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Abstract: The fraction of absorbed photosynthetically active radiation (FAPAR) is generally divided
into the fraction of radiation absorbed by the photosynthetic components (FAPARgreen) and the
fraction of radiation absorbed by the non-photosynthetic components (FAPARwoody) of the vegetation.
However, most global FAPAR datasets do not take account of the woody components when
considering the canopy radiation transfer. The objective of this study was to develop a generic
algorithm for partitioning FAPARcanopy into FAPARgreen and FAPARwoody based on a triple-source
leaf-wood-soil layer (TriLay) approach. The LargE-Scale remote sensing data and image simulation
framework (LESS) model was used to validate the TriLay approach. The results showed that the
TriLay FAPARgreen had higher retrieval accuracy, as well as a significantly lower bias (R2 = 0.937,
Root Mean Square Error (RMSE) = 0.064, and bias = −6.02% for black-sky conditions; R2 = 0.997,
RMSE = 0.025 and bias = −4.04% for white-sky conditions) compared to the traditional linear method
(R2 = 0.979, RMSE = 0.114, and bias = −18.04% for black-sky conditions; R2 = 0.996, RMSE = 0.106 and
bias = −16.93% for white-sky conditions). For FAPAR that did not take account of woody components
(FAPARnoWAI), the corresponding results were R2 = 0.920, RMSE = 0.071, and bias = −7.14% for
black-sky conditions, and R2 = 0.999, RMSE = 0.043, and bias = −6.41% for white-sky conditions.
Finally, the dynamic FAPARgreen, FAPARwoody, FAPARcanopy and FAPARnoWAI products for a North
America region were generated at a resolution of 500 m for every eight days in 2017. A comparison of
the results for FAPARgreen against those for FAPARnoWAI and FAPARcanopy showed that the discrepancy
between FAPARgreen and other FAPAR products for forest vegetation types could not be ignored.
For deciduous needleleaf forest, in particular, the black-sky FAPARgreen was found to contribute
only about 23.86% and 35.75% of FAPARcanopy at the beginning and end of the year (from January to
March and October to December, JFM and OND), and 75.02% at the peak growth stage (from July to
September, JAS); the black-sky FAPARnoWAI was found to be overestimated by 38.30% and 28.46%
during the early (JFM) and late (OND) part of the year, respectively. Therefore, the TriLay approach
performed well in separating FAPARgreen from FAPARcanopy, which is of great importance for a better
understanding of the energy exchange within the canopy.
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1. Introduction

The fraction of absorbed photosynthetically active radiation (FAPAR) is a significant biochemical
and physiological variable used in tracing the exchanges of energy, mass, and momentum, and
is also widely used in many climate, ecological, biogeochemical, agricultural, and hydrology
models [1,2]. FAPAR is, therefore, an important input parameter and widely used in satellite-based
Production Efficiency Models (PEMs) [3–6] to estimate gross primary productivity (GPP) or net primary
production (NPP).

In general, the FAPAR inversion algorithms could be divided into two types: empirical statistical
models based on vegetation indexes and physical methods based on the canopy radiation transfer
model. Although the empirical statistical model based on vegetation indexes is relatively simple,
involves only a few parameters and has high computational efficiency, it is subject to many uncertainties
due to factors such as the atmospheric environment, vegetation type, and quality of remote sensing data.
The physically based methods could be further divided into two categories. The first type is the direct
inversion method, which uses the canopy radiation transfer model to link FAPAR with the canopy
spectra [7–9]. For example, the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm
uses the three-dimensional radiation transmission model to invert FAPAR from the bi-directional
reflectance [10–12]. The Joint Research Centre (JRC) FAPAR algorithm is also based on a physical
model that uses a continuous vegetation canopy model [13] to link land surface reflectance with FAPAR.
However, these methods are mostly based on the radiative transfer model; thus, the inversion process
is complicated for retrieval of FAPAR. The main problem with such methods is that it is difficult to
overcome the uncertainty caused by model coupling and spatial heterogeneity. The second type of
physically based method is the forward modeling method [14–19]. Most models of this type are based
on the gap fraction model, which determines FAPAR according to canopy structure parameters such
as LAI and the clumping index. The disadvantage of this approach is that it relies too much on the
accuracy of the canopy structure parameters. Furthermore, it is difficult to accurately determine the
soil albedo and extinction coefficient, which are also important parameters needed to determine the
contribution of multiple scattering between the soil and canopy to FAPAR [17].

Recently, several global FAPAR products have become available, including the Moderate Resolution
Imaging Spectroradiometer (MODIS) [20,21], Energy Balance Residual (EBR) [15], Multi-angle Imaging
SpectroRadiometer (MISR) [11], CYCLOPES [22], GLOBCARBON [23], Global Land Surface Satellite
(GLASS) [14], the Medium Resolution Imaging Spectrometer (MERIS) [24], Joint Research Center Two
Stream Inversion Package (JRC-TIP) [25], and European Space Agency (ESA) products [26]. These global
FAPAR products have been widely validated, with reported errors varying from 0.08 to 0.23 [14,27–32].
However, most of the global FAPAR products do not consider the effect of non-photosynthetic
components in the radiative transfer process, which introduces errors, especially for forest types.
Moreover, many researchers have used the fraction of radiation absorbed by photosynthetic components
(FAPARgreen) instead of the fraction of radiation absorbed by the canopy (FAPARcanopy) to monitor and
estimate the light use efficiency (LUE), radiation use efficiency (RUE), and productivity at different
temporal scales [33–36].

The forest vegetation ecosystem plays an important role in the global ecosystem. However,
quantifying the temporal variation in FAPARgreen for a forest ecosystem represents an important
challenge for remote sensing and ecology researchers as it is extremely difficult to measure FAPARgreen

at large scales over plant growing seasons directly. Also, previous studies have shown that the
contribution of woody components is relatively large: for instance, Asner et al. [37] found that stems
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increased FAPARcanopy by 10–40%. Therefore, the partitioning of absorbed radiation into photosynthetic
and non-photosynthetic parts is very important for better modeling of vegetation photosynthesis and
energy exchange within the canopy.

Already, some studies have looked at the estimation of FAPARgreen from remote sensing data.
Hall et al. [38] estimated FAPARgreen using a simple linear relationship between FAPARcanopy and
LAIgreen/LAItotal (LAItotal denotes the total leaf area index including green and senescent leaves, while
LAIgreen represents the green leaf area index). However, this simple partitioning is problematic because
the green and woody components within the canopy do not constitute a simple linear mix in terms
of radiation transfer. Zhang et al. [39] first retrieved the biophysical and biochemical variables using
the modified PROSPECT model coupled with the SAIL-2 model (hereafter called PROSAIL-2 model),
and then calculated FAPARgreen and FAPARcanopy using the forward simulation approach. However,
FAPARgreen retrieval using the PROSAIL-2 model is relatively complex and needs several physiological
and biochemical parameters as model inputs. Gitelson et al. [40] also separated FAPARcanopy into
photosynthetically active green components (FAPARgreen) and non-photosynthetic active components
using the ratio LAIgreen/LAItotal for maize and soybeans. The relationship between vegetation indices
and FAPARgreen was also used to retrieve FAPARgreen [41,42]. Nevertheless, to date, the current
FAPARgreen products do not take into account the effect of non-photosynthetic components on canopy
radiative transfer.

In this study, we aim to develop an operational algorithm for partitioning FAPARcanopy into
FAPARgreen and FAPARwoody for forest types. A simple triple-source leaf–wood–soil layer model
(TriLay) that describes the radiation transfer within the canopy-soil system is presented. FAPARcanopy

is first separated into the fraction of PAR absorbed by the canopy for downwelling radiation
(FAPARcanopy↓) and the fraction of PAR absorbed by the canopy for the upwelling radiation reflected
by the soil background (FAPARcanopy↑). Then, FAPARcanopy↓ and FAPARcanopy↑ are further split into
the fraction of radiation absorbed by photosynthetic components (FAPARgreen) and that absorbed
by non-photosynthetic components (FAPARwoody) using the TriLay model. Finally, the FAPARgreen,
FAPARwoody, and FAPARcanopy products are generated using the MODIS albedo (MCD43A3), LAI
(MCD15A2H), land cover (MCD12Q1), clumping index (CI), and soil albedo products based on the
TriLay approach, and the discrepancies between different FAPAR products are used to investigate the
contributions of woody components to the canopy-absorbed radiation. The partitioning of absorbed
radiation into green and woody parts using the TriLay model is done not just to provide FAPARgreen

and FAPARwoody—which is of great importance for better understanding the energy exchange within
the canopy. The consideration of woody components should also improve the accuracy of FAPARgreen

estimates, which is important for better modeling of vegetation photosynthesis.

2. Materials and Methods

2.1. Satellite Datasets

In order to produce FAPARgreen products, several satellite datasets were utilized in this study,
including MODIS LAI products, land cover products, CI products, and soil albedo products from
2017. Data simulated by the LESS model [43] was used to validate the retrieved FAPARgreen products.
A mid-latitude region (tile h10v05, covering 30.00◦ N–40.00◦ N and 80.00◦ W–104.43◦ W) was selected
to investigate the discrepancy between FAPARgreen and other FAPAR products because there were
abundant forest vegetation types within this MODIS tile.

2.1.1. MODIS LAI/FAPAR Products (MCD15A2H)

MCD15A2H V006 is a MODIS eight-day composite LAI/FAPAR product that includes FAPAR,
LAI, and quality control (QC) data with a resolution of 500 m [44]. The main retrieval algorithm for
LAI and FAPAR contains a Look-up-Table (LUT) based on a 3D radiation transfer model [21] that
uses the atmospherically corrected Red and near-infrared (NIR) Bidirectional Reflectance Function
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(BRF) [45]. A back-up algorithm based on the empirical relationships between the Normalized
Difference Vegetation Index (NDVI) and LAI and FAPAR at the canopy scale is used at the same time.
Also, for the biome types and typical conditions that are considered, observed, and modeled spectral
BRFs and soil patterns are compared for each pixel. The LAI and FAPAR values that lie within a fixed
level of uncertainty are then taken to be acceptable. Finally, averaged values of LAI and FAPAR are
used as the eventually retrieved values [20].

2.1.2. MODIS Land Cover Product (MCD12Q1)

The MODIS Land Cover Type Product (MCD12Q1) provides land cover maps with a temporal
resolution of one year and a spatial resolution of 500m at a global scale from 2001 until the present;
it includes several classification schemes (International Geosphere-Biosphere Programme (IGBP),
University of Maryland (UMD), LAI, BIOME-Biogeochemical Cycles (DBC), Plant Functional Types
(PFT), FAO-Land Cover Classification System land cover (LCCS1), etc.). The main algorithm used in
MCD12Q1 is a supervised classification method (decision tree) combined with a boosting technique [20]
based on MODIS reflectance data [46,47]. The International Geosphere-Biosphere Program (IGBP)
classification scheme, which defines 17 land cover types, was used in this study.

2.1.3. Global Clumping Index (CI) Product

The clumping index (CI) signifies the characteristics of groups of foliage in the canopy, and thus,
it is a significant parameter describing the structure of the vegetation canopy [48]. According to
Jiao et al. [49], a method based on the MODIS Bidirectional Reflectance Distribution Function (BRDF)
and a linear relationship between the CI and the normalized difference between the angular indexes of
the hotspot and dark spot (NDHD) could be utilized to generate CIs within a valid range (0.33 to 1.00);
a back-up algorithm is also used to substitute values for the invalid CIs [49]. A global CI dataset with
an eight-day temporal resolution and 500 m spatial resolution covering the period from 2002 to the
present has been produced by Jiao et al. [49].

2.1.4. Global Soil Albedo Product

A non-linear spectral mixture model (NSM) model proposed by Liu & Zhang (2018) [15,50] was
used to retrieve the global visible (VIS) soil albedo. The main idea in the NSM model is the dual-source
vegetation–soil layer approach. In this approach, it is assumed that the leaves are located in the upper
canopy, while the soil components are found in the lower canopy. Based on this assumption, the
canopy albedo can be approximated as a non-linear mixture of the “pure” vegetation and soil parts [15].
For pixels with abnormal values (smaller than 0.02 or greater than 0.3), prior values acquired by a
global database of land surface parameters at 1 km resolution (ECOCLIMAP) [51,52] and the yearly
composite value were used instead. Finally, the estimated global VIS soil albedo based on the NSM
model is obtained, having a spatial resolution of 500 m and a temporal resolution of eight days.

2.2. Data Simulated by the LESS Model

To quantitatively evaluate the performance of the proposed TriLay approach for estimating
FAPARgreen, the LargE-Scale remote sensing data and image simulation (LESS) framework model [43]
was employed to generate a simulated dataset that covered most of the conditions found in forests.
LESS is a ray-tracing based 3D radiative transfer model which can simulate remote sensing data
and images over large-scale and realistic 3D scenes (http://lessrt.org/). LESS employs a weighted
forward photon tracing (FPT) method to simulate multispectral bidirectional reflectance factor (BRF) or
flux-related data (e.g., downwelling radiation) and a backward path tracing (BPT) method to generate
sensor images (e.g., fisheye images) or large-scale (e.g., 1 km2) spectral images. The accuracy of LESS is
evaluated with other models as well as field measurements in terms of directional BRFs and pixel-wise
simulated image comparisons, which shows very good agreement [43,53].

http://lessrt.org/
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The modeling area is located in the Genhe Forestry Reserve (Genhe) (120◦12′ to 122◦55′ E, 50◦20′

to 52◦30′ N), Greater Khingan of Inner Mongolia, Northeastern China. It has a hilly terrain with 75%
forest cover, which is mainly composed of Dahurian Larch (Larix gmelinii) and White Birch (Betula
platyphylla Suk.). A pure plot of Dahurian Larch (L9) is established and is selected for modeling, with
its location in Figure 1. The position, crown width, breast diameter, tree height, and transmittance for
trees were entered into the LESS model. A total of eight scenes were constructed, with each individual
tree in a scene consisting of branches and leaves. The branches and size of the woody area were kept
the same in all the scenes, but the leaf area was changed to produce scenes with different values of
the LAI. For each scene, different FAPAR values (including FAPARcanopy, FAPARgreen and FAPARwoody)
were calculated under black-sky (the ratio of diffuse light is zero, and nine different solar zenith angles
of 0◦–80◦ at 10◦ intervals were set) and white-sky conditions (the ratio of diffuse light is 1). The main
input parameters used in the LargE-Scale remote sensing data and image simulation (LESS) model
are listed as Table 1. Finally, a total of 72 black-sky simulations and eight white-sky simulations were
achieved for the different conditions giving.

Figure 1. Locations of the selected Larch plots (L9) in Genhe Forestry Reserve.

Table 1. The main input parameters used in the LargE-Scale remote sensing data and image simulation
(LESS) model simulations.

Parameter Definition Units Range or Values

Canopy
LAI leaf area index m2/m2 1.31–8.69
WAI woody area index m2/m2 1.65

Leaf layer
Reflectance — 0.041–0.205

Transmittance — 0.001–0.286
Soil layer

Reflectance — 0.001–0.134
Woody layer

Reflectance — 0.069–0.237
Imaging Geometry

SZA sun zenith angle degrees 0, 10, 20, 30, 40, 50, 60, 70, 80
RatioSky ratio of diffuse light — 0, 1
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2.3. Algorithms for Estimating Global FAPARgreen and FAPARwoody Datasets

To split the fraction of radiation absorbed by photosynthetic components (FAPARgreen) from
FAPARcanopy, a novel triple-source leaf–wood–soil layer model was proposed for generating global
FAPARgreen products for forest vegetation types. Figure 2 is a flowchart of the process used to retrieve
global FAPARgreen products.

First, FAPARcanopy is split into two parts: the fraction of PAR absorbed by the canopy for the
downwelling radiation (FAPARcanopy↓) and that absorbed by the canopy for the upwelling radiation
reflected by the soil background (FAPARcanopy↑). Then, FAPARcanopy↓ and FAPARcanopy↑ are further
split into the fraction of radiation absorbed by photosynthetic components (FAPARgreen) and that
absorbed by non-photosynthetic components (e.g., branches and stems, hereafter called FAPARwoody).
Finally, FAPARgreen and FAPARwoody can be calculated separately using the TriLay approach.

Figure 2. Flowchart illustrating the Triple-source leaf–wood–soil layer (TriLay) method for estimating
the fraction of radiation absorbed by photosynthetic components (FAPARgreen) and the fraction of
radiation absorbed by woody components (FAPARwoody).

2.3.1. The Triple-Source Leaf–Wood–Soil Layer Model

A triple-source leaf–wood–soil layer model (TriLay) was developed to model the radiation transfer
within the vegetation–soil system—this model is illustrated as Figure 3.
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Figure 3. Illustration of the triple-source leaf–wood–soil layer model.

In this study, we used the layer approach to illustrate the distribution of leaves and soil in the
whole canopy, which is consistent with the approach used in our previous study [15]. The layer
approach assumes that the canopy consists only of green components and woody components and
that all leaves are found above the canopy. The NSM model [15] was then used to simulate the
canopy albedo.

The fraction of PAR absorbed by the canopy, FAPARcanopy, can be separated into the fraction of
PAR absorbed by the canopy for the downwelling radiation (FAPARcanopy↓) and that for the upwelling
radiation reflected from the soil background (FAPARcanopy↑):

FAPARcanopy = FAPARcanopy↓ + FAPARcanopy↑ (1)

where FAPARcanopy↓ describes the fraction of downwelling radiation absorbed within the canopy
assuming the soil background is dark, and FAPARcanopy↑ describes the fraction of upwelling radiation
absorbed within the canopy due to the interaction between the ground (soil and understory) and the
canopy. A point worth emphasizing is that, assuming a black soil background, the FAPARcanopy↓ is
equal to the FAPARcanopy.

Therefore, FAPARcanopy↓ can be given by:

FAPARcanopy = (1− τPAI) ∗ (1−Albedopure ∗ FVC) (2)

where τPAI is the transmittance of the whole canopy, which contains green and woody parts, FVC is
the fraction of vegetation cover, and Albedopure is the visible (VIS) albedo for pure vegetation, which
is represented by the VIS albedo for vegetation with a “saturated” LAI value (e.g., LAI ≥ 6) [14].
According to the statistical results by Liu et al. [15], Albedopure was set to 0.025 (for white-sky conditions)
and 0.020 (for black-sky conditions) for all woody vegetation types (including evergreen needleleaf
forest, evergreen broadleaf forest, deciduous needleleaf forest, and deciduous broadleaf forest).

τPAI can be calculated as the product of τLAI and τWAI, and the directional transmittance can be
determined using the gap fraction model [16,53,54]:

τPAI = τLAI × τWAI (3)

τLAI = e−k1×G(θ)×CI×LAI/ cos (θ) (4)

τWAI = e−k2×G(θ)×CI×WAI/ cos (θ) (5)

where LAI and WAI are the leaf area index and woody area index, respectively, k1 and k2 are extinction
coefficients for the green components and woody components, respectively, and θ is the solar zenith
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angle. k1 can be determined using the leaf absorptance in the VIS band and was set to 0.88 based on
simulations made using the PROSPECT-5 model and also the Leaf optical properties experiment 93
(LOPEX’93) and Leaf Optical Properties Database (an experiment conducted at the National Institute
for Agricultural Research in Angers, France in June 2003) [55–57]. The woody components were
assumed to be opaque with a constant extinction coefficient (k2) of 0.91 based on the simulated LESS
data. G(θ) is the projection of the unit foliage area on the plane perpendicular to the solar incident
direction, θ. For green leaves, G(θ) is normally given a value of 0.5 for canopies with a spherical
leaf angle distribution. For woody components, we assuming the woody components have the same
angular distribution as green leaves, which also assumed by Chen et al. [58], Kucharik et al. [59], and
Sea et al. [60]. CI is the clumping index; we also assume the same CI values for both green leaves and
woody components based on the findings of Chen et al. [61] and Zou et al. [62].

The gap fraction model is also used to calculate FVC for a fixed solar zenith angle of 0◦ and a
fixed value of 1 for the leaf extinction coefficient:

FVC = 1− e−G(θ)×LAI×CI (6)

Similarly, FAPARcanopy↑ can be calculated as follows:

FAPARcanopy↑ = (1− τPAI) ∗ (1−Albedopure∗FVC) ∗ τws
PAI ∗Albedosoil (7)

where Albedosoil is the soil visible albedo, which can be generated by the NSM model proposed by
Liu et al. [15]. τws

PAI is the canopy transmittance under white-sky conditions, which can be calculated as
the product of the white-sky transmittance of leaves (τws

LAI) and the white-sky transmittance of woody
components (τws

WAI):

τws
LAI = 2×

∫ π
2

0

(
e−k1×G(θ)×LAI×CI/ cos (θ)

)
× sin(θ) × cos(θ)dθ (8)

τws
WAI = 2×

∫ π
2

0

(
e−k2×G(θ)×WAI×CI/ cos (θ)

)
× sin(θ) × cos(θ)dθ (9)

τws
PAI = τws

LAI × τ
ws
WAI (10)

2.3.2. Determination of Woody Area Index

In general, it is expensive and time-consuming to make accurate estimates of the woody area
index (WAI), and destructive sampling is often the only option available for the quantification of the
WAI in tropical evergreen forests [63]. Therefore, for generating global FAPARgreen datasets, the use of
accurate estimates of WAI is unrealistic. Hence, in this study, we aimed to determine the global WAI
using MCD15A2H LAI data and assumed that the WAI was constant within a given year.

First, we assumed that the woody-to-total area ratio is measured during the peak growth stage
(July–August–September, JAS) when the LAI has its maximum value for the year. The woody-to-
total area ratio was determined according to the forest types listed in the MODIS land cover product
(MCD12Q1), including evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous
broadleaf forest (DBF), deciduous needleleaf forest (DNF) and mixed forest (MF). Therefore, WAI
values for different forest vegetation types were calculated using a simple linear relationship between
the plant area index (PAI) and the WAI:

WAI = PAI × ratiowoody = LAImax
1−ratiowoody

× ratiowoody (11)

where ratiowoody is the mean value of the woody-to-total area ratio for various forest types, as given in
the literature [58,64,65]. LAImax is the maximum value of LAI within a given year; this was acquired
from MCD15A2H LAI products.
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2.3.3. Separating FAPARgreen and FAPARwoody from FAPARcanopy

In a similar way to Equation (1), the fraction of PAR absorbed by the green and woody components
can also be separated into the fraction of PAR absorbed by the canopy for the downwelling radiation
and that for the upwelling radiation reflected from the soil background. Firstly FAPARcanopy↓ is split
into FAPARgreen↓ and FAPARwoody↓:

FAPARcanopy↓ = FAPARgreen↓ + FAPARwoody↓ (12)

where FAPARgreen↓ and FAPARwoody↓ can be obtained as

FAPARgreen↓ = FAPARcanopy↓ × ratiogreen ×w1↓ (13)

FAPARwoody↓ = FAPARcanopy↓ × ratiowoody ×w2↓ (14)

where ratiogreen and ratiowoody are the ratio of leaf area index to plant area index and woody area
index to plant area index, respectively. w1↓ and w2↓ are the weighting coefficients for the green
(i.e., photosynthetic) and woody components in terms of the radiation transfer within the canopy. The
terms involved in equations (10) and (11) can be given as:

ratiogreen = LAI
PAI (15)

ratiowoody = WAI
PAI (16)

w2↓ = w1↓ × τLAI (17)

w1↓ × ratiogreen + w2↓ × ratiowoody = 1 (18)

FAPARgreen↓ and FAPARwoody↓ can then be obtained by solving equations (13)–(18):

FAPARgreen↓ =
ratiogreen×FAPARcanopy↓

ratiogreen+τLAI×ratiowoody
(19)

FAPARwoody↓ =
ratiowoody×FAPARcanopy↓×τLAI

ratiogreen+τLAI×ratiowoody
(20)

Similarly, FAPARgreen↑ and FAPARwoody↑ can also be acquired:

FAPARgreen↑ =
ratiogreen×FAPARcanopy↑×τWAI

ratiowoody+τWAI×ratiogreen
(21)

FAPARwoody↑ =
ratiowoody×FAPARcanopy↑

ratiowoody+τWAI×ratiogreen
(22)

Finally, FAPARgreen and FAPARwoody can be calculated as:

FAPARgreen = FAPARgreen↑ + FAPARgreen↓ (23)

FAPARwoody = FAPARwoody↑ + FAPARwoody↓ (24)

3. Results

3.1. Validation of the TriLay Method using Simulations made by the LESS Model

It is too challenging to obtain in-situ measurements of FAPARgreen for forests, and so the simulated
dataset (Table 1) derived using the LESS model was used for the validation of the TriLay model.
Seventy-two black-sky simulations of FAPARcanopy, FAPARgreen, and FAPARwoody together with eight
white-sky simulations were available for validation.
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Figure 4 illustrates the validation results for FAPARcanopy, FAPARgreen, and FAPARwoody. The
estimated and simulated FAPAR values are distributed close to the 1:1 line. Also, it can be seen
that the TriLay approach can produce accurate estimates of FAPARcanopy, giving Root Mean Square
Error (RMSEs) of 0.048 and 0.024 for black-sky and white-sky conditions, respectively, as against the
LESS-simulated values. The corresponding R2 values are 0.945 and 0.999. For FAPARgreen, the validation
results give RMSEs of 0.064 and 0.025, respectively, for black-sky and white-sky FAPAR. Finally, it can
be seen that FAPARwoody can also be accurately estimated: the RMSE and R2 values are 0.042 and 0.709,
respectively, for black-sky conditions, and 0.014 and 0.992 for white-sky conditions. These results show
that the TriLay approach can be used to accurately estimate FAPARcanopy, FAPARgreen, and FAPARwoody
for forest land cover types.

Furthermore, as illustrated in Figure 4b, there is a slight underestimation for FAPARgreen at smaller
SZAs (0◦–60◦) and a slight overestimation for larger SZAs (70◦–80◦). From Figure 4c, it can be seen
that FAPARwoody is also slightly underestimated at smaller SZAs (0◦–40◦) and overestimated at larger
angles (50◦–80◦).

Figure 4. Validation of FAPARcanopy, FAPARgreen and FAPARwoody estimates made by the Trilay
model against the LargE-Scale remote sensing data and image simulation (LESS)—simulated FAPARs:
(a–c) black-sky FAPARcanopy, FAPARgreen, and FAPARwoody; (d–f) white-sky FAPARcanopy, FAPARgreen,
and FAPARwoody.

3.2. Comparison of Different Methods using the LESS Simulations

Hall et al. [38] estimated FAPARgreen based on a simple linear relationship between FAPARcanopy

and FAPARgreen. They used the ratio LAIgreen/LAItotal to determine FAPARgreen:

FAPARgreen = FAPARcanopy ×
LAIgreen
total LAI

(25)

where total LAI is the PAI mentioned above. In order to test the accuracy of the linear mixture method, we
also validated the FAPARgreen estimated by the linear mixture method [38] using LESS-simulated data.

Figure 5 shows the accuracy assessment results for the linear mixture method. The results show a
noticeable underestimation for FAPARgreen and a huge overestimation for FAPARwoody. Although the
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FAPARs retrieved using the linear mixture method are highly correlated with the LESS simulation,
with R2 values of 0.979, 0.996 for FAPARgreen, and 0.934, 0.985 for FAPARwoody under black-sky and
white-sky conditions, the corresponding RMSE values are much higher than those found using our
TriLay approach—0.114, 0.106 for FAPARgreen as against 0.064, 0.025, and 0.113, 0.106 for FAPARwoody
as against 0.042, 0.014 under the black-sky and white-sky conditions, respectively.

Figure 5. Validation of FAPARgreen and FAPARwoody estimated by the linear method using
the LESS-simulated values of FAPAR: (a–b) black-sky FAPARgreen and FAPARwoody against the
LESS-simulated FAPARgreen; (c–d) white-sky FAPARgreen and FAPARwoody against the LESS-simulated
FAPARwoody.

The FAPAR values derived without considering the woody components (FAPARnoWAI) were also
validated using the LESS simulations; the results are shown in Figure 6. These results give an RMSE of
0.071 and R2 of 0.920 for the black-sky conditions and the corresponding values of 0.043 and 0.999 for
the white-sky conditions. Although the R2 values are higher, the RMSEs are still greater than those
found using the TriLay approach.

Figure 6. Validation of FAPARnoWAI using the LESS-simulated FAPAR values: (a) black-sky and
(b) white-sky FAPARnoWAI against the LESS-simulated FAPARgreen.
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In order to further compare the performances of different methods, we also calculated the bias
for FAPARgreen, FAPARwoody, and FAPARnoWAI using the LESS-simulated FAPAR values. Table 2
summarizes the retrieval accuracy for these three methods. The results show that the TriLay method
gave the best FAPAR retrieval results, having the smallest bias and RMSE values (RMSE = 0.064 and 0.025,
and bias = −6.02%, −4.04% for FAPARgreen under black-sky and white-sky conditions, respectively).

Table 2. Retrieval accuracy of FAPARgreen, FAPARwoody, and FAPARnoWAI validated using the
LESS simulations.

(a) For FAPARgreen Products

FAPARgreen
TriLay Linear noWAI

Black-Sky White-Sky Black-Sky White-Sky Black-Sky White-Sky

R2 0.937 0.997 0.979 0.996 0.920 0.999
RMSE 0.064 0.025 0.114 0.106 0.071 0.043
Bias −6.02% −4.04% −18.04% −16.93% −7.14% −6.41%

(b) For FAPARwoody products

FAPARwoody
TriLay Linear

Black-Sky White-Sky Black-Sky White-Sky

R2 0.709 0.992 0.934 0.985
RMSE 0.042 0.014 0.113 0.106
Bias 6.87% −4.64% 153.84% 123.47%

3.3. Temporal Variations in Different FAPAR Products

Using the TriLay approach, black-sky and white-sky products, including FAPARgreen, FAPARwoody,
and FAPARcanopy, and also FAPAR without woody components (FAPARnoWAI), were generated for tile
h10v05 in 2017. The black-sky FAPAR products were determined according to the SZA values at 10:30
am local time (the overpass time of the Terra satellite).

To investigate the seasonal variations in FAPARgreen and the other FAPAR products, only the
mean black-sky FAPAR values were calculated for the different forest vegetation types, as shown
in Figure 7. The proportion of black-sky FAPARgreen in FAPARcanopy and FAPARnoWAI, and also the
bias between the black-sky FAPARgreen, FAPARcanopy, and FAPARnoWAI were calculated for different
periods during 2017 in order to analyze the differences between different black-sky FAPAR products,
as well as to quantify the contribution of the woody components for several forest vegetation types
(deciduous broadleaf forest, deciduous needleleaf forest, evergreen broadleaf forest, and evergreen
needleleaf forest, referred to as DBF, DNF, EBF, and ENF, respectively). The results are illustrated in
Figure 8 and Table 3.

In general, the black-sky FAPARgreen and FAPARnoWAI exhibit typical seasonal variations for the
selected forest types, with low values during the early and late period (January–February–March
(JFM) and October–November–December (OND)) and high values during the peak growth stage
(July–August–September (JAS)). The black-sky FAPARcanopy is obviously higher than the black-sky
FAPARgreen during the whole year and has a much smaller seasonal variation. The black-sky
FAPARwoody behaves in the opposite way; for deciduous seasons (JFM and OND), FAPARwoody is close
to or higher than its value during the peak growth stage (JAS) because the black-sky FAPAR increases
with increasing SZA value. (The mean SZA at 10:30 am varies from 22.98◦ (22 December) to 62.25◦

(22 June) within tile h10v05.)
The black-sky FAPARgreen is about 52.59% and 60.60% of the black-sky FAPARcanopy for deciduous

broadleaf forest during JFM and OND, respectively; the corresponding figures for deciduous needleleaf
forest are only about 23.86% and 35.75%. During the peak growth stage (JAS), the black-sky FAPARgreen

is about 93.36%, 75.02%, 90.93% and 87.14% of FAPARcanopy for DBF, DNF, EBF, and ENF, respectively.
There are also small discrepancies between FAPARnoWAI and FAPARgreen (Figure 8). In particular,

for deciduous needleleaf forests, the black-sky FAPARnoWAI is overestimated by 38.30% and 28.46%
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during the early and late stages of the year (JFM and OND). For evergreen forests, the difference can be
neglected as there is only a very slight underestimation of 0.68% to 2.39% during the whole year.

Figure 7. Temporal variations in the mean black-sky FAPARgreen, FAPARnoWAI, FAPARcanopy, and
FAPARwoody products for forest vegetation types within tile h10v05 during 2017 (tile h10v05 is located
in North America, covering 30.00◦ N–40.00◦ N and 80.00◦ W–104.4◦ W).

Figure 8. Bias between the black-sky FAPARgreen and other black-sky FAPAR products within tile
h10v05 during different periods in 2017: (a) bias between FAPARgreen and FAPARnoWAI; (b) bias
between FAPARgreen and FAPARcanopy. JFM, AMJ, JAS, and OND represent the four seasons January
to March, April to June, July to September and October to December, respectively.
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Table 3. The ratios of black-sky FAPARgreen to black-sky FAPARcanopy (Rcanopy) and to FAPARnoWAI

(RnoWAI) for selected forest types for different periods of 2017.

Period of Year
DBF DNF EBF ENF

Rcanopy RnoWAI Rcanopy RnoWAI Rcanopy RnoWAI Rcanopy RnoWAI
(%) (%) (%) (%)

JFM 52.59 93.14 23.86 73.90 82.94 101.01 74.55 100.72
AMJ 90.74 101.93 64.13 96.32 91.03 102.27 86.85 102.46
JAS 93.36 102.24 75.02 99.19 90.93 102.19 87.14 102.46

OND 60.60 95.50 35.75 81.65 84.54 101.20 78.00 101.19

JFM, AMJ, JAS, and OND represent the four seasons January to March, April to June, July to September and October
to December, respectively.

4. Discussion

4.1. Uncertainty in Determining WAI

Currently, methods for measuring the woody area index (WAI) and woody-to-total area ratio can
be classified into direct methods (e.g., destructive sampling) and indirect methods [66]. However, both
the direct and indirect methods can only be applied at small scales and to a limited range of vegetation
types. In this study, we used a constant value of the woody-to-total area ratio for each forest type and
derived the WAI from the PAI value for the peak growth stage. We obtained woody-to-total area ratios
for different forest types (ENF, EBF, DBF, and DNF) from an extensive literature review [58,64–67]—the
statistical metrics, including the mean, standard deviation, and coefficient of variation, are shown in
Table 4. These results show that the woody-to-total area ratios for different forest types vary from
0.158 to 0.3. The variation in this ratio within each of the forest types is also large—10.00% to 82.22%.
Therefore, the woody-to-total area ratio not only varies with the forest type but also changes a lot for
each individual forest type. This means that there is definitely some uncertainty due to these factors.
Even so, Zou et al. [66] showed that the woody-to-total area ratio is relatively stable for the same forest
stand and thus the assumption of a fixed woody-to-total area ratio for each forest type is reasonable.
Differences in in situ measurement methods can also contribute to the variation in the ratio for a given
forest type. The retrieval of FAPARgreen can thus be improved if an accurate woody-to-total area ratio
dataset is available.

Table 4. Statistical details of prior woody-to-total area ratios.

Forest Vegetation Type ENF EBF DNF DBF

number of samples 35 8 3 4

mean value 0.185 0.18 0.3 0.158

standard deviation 0.062 0.148 0.03 0.101

coefficient of variation 33.51% 82.22% 10.00% 63.92%

4.2. Uncertainty Caused by the Use of Fixed Values of the Extinction Coefficients and Albedopure

The canopy directional transmittance can be determined using the gap fraction model [16,53,54].
Splitting the canopy into green components and woody components requires that the transmittances
are also calculated separately. For the green components, the leaf absorptance at the VIS band varies
from 0.79 to 0.94 as the chlorophyll content varies (from 20 to 100 µg/cm2 under natural conditions),
according to figures obtained using the PROSPECT-5 model [56,57]. Also, because no remote sensing
leaf chlorophyll content product is available, the extinction coefficient for leaves (k1) was assumed to
have a fixed value of 0.88 (corresponding to a chlorophyll content of 35 µg/cm2 [15]). For the extinction
coefficient of woody components (k2), we also used a fixed value of 0.91, based on the data simulated
by LESS (a needleleaf forest scene). However, Suwa et al. [68] reported a smaller extinction coefficient
of 0.77 for brighter woody stems. Therefore, the extinction coefficient of woody components may vary
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with forest type, and thus the use of a fixed value for k2 is also a source of error. At present, it is still
very challenging to determine extinction coefficients for different forest canopy types.

In addition, a fixed value of Albedopure was used in the TriLay model for woody vegetation types
(i.e., ENF, EBF, DBF, and DNF), and was approximated based on the dense vegetation [15]. According
to the statistical results obtained from the MCD43A3 albedo product by Liu et al. [15], the visible
albedo of dense vegetation with a “saturated” LAI value (e.g., LAI = 6) is very low and stable, with a
mean value of 0.025 and a variance of 0.007 for white-sky condition, and a mean value of 0.020 and a
variance of 0.006 for black-sky conditions. Therefore, the use of the prior VIS albedo values for “pure”
vegetation may introduce a very small error, but it should be negligible [14].

4.3. Setting the Clumping Index for Photosynthetic and Woody Components

The clumping index characterizes the grouping of foliage within distinct canopy structures
(such as tree crowns, shrubs, and row crops) relative to a random spatial distribution of leaves and is
an important structural parameter for plant canopies that can influence canopy radiation regimes [49].
In our TriLay approach, the clumping index for woody components was assumed to be the same as for
green leaves, and so is another definite source of error [69]. However, it is currently challenging to obtain
the clumping effects of woody components within forest canopies [62]. Furthermore, Chen et al. [61]
indicated that the clumping of shoots in branches has a similar effect to the clumping of leaves within
shoots. What’s more, Zou et al. [62] found that the differences between the estimated CI for canopy
and woody components was below 6% at the zenithal ranges of 0◦–75◦, and the difference was only 2%
in the range of 30◦–60◦, which is quite small at most medium zenithal ranges thus can represent most
actual conditions. Based on these results and the unavailability of CI datasets for forest canopies at
large scales, we directly used the value of CI from Jiao et al. [49] to describe the clumping effect for
both leaves and woody components. Therefore, the use of the same clumping index for both leaves
and woody components is reasonable and credibe enough.

5. Conclusions

In this paper, a triple-source leaf–wood–soil layer (TriLay) method for separating FAPARgreen

and FAPARwoody from FAPARcanopy using the MODIS LAI, land cover, and non-linear spectral mixture
model (NSM)-retrieved soil albedo [15] together with global CI products [49] was proposed.

According to the validation carried out using LESS-simulated FAPAR values, the TriLay FAPARgreen

was more accurate (R2 = 0.937, RMSE = 0.064 and bias = −6.02% for black-sky conditions; R2 = 0.997,
RMSE = 0.025 and bias =−4.04% for white-sky conditions) than the traditional linear method (R2 = 0.979,
RMSE = 0.114 and bias =−18.04% for black-sky conditions; R2 = 0.996, RMSE = 0.106 and bias =−16.93%
for white-sky conditions), and also more accurate than FAPAR obtained without the consideration
of woody components (FAPARnoWAI) (R2 = 0.920, RMSE = 0.071 and bias = −7.14% for black-sky
conditions; R2 = 0.999, RMSE = 0.043 and bias = −6.41% for white-sky conditions). A comparison of the
results for black-sky FAPARgreen against FAPARnoWAI and FAPARcanopy showed that the discrepancies
between the black-sky FAPARgreen and other FAPAR products could not be ignored for forest types. In
particular, for deciduous needleleaf forest, the black-sky FAPARgreen contributed only about 23.86%
and 35.75% of FAPARcanopy during the early and late stages (JFM and OND) of the year, respectively,
and 75.02% during the peak growth stage (JAS). There were also smaller discrepancies between the
black-sky FAPARnoWAI and FAPARgreen. For deciduous needleleaf forests, in particular, the black-sky
FAPARnoWAI was overestimated by 38.30% and 28.46%, respectively, during the early and late stages
of the year (JFM and OND).

Overall, this study provides a new method for partitioning FAPARcanopy into FAPARgreen and
FAPARwoody for forest types and will improve the understanding of energy exchange within the canopy.
In addition, the exclusion of the contribution of woody components may certainly improve the accuracy
of the FAPARgreen estimates for forest types, which is significant in terms of the better modeling of
vegetation photosynthesis.
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