN for change detection.
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3. Materials and Methods

A building is defined as changed in two situations: (1) it is a building in one epoch but not in the
other epoch (i.e., the building is newly-built or demolished); (2) a building exists in two epochs but has
changed in height or extent. In both situations, our method aims at detecting the change locations
using a light-weighted SI-CNN. First, the multimodal input data are converted and normalized to the
same range [0, 1]; Then the normalized data are fed into an SI-CNN for change detection. The inputs
and output of our method are shown in Figure 2. The old epoch contains an ALS point cloud and the
derived DSM; the new epoch contains a DIM point cloud, DSM, and orthoimage. The output is the
change map which indicates the change locations.
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3.1. Preprocessing: Registration, Conversion, and Normalization

First, the point clouds from two epochs and orthoimages from the second epoch are converted
to the same resolution and the same coordinate system. The products from the photogrammetric
workflow are geo-referenced to the world coordinate systems using ground control points (GCPs)
during bundle adjustment. The accuracy of the dense matching points, DSMs, and orthoimages are
affected by the accuracy of the interior and exterior orientation elements. The coordinates of the
airborne laser points are already provided in the same world coordinate system.

Second, the laser points are converted to DSMs (ALS-DSM) using LAStools. The photogrammetric
DSMs (DIM-DSMs) and orthoimages are generated from a photogrammetric workflow. The ALS-DSM
and DIM-DSM are resampled so that their grid coordinates are strictly alighted with the pixels on
the orthoimage.

Next, the heights of ALS-DSM and DIM-DSM are normalized to the same height range. The two
DSMs range in [Hmin, Hmax] where Hmin and Hmax are the minimum and maximum DSM height of the
whole study area, respectively. We normalize the height values (H0) of the ALS-DSM and DIM-DSM
using the same Hmin and Hmax as shown in Equation (1). In this way, the two DSMs are converted to
the range of [0, 1]. This representation approach maintains all the height details in the DSM.

H = (H0 −Hmin)/(Hmax −Hmin) (1)

In addition, the three channels R, G, and B of the orthoimages from dense matching are also
normalized to [0, 1] by simply dividing each pixel value by 255. Hence, all the five channels ALS-DSM,
DIM-DSM, R, G and B are normalized within the [0, 1] range. Image patches are then cropped in the
overlapping raster images for the pseudo-Siamese network.
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3.2. Network Architecture

The registered three patches (ALS-DSM, DIM-DSM, and orthoimage) including five channels
(ALS-DSM, DIM-DSM and R, G, B) are fed into the SI-CNN for change detection. The proposed
SI-CNN model is called PSI-DC (i.e., pseudo-Siamese-DiffDSM-Color) (see Figure 3). DiffDSM refers to
the height difference between the ALS-DSM and DIM-DSM. The input for this branch is one channel.
For the other branch, the R, G, B channels from the orthoimage patch are provided. Our preliminary
tests show that a Siamese CNN has difficulties converging when the data modalities in a given branch
are heterogeneous. Thus, we do not present the architecture with the ALS-DSM as the first branch
and DIM-DSM and R, G, B as the other, as a traditional Siamese network is designed. Instead, we
pass a different DSM in the first branch and the color information from the R, G, B bands from the
orthoimages in the other.
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Figure 3. The proposed convolutional neural network (CNN) architecture for multimodal change
detection: Pseudo-Siamese-DiffDSM-Color (PSI-DC). ConvB indicates a convolutional block; fully
connected (FC) indicates a fully connected operation. Conc indicates concatenating feature maps.
The digits below each feature map are the size of the width × height × channel.

In Figure 3, the inputs are processed by three convolutional blocks (convB) consecutively.
The extracted feature maps are concatenated and further processed by one convB and three fully
connected (FC) layers. Each convolutional block contains a convolution operation followed by
a rectified linear unit (ReLU) as the activation function. Further, convB1, convB2, and convB4 also
contain a max-pooling layer which adds translation invariance to the model and decreases the number
of parameters to learn [42]. The size of the convolution kernels is 5 × 5 in our network, with a padding
size of 0 and slide of 1, which is verified to be an effective compromise between the feature extraction
depth and contextual extent in our task.

Our network is conceptually similar to the change detection network proposed by [40], which has
eight convolutional blocks for feature extraction and two blocks after concatenation. In their work, the
two patches to be compared are not only from different sensors (SAR and optical), but also involve
translation, rotation, and scale changes. Our case is simpler since our compared patches are strictly
registered and normalized to the same scale. Therefore, we use fewer convolution blocks to extract
features from multimodal data.

Fully connected layers are used in the final stages of the network for high-level reasoning. PSI-DC
contains three FC layers. The first two FC layers are followed by ReLU operations. The last FC layer
outputs a 2 × 1 vector, which indicates the probability for changed and unchanged, respectively. In this
way, we convert a change detection task into a binary classification task. Suppose that (x1, x2) is the
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2 × 1 vector predicted from the last FC layer, the loss is computed between (x1, x2) and the ground truth
(1 for changed and 0 for unchanged). First, the vector is normalized to (0, 1) by a Softmax function:

pi =
exp(xi)

exp(x1) + exp(x2)
, i = 1, 2 (2)

where p1 + p2 = 1. Then, a weighted binary cross entropy loss is calculated:

Loss = −(w1y log(p1) + w2(1− y) log(p2) (3)

where y is the reference label and pi is the predicted logit from the Softmax function. The ratio of w1 to
w2 is set based on the number of negative training samples and positive samples. In urban scenes,
the number of negative samples (unchanged) is usually several times the number of positive samples
(changed). By assigning weights to the loss function, we provide a larger penalization to a false positive
than to a false negative to suppress false positives.

4. Experiments

4.1. Descriptions of Experimental Data

The study area is located in Rotterdam, The Netherlands, which is a densely built port city
mainly covered by residential buildings, skyscrapers, vegetation, roads, and waters. The study area is
14.5 km2 as shown in Figure 4. Figure 4a shows the ALS point cloud obtained in 2007 with a density of
approximately 25 points/m2. The point cloud contains approximately 226 million points.
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A total of 2160 aerial images were obtained by CycloMedia [43] from five perspectives in 2016.
The flying altitude was approximately 450 m. The tilt angle of the oblique view was approximately 45◦.
The image size was 7360 × 4912 pixels. The GSD of nadir images equaled 0.1 m. The bundle adjustment
and dense image matching were performed in Pix4Dmapper. The vertical RMSE (Root Mean Square
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Error) of 48 GCPs was ±0.021 m and the vertical RMSE of 20 check points was ±0.058 m. The overlap
of nadir images was approximately 80% along the track and 40% across the track. Even though the
overlap rate from five views is high, dense matching still cannot perform well in the narrow alleys
between tall buildings due to occlusion, poor illumination, and image contrast. The DIM point cloud
contains approximately 281 million points. DSMs and orthoimages were also generated at the same
resolution of 0.1 m. Figure 4b shows the generated orthoimage. The training, validation, and testing
area make up 28%, 25%, and 42% of the study area, respectively. Note that 5% of the block (between
training and validation area) is not used since this area contains the newly-built Rotterdam railway
station with homogeneous building change; the samples extracted from this area will reduce the
sample diversity and may lead to under-fitted CNN models. Figure 4c shows the orthoimage overlaid
with four types of labels: Heightened building, lowered building, water, and data gaps.

4.2. Experimental Setup

After data pre-processing, the grid coordinates of the ALS-DSM and DIM-DSM are registered
with the pixels in orthoimages at a GSD of 0.1 m. When extracting samples for PSI-DC, each sample
contains one ALS-DSM patch, one DIM-DSM patch, and one orthoimage patch. The patch size is
100 × 100 pixels, which corresponds to 10 m × 10 m on the ground.

Before extracting patches from the normalized ALS-DSM, DIM-DSM, and orthoimage, the ground
truth for building changes should be prepared. The building changes are manually labeled on the
orthoimage with guidance of the ALS point, DIM points, and DSM differencing map. Concretely,
when a building is newly-built or heightened on the DIM data, the boundary is delineated from the
DIM point clouds; when a building is demolished or lowered, its boundary is delineated from the
outdated ALS point cloud. In addition, data gaps and water are marked on the ground truth map,
but they are not considered for change detection. Data gaps may appear in ALS points and/or DIM
points. If there is no data in either epoch, we simply cannot make any inference whether it is changed
or not; thus, we label the ground truth map as “data gap”. We also ignore water height changes caused
by tides. Finally, each pixel on the ground truth map is labeled as changed building, data gap, water,
or other. Specifically, the changed building class includes heightened (including newly-built) and
lowered (including demolished) buildings. The other class includes all the irrelevant changes and
unchanged areas.

Then small square patches are cropped from the raster images densely with a given overlap.
A critical question is how to define a changed patch and an unchanged patch. Some previous patch-based
classification work assigned the label of the central pixel of a patch to the whole patch [44,45]. However,
this definition method is sensitive to slight displacements of the patch location. In this paper, we label
the patch as changed if the ratio of changed pixels in this patch is larger than a threshold. The rules
used for patch labeling are as follows:

(1) If the ratio of pixels for water and data gaps is larger than TPS1 then eliminate this patch.
(2) If the ratio of changed pixels is larger than TPS2 this patch is labeled as changed; otherwise it

is unchanged.

The settings and descriptions of parameters are listed in Table 1. Among them, THd and Tlength are
set according to the DIM data quality. TPS1 and TPS2 are set based on trial experiments.

Since the training area contains far fewer changed (positive) samples than unchanged (negative)
samples, two strategies were adopted when preparing changed training samples: (1) half-overlap
sampling involves electing positive patches with a stride of half-patch size (i.e., 5 m) which makes
complete sampling of the changed areas as shown in Figure 5; (2) data augmentation requires that
each positive sample, including three patches, is horizontally and vertically flipped and also rotated by
90◦, 180◦, and 270◦ [14]. When preparing negative training samples, validation samples, and testing
samples, half-overlap sampling is adopted but data augmentation is not.
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Table 1. Parameter settings and descriptions.

Threshold Value Description

TPS1 0.1 A sample is valid only if the ratio of water and
data gaps is smaller than TPS1.

TPS2 0.1 A sample is changed if the ratio of changed pixels
is larger than TPS2; otherwise it is unchanged.

THd 2 m The minimum height change of a building we aim
to detect.

Tlength 10 m
Considering the data quality from dense image
matching, we aim to detect building changes
longer than 10 m.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 17 
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The number of training, validation, and testing samples is shown in Table 2. Since variable amounts
of building construction work has happened in different areas, the ratios of changed-to-unchanged
samples in the training, validation, and testing areas are quite different. The ratio w1 : w2 in Equation (3)
is set to the reciprocal of this changed-to-unchanged ratio in the training set.

Table 2. Number of training, validation, and testing samples.

Data Set Changed Unchanged Total Samples Ratio

Training 22,398 116,061 138,459 1:5.18
Validation 2925 104,111 107,036 1:35.6

Testing 6192 129,026 135,218 1:20.8

Figure 6 shows three negative and seven positive training samples. The ratio of changed pixels
varies from low to high from left to right. Note that the first sample in Figure 6 contains a new tree
in the DIM data. Our CNN model should be trained to distinguish a relevant building change from
an irrelevant tree change. In addition, our definition of a changed patch is based on the ratio of
changed pixels rather than the label of the central pixel. The center of the seventh sample in Figure 6
is unchanged, but we define it as changed since 44.8% of pixels are changed. This rule for defining
changed patches is more inclusive of the ensemble of the content of the patch than labeling a patch
according to the central pixel, which is supposed to be easier for a CNN to learn.

When training networks, weights are randomly initialized, and all networks are trained from
scratch. The weights in the two Siamese branches were not shared, since the inputs involved
heterogeneous properties. The batch size was 128. The optimization algorithm was a stochastic
gradient descent (SGD) with momentum [42]. The learning rate started from 0.008 and decreased
by 0.003 after every 30 epochs. We trained the network for 80 epochs with a momentum of 0.90.
The training process was run on a single NVIDIA GeForce GTX Titan GPU with 11G memory. The CNN
architectures were implemented in PyTorch [46].
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4.3. Contrast Experiments

For the CNN architecture, apart from the proposed PSI-DC architecture, five other architectures
were implemented as our baseline methods to compare the performance of different CNN configurations:
PSI-HHC (height–height–color), PSI-HH (height–height), feed-forward (FF)-HHC, FF-DC, FF-HH.
In addition, a simple DSM differencing method was also implemented as a baseline method. The details
of these methods are listed below:

• PSI-HHC: The proposed PSI-DC directly took the difference between the two DSMs in the
beginning. We also implemented an architecture which uses the ALS-DSM and DIM-DSM
together as one branch (two channels) and takes R, G, B as the other branch (three channels).
This architecture called PSI-HHC works as a late fusion of the two DSMs, compared with PSI-DC.

• PSI-HH: In this SI-CNN architecture, one branch is the ALS-DSM and the other is the DIM-DSM.
Color channels are not applied.

• FF-HHC: It is interesting to compare the performance of feed-forward architecture and
pseudo-Siamese architecture for our task. A feed-forward CNN (FF-HHC) is adopted as shown in
Figure 7. The five channels are stacked in the beginning and then fed into convolutional blocks
and fully connected layers for feature extraction. HHC (height–height–color) indicates that two
DSM patches and one orthoimage patch are taken as input. For more details, the readers are
referred to [47].

• FF-DC: This feed-forward architecture takes four channels as input: DiffDSM, R, G, and B.
• FF-HH: This feed-forward architecture takes the ALS-DSM and DIM-DSM as input. Color channels

are not applied.
• DSM-Diff: Given two DSM patches from ALS data and DIM data over the sample area, a simple

DSM differencing produces differential-DSM. The height difference averaged over each pixel on
the patch will bring the average height difference (AHD) between the two patches. Intuitively, the
two patches are more likely to be changed if the AHD is high, and vice versa. The optimal AHD
threshold can be obtained with Otsu’s thresholding algorithm [48]. This method can classify the
patches into changed or unchanged in an unsupervised way.



Remote Sens. 2019, 11, 2417 11 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 17 

 

gradient descent (SGD) with momentum [42]. The learning rate started from 0.008 and decreased by 
0.003 after every 30 epochs. We trained the network for 80 epochs with a momentum of 0.90. The 
training process was run on a single NVIDIA GeForce GTX Titan GPU with 11G memory. The CNN 
architectures were implemented in PyTorch [48]. 

4.3. Contrast Experiments 

For the CNN architecture, apart from the proposed PSI-DC architecture, five other architectures 
were implemented as our baseline methods to compare the performance of different CNN 
configurations: PSI-HHC (height–height–color), PSI-HH (height–height), feed-forward (FF)-HHC, 
FF-DC, FF-HH. In addition, a simple DSM differencing method was also implemented as a baseline 
method. The details of these methods are listed below: 

• PSI-HHC: The proposed PSI-DC directly took the difference between the two DSMs in the 
beginning. We also implemented an architecture which uses the ALS-DSM and DIM-DSM 
together as one branch (two channels) and takes R, G, B as the other branch (three channels). 
This architecture called PSI-HHC works as a late fusion of the two DSMs, compared with PSI-
DC. 

• PSI-HH: In this SI-CNN architecture, one branch is the ALS-DSM and the other is the DIM-DSM. 
Color channels are not applied. 

• FF-HHC: It is interesting to compare the performance of feed-forward architecture and pseudo-
Siamese architecture for our task. A feed-forward CNN (FF-HHC) is adopted as shown in Figure 
7. The five channels are stacked in the beginning and then fed into convolutional blocks and 
fully connected layers for feature extraction. HHC (height–height–color) indicates that two DSM 
patches and one orthoimage patch are taken as input. For more details, the readers are referred 
to [47]. 

• FF-DC: This feed-forward architecture takes four channels as input: DiffDSM, R, G, and B. 
• FF-HH: This feed-forward architecture takes the ALS-DSM and DIM-DSM as input. Color 

channels are not applied. 
• DSM-Diff: Given two DSM patches from ALS data and DIM data over the sample area, a simple 

DSM differencing produces differential-DSM. The height difference averaged over each pixel on 
the patch will bring the average height difference (AHD) between the two patches. Intuitively, 
the two patches are more likely to be changed if the AHD is high, and vice versa. The optimal 
AHD threshold can be obtained with Otsu’s thresholding algorithm [46]. This method can 
classify the patches into changed or unchanged in an unsupervised way. 

 
Figure 7. A baseline network architecture: feed-forward height–height–color (FF-HHC). ConvB 
indicates a convolutional block; FC indicates fully connected operation. The digits below each feature 
map are the size of the width × height × channel. 

4.4. Evaluation Metrics 

Our change detection results are evaluated at the patch-level. Recall, precision and F1-score are 
applied to evaluate this strongly-imbalanced binary classification problem. Recall indicates the ability 
of a model to detect all the real changes. Precision indicates the ratio of true changes among all the 
detected changes. The F1-score is a metric to combine recall and precision using their harmonic mean. 

Figure 7. A baseline network architecture: Feed-forward height–height–color (FF-HHC). ConvB
indicates a convolutional block; FC indicates fully connected operation. The digits below each feature
map are the size of the width × height × channel.

4.4. Evaluation Metrics

Our change detection results are evaluated at the patch-level. Recall, precision and F1-score are
applied to evaluate this strongly-imbalanced binary classification problem. Recall indicates the ability
of a model to detect all the real changes. Precision indicates the ratio of true changes among all the
detected changes. The F1-score is a metric to combine recall and precision using their harmonic mean.

Recall = TP/(TP + FN) (4)

Precision = TP/(TP + FP) (5)

F1 = 2× (Recall× Precision)/(Recall + Precision) (6)

True positive (TP) is the number of correctly detected changes. True negative (TN) is the number
of unchanged samples detected as unchanged. False positive (FP) is the number of changes detected
by the algorithm, which are not changes in the real scene. False negative (FN) is the number of
undetected changes.

5. Results and Discussion

5.1. Results

During training, the CNN model was evaluated on the validation set after every three epochs to
check its performance and ensure that there was no overfitting. Towards the end of training, the model
with the highest F1-score was selected as the final trained model. The validation results of the proposed
PSI-DC are as follows: TP was 2362; TN was 101,636; FP was 2475; FN was 563. Recall equaled 80.75%;
precision equaled 48.83%; F1-score equaled 60.86%. That is, 80.75% of positive samples were correctly
inferred as positive and 97.62% of negative samples were correctly inferred as negative. The patch-level
change detection results on the test set from the three CNN architectures are shown in Table 3.

Table 3. Change detection results (%) for seven comparative methods. FF: Feed-forward;
HH: Height–height; HHC: Height–height–color. The highest score in each column is shown in bold.

Network Recall Precision F1-Score

DSM-Diff 89.12 37.61 52.90

FF-HH 81.43 62.65 70.81
FF-HHC 82.17 67.17 73.92
FF-DC 82.33 65.09 72.70

PSI-HH 80.26 62.49 70.27
PSI-HHC 84.63 61.03 70.92
PSI-DC 86.17 68.16 76.13
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Table 3 shows that the proposed PSI-DC model outperforms the other six methods in precision
and F1-score. The recall of PSI-DC ranks the second among the seven methods and is better than the
other five CNN-based methods. The F1-score of FF-HHC ranks second among the seven. The recall
of FF-HHC is lower than PSI-DC by 4%, and its precision is lower than the latter by 0.99%, which
results into a F1-score of 73.92%. The lowest F1-score is obtained by DSM-Diff, which is lower than
the second lowest F1-score by a large margin (17.37%). The recall of DSM-Diff (89.12%) is the highest
among the seven, while its precision is merely 37.61% (i.e., DSM-Diff misclassifies many unchanged
patches into changed, which results into many false positives). The poor result of DSM-Diff indicates
that the AHD threshold (3.82 m) found by Otsu’s method cannot distinguish between unchanged and
changed patches effectively. The reason is that many unchanged patches also present a high AHD
value (e.g., patches on the vegetated land or under shadow). A single AHD threshold cannot make
a correct distinction.

Comparing Siamese architecture and feed-forward architecture, the results of FF-HH and PSI-HH
show a margin in F1-score of only 0.54%, which indicates that the performance of feed-forward and
Siamese architectures differ very slightly when the input contains only the ALS-DSM and DIM-DSM.
However, the F1-score of FF-HHC is higher than that of PSI-HHC by 3%. In this case, the feed-forwards
architecture performs better than the Siamese model. This can be explained by the fact that PSI-HHC
contains two branches and FF-HHC contains only one branch. PSI-HHC is more complicated and
contains more parameters, which might be harder to train.

Concerning the impact of color channels, FF-HHC outperforms FF-HH and PSI-HHC outperforms
PSI-HH. This clearly demonstrates that color channels from orthoimage contribute to the correct
classification of unchanged and changed patches. The spectral and textural features derived from
orthoimage is supplementary to the geometric features derived from two DSMs.

Comparing different input configurations (DC vs. HHC), PSI-DC performs better than PSI-HHC
by a large margin of 5.21% in the F1-score. This large margin indicates that the input configuration to
the CNN models has a significant impact on the change detection results. The PSI-DC and PSI-HHC
networks are all the same except that one branch in PSI-DC is Diff-DSM while the same branch
is replaced by raw ALS-DSM and DIM-DSM patches in PSI-HHC. This is because PSI-DC takes
advanced features (height difference of two DSMs) as input, while PSI-HHC takes two raw DSMs as
input. PSI-HHC has more parameters and requires the CNN model to learn deeper. However, in the
feed-forward model, FF-DC performs slightly worse than FF-HHC by 1.22%, which is against our
finding in comparison between PSI-HHC and PSI-DC. A sound explanation is that there are much less
parameters in the feed-forward model than in the Siamese model. When the two raw DSMs are taken
as inputs in the FF-HHC, FF-HHC can learn more geometric features from the two raw DSMs other
than differential DSM features, which results in a better classification result.

The change maps generated from PSI-DC and FF-HHC (i.e., two optimal models) are visualized
in Figure 8. For other qualitative results from feed-forward models, the readers can refer to [47].
Figure 8 shows that most changed objects are correctly detected in the patch-level results even though
some false detections occur. Although the patch-level change masks show a zigzag effect, the results
still reflect coarse locations of the change boundaries. The six examples in the lower part of Figure 8
visualize some details of the change maps. Figure 8a shows a demolished factory. The patch-based
change map from PSI-DC can represent the boundary much better than FF-HHC since many false
negatives (i.e., omission errors) appear in the latter. Figure 8b shows that a deep pit in a construction
site is misclassified into a changed building by both models. Figure 8c shows that more false positives
appear in the vegetation area from the model FF-HHC than in the prediction of PSI-DC. This area is
located in a park covered with grassland, trees, rivers, and dirt roads. The point cloud from dense
matching contains much noise in this area. PSI-DC can better classify this area into non-changes than
FF-HHC. Figure 8d shows another construction site at the port. Tall tower cranes, containers, and
trucks are misclassified into building-related changes because their heights and surface attributes are
similar to a real building. Figure 8e shows that a heightened square building is omitted by FF-HHC
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while it is detected by PSI-DC. Figure 8f shows that FF-HHC makes more false negatives than PSI-DC,
even though FF-HHC causes less false positives than PSI-DC.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 17 

 

Concerning the impact of color channels, FF-HHC outperforms FF-HH and PSI-HHC 
outperforms PSI-HH. This clearly demonstrates that color channels from orthoimage contribute to 
the correct classification of unchanged and changed patches. The spectral and textural features 
derived from orthoimage is supplementary to the geometric features derived from two DSMs. 

Comparing different input configurations (DC vs. HHC), PSI-DC performs better than PSI-HHC 
by a large margin of 5.21% in the F1-score. This large margin indicates that the input configuration to 
the CNN models has a significant impact on the change detection results. The PSI-DC and PSI-HHC 
networks are all the same except that one branch in PSI-DC is Diff-DSM while the same branch is 
replaced by raw ALS-DSM and DIM-DSM patches in PSI-HHC. This is because PSI-DC takes 
advanced features (height difference of two DSMs) as input, while PSI-HHC takes two raw DSMs as 
input. PSI-HHC has more parameters and requires the CNN model to learn deeper. However, in the 
feed-forward model, FF-DC performs slightly worse than FF-HHC by 1.22%, which is against our 
finding in comparison between PSI-HHC and PSI-DC. A sound explanation is that there are much 
less parameters in the feed-forward model than in the Siamese model. When the two raw DSMs are 
taken as inputs in the FF-HHC, FF-HHC can learn more geometric features from the two raw DSMs 
other than differential DSM features, which results in a better classification result. 

The change maps generated from PSI-DC and FF-HHC (i.e., two optimal models) are visualized 
in Figure 8. For other qualitative results from feed-forward models, the readers can refer to [47]. 
Figure 8 shows that most changed objects are correctly detected in the patch-level results even though 
some false detections occur. Although the patch-level change masks show a zigzag effect, the results 
still reflect coarse locations of the change boundaries. The six examples in the lower part of Figure 8 
visualize some details of the change maps. Figure 8a shows a demolished factory. The patch-based 
change map from PSI-DC can represent the boundary much better than FF-HHC since many false 
negatives (i.e., omission errors) appear in the latter. Figure 8b shows that a deep pit in a construction 
site is misclassified into a changed building by both models. Figure 8c shows that more false positives 
appear in the vegetation area from the model FF-HHC than in the prediction of PSI-DC. This area is 
located in a park covered with grassland, trees, rivers, and dirt roads. The point cloud from dense 
matching contains much noise in this area. PSI-DC can better classify this area into non-changes than 
FF-HHC. Figure 8d shows another construction site at the port. Tall tower cranes, containers, and 
trucks are misclassified into building-related changes because their heights and surface attributes are 
similar to a real building. Figure 8e shows that a heightened square building is omitted by FF-HHC 
while it is detected by PSI-DC. Figure 8f shows that FF-HHC makes more false negatives than PSI-
DC, even though FF-HHC causes less false positives than PSI-DC. 

 
Figure 8. Patch-based change maps generated from the model PSI-DC (top left) and FF-HHC (top 
right). The two rows below show six zoom-in examples from the change maps. In each example from 
left to right: orthoimage for reference, change map from PSI-DC, and change map from FF-HHC. (a) 

Figure 8. Patch-based change maps generated from the model PSI-DC (top left) and FF-HHC (top
right). The two rows below show six zoom-in examples from the change maps. In each example from
left to right: Orthoimage for reference, change map from PSI-DC, and change map from FF-HHC.
(a) A demolished building; (b) A deep pit in a construction site; (c) Vegetation area; (d) A construction
site; (e) A heightened building; (f) A building which is partly heightened and partly lowered.

5.2. Visualization of Feature Maps

In order to understand what the CNN learns, the feature maps from the last convB in PSI-DC are
visualized in Figure 9. The outputs of PSI-DC are 64 7 × 7 feature maps. Only the strongest half of
the feature maps are shown. Two samples are visualized including a new building and a demolished
building. The activation is dispersed in multiple feature maps. In some of the feature maps, the
direction and shape of the activation reflect the shape of the change (e.g., the 25th feature map in
Figure 9a and the 8th, 9th, 16th, and 32nd feature maps in Figure 9b, which are highlighted in red
frames. The activations from the last convB are then flattened and summed up in the fully connected
layers, which matches with our definition of changed patches. Namely, whether a patch is changed or
not depends on the ratio of changed pixels, rather than merely the central pixel.
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5.3. Impact of Patch Size

Patch size is a critical hyper-parameter in our framework. It should be large enough to incorporate
much contextual information for patch-based change detection. It should be small enough to guarantee
a relatively detailed and accurate localization of changed buildings. We make comparative studies by
selecting samples with sizes of 80 × 80 and 60 × 60 from the converted DSMs and orthoimages, and
then run the whole workflow from scratch. To make the comparison meaningful, we maintain the
original PSI-DC architecture but up-sample the three patches (ALS-DSM, DIM-DSM, and orthoimage)
to 100 × 100 to fit the CNN inputs. In addition, the numbers of positive and negative training samples
in 80 × 80 and 60 × 60 tests are all the same with those in the 100 × 100 test. When extracting samples
from the testing area, the number of samples for 80 × 80 and 60 × 60 tests is 1.6 times and 2.9 times of
the number in the 100 × 100 test, respectively.

Figure 10 shows the impact of patch size on the patch-level change maps. Both the precision and
F1-score show a clear decreasing trend when the patch size decreases, even though the recall shows
some fluctuation. This can be explained by the fact that the precision decreases when less contextual
information is contained in the smaller patches.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 17 
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6. Conclusions

We propose a method to detect building changes between airborne laser scanning and
photogrammetric data. This task is challenging owing to the multi-modality of input data and
dense matching errors. The multimodal data are converted to the same scales and fed into a lightweight
pseudo-Siamese CNN for change detection. Our results show that our change map achieves a recall
rate of 86.17%, a precision rate of 68.16%, and an F1-score of 76.13%. Although the point cloud
quality from dense matching is not as good as laser scanning points, the radiometric and textural
information provided by the orthoimages serves as a supplement, which leads to relatively satisfactory
change delineation results. The advantages with the design of our method are as follows: Firstly, the
complicated multimodal change detection problem is transformed into a binary classification problem
which is solved by one CNN, which requires less hyper-parameters and prior knowledge compared
to previous methods (e.g., [11,25]). The PSI-DC model is lightweight but works satisfactorily for the
problem at hand. Secondly, the change detection module based on a pseudo-Siamese CNN can quickly
provide some initial change maps in emergency response.

This paper also compares the proposed PSI-DC model with five other CNN models and one naive
change detection method based on surface differencing. The six CNN models present different input
configurations or network architectures. We conclude that spectral and textural features provided by
orthoimage contribute to the classification performance. Siamese architecture is preferred over the
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feed-forward model when the inputs are in different modalities. However, it should be noted that
a Siamese CNN might contain more parameters and is harder to train.

In future work, the multimodal change detection work can be extended in three aspects. First,
dense image matching takes a lot of effort. It would be more efficient if the aerial images were compared
to the ALS point cloud directly for change detection. Second, fully convolutional networks may also
be considered for per-pixel change detection, since they add more contextual features. It is worthy of
researching end-to-end FCN-based change detection methods without using any post-processing [14].
Finally, end-to-end change detection between multi-epoch 3D point clouds without converting to 2D
raster images may also be feasible, owing to the recent advances in 3D CNNs.
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