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Abstract: A hyperspectral image usually covers a large scale of ground scene, which contains
various materials with different spectral properties. When directly exploring the background
information using all the image pixels, complex spectral interactions and inter-/intra-difference
of different samples will significantly reduce the accuracy of background evaluation and further
affect the detection performance. To address this problem, this paper proposes a novel hyperspectral
anomaly detection method based on separability-aware sample cascade model. Through identifying
separability of hyperspectral pixels, background samples are sifted out layer-by-layer according to their
separable degrees from anomalies, which can ensure the accuracy and distinctiveness of background
representation. First, as spatial structure is beneficial for recognizing target, a new spectral–spatial
feature extraction technique is used in this work based on the PCA technique and edge-preserving
filtering. Second, depending on different separability computed by sparse representation, samples are
separated into different sets which can effectively and completely reflect various characteristics of
background across all the cascade layers. Meanwhile, some potential abnormal targets are removed
at each selection step to avoid their effects on subsequent layers. Finally, comprehensively taking
different good properties of all the separability-aware layers into consideration, a simple multilayer
anomaly detection strategy is adopted to obtain the final detection map. Extensive experimental
results on five real-world hyperspectral images demonstrate our method’s superior performance.
Compared with seven representative anomaly detection methods, our method improves the average
detection accuracy with great advantages.

Keywords: anomaly detection; hyperspectral image; sparse representation; sample selection;
separability-aware; feature extraction

1. Introduction

A hyperspectral image is a data cube that simultaneously conveys rich spatial information and
spectral information [1,2]. It can collect a wide range of electromagnetic spectrum nearly from
visible to long-wavelength infrared. These spectra are represented by hundreds of continuous
bands that can meticulously describe the characteristics of different materials to recognize their
subtle differences [3]. Therefore, owing to this good discriminative property of hyperspectral
image, it has been widely used in many remote sensing research fields [4,5], such as image
denoising [6,7], hyperspectral unmixing [8,9], band selection [10,11], target detection [12,13],
and image classification [14,15]. They all have important practical applications in geological
exploration, urban remote sensing and planning management, environment and disaster monitoring,
precision agriculture, archaeology, etc.

Due to its property of knowing nothing about the hyperspectral image scene, anomaly detection,
as one special research problem of target detection, has attracted lots of attention in remote sensing
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field [16]. It aims at detecting the abnormal pixel whose spectrum has significant deviation from that
of the given reference background. As it does not need any prior knowledge of both the target and the
background, anomaly detection fits well with requirements of practical application because there is
usually not a lot of information for unknown geographic scene. Consequently, it can be successfully
used in a lot of practical applications [17–20], such as intelligent defense, food safety, medicine and
health, forest fire protection, etc. Hyperspectral anomaly detection has played a crucial role in both
military and civilian areas.

Over the past decades, a large number of anomaly detection methods for hyperspectral images
have been proposed [21–25]. They can be roughly divided into two categories, i.e., distribution
hypothesis-based methods and geometric model-based methods, which will be introduced in detail
as follows. For the first category, the well-known Reed-Xiaoli (RX) [26] method is the most typical
algorithm. It assumes that the background obeys the multivariate normal distribution. Therefore,
Mahalanobis distance is adopted to compute the difference between one abnormal pixel and its
surrounding background. Although RX is the most traditional method regarded as the benchmark, it still
suffers from some important problems causing unsatisfactory detection performance when analyzing
real-world images [27]. The small sample size is a tough problem of RX, which generates a badly
conditioned matrix computation resulting in unstable results. In addition, unavoidable contamination
of some potential abnormal targets embedding in the background will reduce the detection performance
as well. Nevertheless, the intrinsic problem is the simple Gaussian distribution cannot accurately model
the real hyperspectral image because of complex characteristics of the covered materials.

Many methods have been proposed aiming at improving the performance of RX through
making some revisions to RX from different views. Instead of computing the covariance matrix using
the reference background delineated by a local sliding window for local RX (LRX), the global RX
(GRX) can directly use the whole image as background to evaluate its statistics. The regularized-RX
(RRX) [28] method takes use of a scaled identity matrix to well adjust the property of estimated
covariance matrix in order to address the effect of small sample size. There are also many methods that
improve the performance through purifying background. For example, the random-selection-based
anomaly detector (RSAD) [29] designs a sample random selection process to iteratively pick out some
representative background pixels. Through carrying out this selection process for sufficient times,
a better and purer background set can be obtained. The traditional blocked adaptive computationally
efficient outlier nominator (BACON) [30] is also a robust method to the effects of anomalies. It starts
from a basic subset that is affine equivariant and then continuously updates the basic set to construct
the final basic subset to realize anomalies’ recognition. The kernel technique-based methods intend to
improve the discrimination between background spectra and target information by mapping the original
hyperspectral image into a feature space with high dimension. For example, kernel-RX (KRX) [31],
a nonlinear version of RX, maps the linear non-Gaussian distribution data into nonlinear Gaussian that
proves to be more accurate for anomaly detection. To improve the accuracy of background description,
the cluster-based anomaly detector (CBAD) [32] is proposed, which adopts a clustering technique to
segment the whole image into different clusters and, further, makes the hypothesis about each cluster
obeying multivariate normal distribution. However, although these methods show their ability to
improve the performance of RX, the intrinsic assumption still limits its performance.

As for the second category, geometric model-based methods commonly consider that there exist
some representative spectra or dictionary bases to well characterize the background information. As one
of the most important data representation types, sparse representation has been successfully applied in
hyperspectral anomaly detection [33–39]. According to this philosophy, many methods have emerged
in recent years. Yuan et al. [39] propose a local sparsity divergence method which simultaneously
takes use of spectral and spatial divergence to analyze anomalies from the local reference background
defined by a sliding window. Li et al. [36] propose constructing a collaborative representation-based
detector (CRD), assuming that the background pixel can be approximately linearly represented by its
surroundings, which is also a sparse representation-based detector (SRD). It further adopts a similarity
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matrix to regularize the collaborative representation in order to suppress the effects of anomalies.
To obtain a more accurate description of background, a background joint sparse representation
model [37] is designed to pick out the most active dictionary bases with the good ability to represent
background. Taking sparse coefficient matrix having capabilities to reflect the atom usage frequency
into consideration, a sparsity score estimation framework [40] is proposed to compute abnormal
degree through combining the coefficient vector and atom usage probability. Ling et al. [41] propose
a constrained sparse representation model which introduces both the sum-to-one and non-negativity
constraints to satisfy physical meaning and simultaneously remove the constraint on the upper bound
of sparsity level to avoid parameter setting. Taking advantage of the low rank property of background,
Zhang et al. present a low-rank and sparse matrix decomposition-based Mahalanobis distance method
(LSMAD) [38]. They impose the low-rank constraint on the background and the sparse constraint
on anomalies in order to better decompose the background information from original hyperspectral
images. Besides, there are also some manifold learning based methods which explore the data structure
to detect anomalies. Olson et al. [42] construct a hyperspectral anomaly detection model in which the
manifold learning technique is used to learn the background information. Yuan et al. [27] design a
graph pixel selection process through combining the manifold learning technique and graph theory.
The locally linear embedding (LLE) is used to discover the data structure that can contributes to the
representation of anomalies.

In addition, some deep learning technique-based methods have been proposed in recent years.
Using the advantages of deep learning architecture in data feature mining, researchers have explored
its specific implementation in hyperspectral anomaly detection. There are two main ways: one is to
fully learn the abstract representation of high-dimensional data from the perspective of unsupervised
learning; the other is to use some label information or target information to guide the understanding
of data characteristics from the perspective of supervised learning. Bati et al. propose an anomaly
detection method based on autoencoder [43]. Through the coding–decoding process, background
data can be decoded with a small reconstruction error, whereas the anomaly will have the larger
reconstruction error. Zhao et al. use the stacked denoising autoencoders [44] to automatically learn the
nonlinear deep features of hyperspectral images and achieve better detection results. Ma et al. design
a detector based on a deep confidence network in which an adaptive weighting strategy is proposed
to reduce the effect of local anomalies [45]. As for the supervised learning, it mainly uses external
labeled hyperspectral images to guide the detection of anomalies in unknown scenes. Li et al. construct
a transferred deep convolutional neural network to detect anomalies in the hyperspectral image [46].
Using the reference data with real labels, pixel pairs are generated to train the multi-layer CNN. For the
pixel under test, its corresponding pixel pairs are obtained through computing the difference spectral
vectors between it and all its surrounding pixels. Through statistically analyzing the similarity scores
computed by the network, the final detection result can be obtained.

This work aims at addressing some challenges in the field of hyperspectral anomaly detection
from the view of using traditional machine learning method. Although sparse representation based
methods have proven its effectiveness in hyperspectral anomaly detection from the recently published
literature [47], there are still some important problems that can have effects on the performance of
anomaly detection. As we all know, real hyperspectral images commonly cover a vast geographical
scene containing various materials with different spectral properties. Therefore, when directly exploring
the background information using all the image pixels, an accurate background representation is hard to
be learned because of the complex spectral interactions and inter-/intra-difference of different samples.
Consequently, the detection performance will be reduced. Besides, potential anomalies embedding in
the image scene can affect the background representation resulting in deterioration of performance as
well. To address these problems, this paper proposes a novel hyperspectral anomaly detection based
on separability-aware sample cascade, which tries to improve the description ability of background
from the view of complex samples selection. Considering different pixels have different separable
degrees from others, we can effectively divide them into different sample sets reflecting various material
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characteristics according to their separability. As a result, more accurate and complete background
representation can be effectively obtained corresponding to each sample set belonging to different
separation grades. Even though for the samples that are hard to be separated, the specially learned
background information can also ensure the good ability to represent them. In our method, we gradually
sift out all the samples layer-by-layer through the cascade structure in which sparse representation is
used, to compute the separability of each sample. At the same time, we also remove potential anomalies
from each layer in order to avoid feeding them into the next layer, which can ensure the good ability of
background representation to resist the effects of anomalies. In addition, as spatial information is also
important to recognize anomalies, we adopt a spectral–spatial feature extraction strategy to enhance
the expressive ability. Note that our detection framework is applicable to different anomaly detectors,
and the sparse representation is replaceable in this work. Main contributions of the proposed method
can be summarized as follows.

(1) Through identifying separability of hyperspectral pixels, a novel separability-aware sample
cascade method is proposed to deeply and comprehensively explore the background
characteristics. According to their separable degrees, it can effectively sift out all the pixel
samples layer-by-layer, so that the learned background representation is more accurate and
discriminative to express complex real hyperspectral image scenes.

(2) Benefiting from automatically removing all the pixels with relatively lower separability in
each cascade layer, it can directly avoid feeding the potential anomalies into the subsequent
layers. Consequently, the proposed method can not only prepare purer data samples for sample
selection of each layer, but also further ensure that the background characteristics have the good
ability to restrain the effects of anomalies.

(3) Taking both spectral and spatial information into consideration, a good spectral–spatial feature
extraction strategy is used in this work. Through effectively combining the rich spectral
properties naturally contained in the hyperspectral data and the structure properties obtained
by using edge-preserving filter operation, we can extract features with higher expressive ability
to characterize the deviation between target and background.

The rest parts of this paper are organized as follows. In Section 2, the proposed method is
elaborated. In Section 3, experiments carried on five real hyperspectral images are introduced in detail.
Finally, our work is summarized in Section 4.

2. Our Method

In this paper, we propose a novel anomaly detection method through constructing a separability-
aware sample cascade model. As hyperspectral image pixels have complex spectral interactions
and inter-/intra-difference, directly analyzing these samples as a whole to estimate background
characteristics will result in unsatisfactory and inaccurate background evaluation. Consequently,
anomaly detection will be further deeply affected. More precisely, when the analyzed pixels contain
various kinds of materials or complicated interactions, precise background information presentation
is really hard to be obtained. In fact, different pixels can be separated from others with different
separability. If samples can be sifted out according to their different difficulties of separability,
different background representation can be specifically obtained to make aware of samples with
different deviations. In other words, for each kind of sample separated, from easily to difficultly
separated, we can learn more accurate information to express samples’ characteristics. Our method
contains three main procedures: (1) spectral–spatial feature extraction, (2) separability-aware sample
cascade selection, and (3) multilayer anomaly detection.

First, we apply a new spectral–spatial feature extraction technique to take discriminative spectra
and structure property into account at the same time. The traditional PCA and edge-preserving
filtering are used in this operator, which can not only effectively remove redundant information,
but also obtain useful spatial structure information to enhance expressive ability of each pixel sample.
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Secondly, we construct separability-aware sample cascade selection framework. Sparse representation
is used to compute separability of each sample. According to their separable degrees, the relatively
easily separated samples are sifted out and the bad samples with extremely low separability are
simultaneously removed to delete their interference. Then the rest samples are fed into the next
cascade layer to perform the same sample selection. Through passing all the samples layer-by-layer,
we can obtain different sample sets with different separability-aware degrees from each cascade layer.
Last, a multilayer anomaly detection strategy is presented to comprehensively take advantage of
different separability-aware abilities of each layer in order to improve the detection performance.
The proposed method will be elaborated in the following sections.

2.1. Spectral-Spatial Feature Extraction

This part will introduce a new and simple spectral–spatial feature extraction technique. Figure 1
shows the flow chart of our feature extraction strategy. Through using this technique, the extracted
feature can not only deliver rich spectral information, but also contain spatial structure information,
which will have the stronger expressive ability to represent each data sample. At the same time, its low
dimensional characteristic ensures the good performance in efficiency as well. Note that our used
spectral–spatial feature extraction technique is inspired by that in [48], whose good performance has
been demonstrated. Instead of directly using the technique proposed in [48], we embed the principal
component analysis (PCA) strategy in it in order to eliminate the effects of some low signal–noise rate
bands or unless bands.

Figure 1. The flow chart of spectral–spatial feature extraction.

As shown in Figure 1, we first divide the original hyperspectral cube into small blocks along
the spectral dimension. Then for each block, PCA is used to explore the main pattern in data and
remove noise as well. In order to take full use of different virtues of all the principal components,
band fusion operation is carried out to completely combine all these principal bands together for
further dimension reduction and information enhancement. After that, the edge-preserving filtering is
carried out on each fused band to well preserve the spatial information. Finally, concatenating each
fused band corresponding to each block together, a small new data cube with lower feature dimension
is generated which delivers both the spectral and spatial information.

As our used spectral–spatial feature extraction technique is similar to the work [48]; therefore,
we will briefly introduce it here following the flow chart shown in Figure 1. For a hyperspectral image
cube I ∈ RH×W×B, H means the image height, W denotes the image width, and B is the number of
spectral bands. Therefore, a single band image can be denoted as Ii ∈ RH×W(i = 1, 2, ..., B). When we
divide I into K blocks along the spectral dimension, each block can be regarded as a set built with
some adjacent band images. The index set of image bands contained in each blocks can be defined
as follows,

Dk =

{
{f(B/K)× (k− 1) + j|j ∈ I + ∧ j ≤ f(B/K)}, i f

{f(B/K)× (K− 1) + 1, f(B/K)× (K− 1) + 2, ..., B}, i f
k ∈ {1, 2, ..., K− 1}

k = K
, (1)
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where Dk is the index set for kth block, the f(B/K) function means that B/K is rounded down to
get the integer value, and I+ is a set of positive integers. Therefore, each image block set Bk can be
further obtained.

Bk = {Ii|i ∈ Dk}, k ∈ {1, 2,...,K}. (2)

Then, the PCA technique is carried out and m principal components are remained for each block.
The fusion operation is further implemented on m principal components by using the traditional
averaging strategy. Therefore, we can totally obtain K fused bands and the kth element can be denoted
as Ik

f used ∈ RH×W , k ∈ {1, 2, ..., K}. Then, according to the authors of [48,49], we carry out the

edge-preserving filtering on each fused band. Therefore, our finally obtained small cube H ∈ RH×W×K

can be described as follows,
Hk = RFδs ,δr (I

k
f used), (3)

where Hk ∈ RH×W , k = 1, 2, ..., K denotes the kth filtered band in the obtained cube data H. We adopt
the same filter function RFδs ,δr (•), which is the transform domain recursive filter defined in [48].
Here, δs denotes the space standard deviation which mainly controls the blurring degree, and δr

corresponds to the range, which mainly determines edge preservation. These two parameters can
affect the effectiveness of the filter together.

2.2. Separability-Aware Sample Cascade Selection

This part will introduce the separability-aware sample cascade selection process in detail.
As sparse representation is commonly used in anomaly detection for its decent performance,
our method is designed based on this representation model as well. However, due to the complex
interference of various kinds of materials, accurate background representation will be affected.
Therefore, we aim to address this problem through constructing a sample cascade selection on the
basis of separability-aware idea. As per our proposed framework shown in Figure 2, different samples
aware of different separable degrees can be effectively sifted out from the whole data set through the
proposed sample cascade selection process. Meanwhile, we remove some potential targets as bad
samples. Consequently, we can not only collect different sample sets with better representation ability
specific to different background characteristics but also benefit from restraining the effects of some
potential abnormal samples. The technical details will be introduced below.

Figure 2. The framework of separability-aware sample cascade anomaly detection method. It shows
both the separability-aware sample cascade selection process and the multilayer anomaly detection
strategy. The red dashed box marks the basic selection module for each layer. The blue dashed box
highlights all the generated separability-aware sample sets that are jointly used to realize multilayer
anomaly detection.

For the small cube data H ∈ H×W×K obtained by the above mentioned spectral–spatial feature
extraction strategy, we reshape it into a 2D representation matrix X = [x1, x2, ..., xN ] ∈ RK×N , in which
each row is generated by transforming each filtered band of H ∈ H×W×K into a vector, respectively.
Here, N = H ×W is the total number of the cube data, and each column of X, xn ∈ RK, n = 1, 2, ..., N
denotes a pixel sample with K dimensions. Therefore, the traditional sparse representation model [50]
can be formulated as
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min
D,A,‖di‖≤1

‖X−DA‖2
F+λ‖A‖1, (4)

where D = [d1, d2, ..., dM] ∈ RK×M is the sparse representation dictionary containing M bases,
A = [a1, a2, ..., aN ] ∈ RM×N is the sparse coefficient matrix, and λ is the regularization parameter.
In this work, the dictionary learning technique proposed by Mairal et al. [51] is used to compute
matrix D. As for A, when D is fixed, it turns to be the typical Lasso problem which can be easily
solved. Therefore, the sparse reconstruction error ei for each sample can be computed as follows,

ei = ‖xi −Dai‖2. (5)

Therefore, reconstruction error vector for N input samples can be expressed as e = [e1, e2, ..., eN ]
T.

For simplicity, we directly regard the recovery value as the separability degree of each sample.
The lower the reconstruction error is, the easier the sample is to be separated from others.

Then, we sift out the samples according to their separable degrees. First, the samples with
relatively lower recovery errors will be picked out to build the separability-aware sample set for the
current selection process. Second, the samples with relatively higher recovery errors which can be
regarded as potential anomaly targets will be removed in order to reduce their effects on the next
sample selection. The rest samples will be fed into the next layer to conduct the same selection process.
By this way, we construct multiple layers connected in a cascade way to gradually separate all the
pixels samples layer-by-layer according to different separability-aware degrees.

For better understanding, new mathematical symbols are introduced. As described above,
the small cube data X is fed into the first layer to be sifted out. Consequently, it can be denoted as
X1 =

[
x1

1
, x1

2, ..., x1
N1

]
∈ RK×N1 , where N1 = N. The corresponding e can be expressed as

e1 = [e1
1, e1

2, ..., e1
N1
]T. Assuming that the input samples of the lth layer is Xl ∈ RK×Nl , l = 1, 2, ..., L,

where Nl is the total number of samples in current layer and L is the number of cascade layers in total;
therefore, using Equations (4) and (5), we can learn the sparse dictionary, solve the coefficient matrix,
and compute the reconstruction error vector el = [el

1, el
2, ..., el

Nl
]T. Note that the matrix representation

of the input samples can be simply regarded as a set whose elements correspond to the column vectors
xl

i in this work.
Then, we can sift out the separability-aware sample set Bl for the lth layer which can be written as

Bl =
{

xl
i |el

i ≤ εb

}
, (6)

where εb is the separable threshold. Instead of fixing it at a constant, we use the value corresponding
to the ηb percentile of all the elements of current recovery error vector el . Different ηb will determine
different εb.

The removed sample set can be built as

Rl =
{

xl
i |el

i > εa

}
, (7)

where εa is the removed threshold, which can be computed by the same way as εb through setting
the ηa percentile value. Therefore, we can finally obtain the rest samples which will be fed into the
(l + 1)th layer as its input data Xl+1 by Equation (8).

Xl+1 = Xl − Bl − Rl . (8)

Removing the potential interference information is beneficial for learning background representation,
because sample set Xl+1 can be purified resulting in the following sample selection more accurate and
robust. We will not terminate the same sample selection process until the stop condition is satisfied.
In this work, we define the stop condition as
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card(Xl) < C. (9)

The function card(•) is used to count the number of elements in a set. Therefore, this condition means
that for a layer when the number of its input samples is less than a given constant C, the whole
separability-aware sample cascade selection process will be stopped. At this time, if the last layer is the
Lth layer, there are totally L separability-aware sample sets Bl , l = 1, 2, ..., L. Algorithm 1 summarizes
the whole proposed selection process.

Algorithm 1 Separability-Aware Sample Cascade Selection

Input: Cube data sample set X ∈ RK×N , regularized parameter λ, separable percentile ηb, removed
percentile ηa, and constant C.

Output: All separability-aware sample sets Bl .

1: Initialize l = 1, Xl = X, Nl = N.

2: repeat

3: Calculate the reconstruction errors el = [el
1, el

2, ..., el
Nl
]T by solving Equations (4) and (5).

4: Calculate the separability-aware sample set Bl =
{

xl
i |el

i ≤ εb

}
.

5: Calculate the removed sample set Rl =
{

xl
i |el

i > εa

}
.

6: Calculate the input sample set for next layer Xl+1 = Xl − Bl − Rl .

7: until card(Xl) < C.

2.3. Multiple-Layer Anomaly Detection

After finishing the separability-aware sample cascade selection process, totally L sample sets
are generated from different layers. These sets have different separable degrees from each other.
In other words, each sample set can characterize one specific property of the image scene. They can
represent different discriminative abilities to perceive each sample’s deviation from the image scene.
Therefore, we further present a multilayer anomaly detection strategy. Through comprehensively
taking advantage of the different discriminative abilities of all these generated sample sets, the better
detection performance can be achieved. Figure 2 also shows the multilayer anomaly detection strategy.
Specifically, we feed each separability-aware sample set Bl as the dictionary into the traditional sparse
representation model described by Equation (4), so the corresponding sparse matrix can be solved.
Here, we denote each coefficient matrix as Al . Consequently, the joint detection results through fusing
different decisions of all the layers can be computed as follows,

ei
mul =

∑
l

∥∥∥xi − Blal
i

∥∥∥
2

L
, (10)

where xi, i = 1, 2, ..., N is the ith sample of the input cube data, al
i is its corresponding sparse coefficient

vector which is the ith column vector of matrix Al , and ei
mul is its final anomaly detection probability.

Owing to the good virtue of multilayer anomaly detection strategy, we believe the proposed method
has the better ability to detect various targets. No matter whether the target under test has higher
separable degree or lower degree from the image scene, we can effectively recognize it by using the
different discriminative abilities of different layers.

3. Experiments

In this paper, extensive experiments are conducted to demonstrate the effectiveness of the
proposed method. Five different real-world hyperspectral images and seven representative anomaly
detection methods are used to evaluate its performance in the experiments. In the following parts,
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we will respectively introduce the data sets, experimental set-up, experimental results, and parameter
analysis in detail.

3.1. Data Sets

Five different available real-world hyperspectral images are tested in the experiments. These data
sets cover various geographical scenes containing diverse materials and different types of abnormal
targets. They can provide a convincing evaluation of an anomaly detection method. Figure 3 shows
false color pictures and the corresponding ground truth maps of these images. For each ground truth
map, anomalies are significantly highlighted, whereas the background is represented by the black area.

Figure 3. The false-color images and ground truth maps of the used five hyperspectral images. The first
row shows the false color pictures of HYDICE Urban, AVIRIS Airport, Texas Coast, Gainesville,
and PaviaC, respectively. The second row illustrates their corresponding ground truth maps.

HYDICE urban image is the first data set. It is acquired by the HYDICE sensor from an aircraft
through scanning an urban scene, which is provided by U.S. Army Engineer Research and Development
Center. Its spectral range is 400 to 2500 nm with a total of 210 bands, leading to a spectral resolution of
10 nm. Referring to the work [27], fifty bands are usually removed in practice. There are 307× 307 pixels
with a pixel size of about 2 m. When using this image for anomaly detection, researchers usually crop a
sub-image with the size of 80× 100 from the original image because of the available ground truth map.
It defines some cars and roofs as abnormal targets [40,50]. The first column of Figure 3 illustrates its
visualization information.

The AVIRIS Airport image is the second data set. It is collected by the NASA’s Jet Propulsion
Laboratory through the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor on a airplane
platform. This image covers the San Diego Airport, California, USA, containing some construction,
vegetables, airstrips, and parking aprons. Its spectra range from 370 nm to 2510 with 224 bands in total.
The spectral resolution is up to ~10 nm, and the spatial resolution is 3.5 m. After removing several
useless bands, 1–6, 33–35, 97, 107–113, 153–166, and 221–224, with relatively low signal–noise rates
or water absorption regions, we keep 189 bands [52]. There are 100× 100 pixels in this subimage,
and three planes are regarded as abnormal targets. The second column of Figure 3 shows its false-color
image and ground truth map.

The Texas Coast hyperspectral image is the third data set. It is also acquired by the AVIRIS sensor,
which can be downloaded from the website of AVIRIS (http://aviris.jpl.nasa.gov/). This image covers
the urban scene near Texas coast. It has the spectral range of 370 nm to 2510 nm. After removing some
noisy bands [53], totally 207 spectral channels are remained in the experiment. This image has the size
of 100× 100. Its spatial resolution is ~17.2 m. A total of 20 targets with different kinds of sizes are
defined as anomalies in this image scene. Its false color picture and the corresponding ground truth
map are, respectively, illustrated in the third column of Figure 3.

http://aviris.jpl.nasa.gov/
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The Gainesville image is the fourth data set. This image is same as the Texas Coast image for it is
also collected by the AVIRIS sensor and can be downloaded from the same website. The difference
is that this image has a higher spatial resolution of about 3.5 m for it is acquired from a low-altitude
aircraft through scanning the Gainesville urban scene. Considering the effects of some noisy bands,
we keep 191 spectral bands, after removing 33 useless bands referring to the work [53]. There are
100× 100 pixels in the image, where totally 11 abnormal targets are located in. As shown in Figure 3,
two rows of the fourth column show the related visualization information.

The PaviaC image scene is the fifth data set. It is provided by the Telecommunications and Remote
Sensing Laboratory of Pavia University, which is collected by the ROSIS sensor on the airborne platform.
It scans the scene near the central pavia in northern Italy, which mainly contains the bridge and water.
The spectral range is from 430 to 860 nm with a total of 102 bands [38]. There are 150× 150 pixels with
the geometric resolution of 1.3 m. As for the definition of anomalies, some vehicles and small bare
land areas are recognized as abnormal targets. Its false color picture and the corresponding ground
truth map are respectively illustrated in the last column of Figure 3.

3.2. Experimental Details

In this part, we will elaborate the evaluation criterion, competitors, and parameter settings related
to experiments as follows.

3.2.1. Evaluation Criterion

In the field of hyperspectral anomaly detection, the most commonly used evaluation criterion is
the receiver operating characteristic (ROC) curve for qualitative analysis. It is drawn by a series of
points. Each point is defined by a pair of values containing one true positive rate and one false alarm
rate. Given one threshold, a pair of values will be computed according to detection results. This curve
can accurately reflect the compromise between these two rates. As for the quantitative analysis,
the AUC value (the area under the ROC curve), is usually used to compare the performance of different
detectors. Concretely speaking, through carrying out the integral operator for ROC curve, the AUC
value can be obtained. These two criteria are convincing and fair to evaluate the detection performance.

3.2.2. Competitors

In this paper, seven different state-of -the-art anomaly detection methods are used for complete
comparison. The classical local RX (LRX), SRD, global RX (GRX), RSAD, BACON, LSMAD,
and traditional sparse dictionary learning (DL) are chosen by comprehensively taking diversity,
popularity, and timeliness into consideration. These methods are frequently adopted as competitors to
evaluate the performance of a new anomaly detection method. Therefore, it is accurate and convincing
to analyze the detection performance through comparing with these methods. Specially, LRX and GRX
represent the typical Reed-Xiaoli method that is based on the statistical distribution hypothesis. SRD,
LSMAD, and DL use sparse representation. As for RSAD and BACON, they are two popular methods
that aim at obtaining pure background through reducing the effects of anomalies in order to improve
the detection performance.

In addition, as the proposed method consists of two important stages, including the
spectral–spatial feature extraction and the separability-aware sample cascade anomaly detection;
therefore, we also conduct the ablation study experiment to analyze the effectiveness of these two stages.
As sparse dictionary learning is the basic detection model for the proposed method, we successively
compare with the DL method in the ablation study experiment. For simplicity, when we only
use the spectral–spatial feature extraction strategy and then carry out the traditional DL detection
method, we denote this case as Ours-DL-S; when both spectral–spatial feature extraction strategies and
separability-aware sample cascade anomaly detection, in other words, the whole proposed procedures,
are completely carried out, we denote this case as Ours-DL-SS. Actually, Ours-DL-SS represents
our method.
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3.2.3. Parameter Settings

Some main parameters involved in the experiments are declared in this section. First,
the parameter settings of our proposed method are introduced in detail. For the stage of spectral–spatial
feature extraction, there are three critical parameters: the number of divided blocks K, the space
standard deviation δs, and the range standard deviation δr. The value of K determines the dimension
of finally generated new feature. The filter parameters δs and δr affect the performance of filtering.
As for the stage of separability-aware sample cascade anomaly detection, three important parameters,
i.e., the regularization parameter λ, the separable percentile ηb, and the removed percentile ηa, will be
elaborated. ηb can determine the scale of each separability-aware sample set that will have effects on
the number of cascade layers. ηa can directly decide the size of the removed samples which in fact aims
at getting rid of the potential anomalies. Therefore, as a matter of experience that anomalies usually
have a small population with low occurrence probability, ηa is empirically fixed at 99.5 percentile.
As the effects of parameters K, δs, δr, λ, and ηb on the detection performance seem relatively complex,
we further conduct the corresponding parameter selection experiments in order to deeply analyze and
discuss their properties in Section 3.4.

Here, we just declare the final settings of these parameters involved in the following comparison
experiment. For the five hyperspectral images, K is completely fixed at 20, δs is set as 100, 0.2 is assigned
to δr; the values of λ are 0.05, 0.05, 10−5, 0.005, and 10−4 in turn; and ηb is fixed at 10. In addition,
except for the above principal parameters, there are also some simple parameters needed to be claimed
for a clearer and better understanding of our method. The number of principal components of PCA
during the feature extraction process is set as 3. The number of bases is defined as the twice K for
each sparse dictionary. As for the constant C in the stop condition, its value is also set as the twice K.
In other words, when the number of rest samples is less than the size of dictionary, the sample cascade
selection process will be stopped. Note that the parameters of DL, Ours-DL-S, and Ours-DL-SS keep
consistent with each other in the experiments.

As for competitors, their parameter settings are introduced as well. As LRX and SRD use the
dual windows [54] to detect local anomalies, two kinds of window sizes consisting of the outside
window and the inner window (outside and inner) should be defined. Therefore, considering that such
detectors adopting a sliding window strategy are usually sensitive to the window sizes, different pairs
of window sizes are set in order to convincingly reflect their detection performance. Taking account of
both characteristics of different hyperspectral images and requirements of different detectors’ parameter
settings, we define four pairs of window sizes for LRX—(17, 7), (17, 9), (19, 7), and (19, 9)—and six
pairs of window sizes for SRD—(13, 7), (15, 9), (17, 7), (17, 9), (19, 7), and (19, 9). Besides, we set the
optimal value for the regularized parameter of SRD for each hyperspectral image in the experiment.
As for RSAD, the size of image block is set as 70 during the random selection process. The value of
parameter c involved in BACON is fixed at 4 referring to the original literature [30]. As for LSMAD,
the optimal parameters on each image have been selected. The values of matrix’s maximal rank r are
2, 1, 2, 5, and 2, and the values of sparse cardinality k are set as 0.7, 0.3, 0.005, 0.6, and 0.4 for the five
hyperspectral images, respectively.

3.3. Comparison Results

In this part, extensive experimental results will be completely and deeply analyzed in order to
fairly and convincingly evaluate the performance of our proposed method. The visualization results of
all the methods on five hyperspectral images are respectively illustrated in Figures 4–8, whereas the
corresponding ROC curves are shown in Figure 9. Table 1 presents AUC values, and Table 2 shows the
average AUC values of all the data sets for each detector and our corresponding improvement to other
competitors. Note that all the results of LRX and SRD on different window sizes are shown in Table 1,
and their best results for each hyperspectral image are underlined. The visualization pictures and
ROC curves corresponding to their optimal window sizes are just shown in this paper for convenience
of layout.
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Table 1. Area under the ROC curve (AUC) values for quantitive analysis of all the competitors’
performance on five real-world hyperspectral images. The optimal values of window sizes are
underlined. The highest AUC values are highlighted by the bold numbers.

AUC HYDICE Urban AVIRIS Airport Texas Coast Gainesville PaviaC

LRX

(17,7) 0.8467 0.7352 0.8758 0.7581 0.9418
(17,9) 0.8242 0.7264 0.8311 0.7472 0.9338
(19,7) 0.9095 0.8361 0.8598 0.8143 0.9383
(19,9) 0.8862 0.8585 0.8454 0.7999 0.9352

SRD

(13,7) 0.9456 0.9102 0.8885 0.7317 0.9524
(15,7) 0.9475 0.9163 0.8878 0.7089 0.9449
(17,7) 0.9438 0.9231 0.8967 0.7021 0.9462
(17,9) 0.9395 0.9342 0.8776 0.7282 0.9385
(19,7) 0.9459 0.9171 0.8933 0.7003 0.9467
(19,9) 0.9423 0.9329 0.8818 0.7152 0.9378

GRX 0.8906 0.9611 0.9946 0.9513 0.9538
RSAD 0.8781 0.9437 0.8091 0.9390 0.6739

BACON 0.6861 0.7271 0.7205 0.6362 0.8574
LSMAD 0.9598 0.9801 0.9048 0.9279 0.9218

DL 0.8398 0.8189 0.8687 0.8519 0.8253
Ours-DL-S 0.9165 0.9904 0.9474 0.9575 0.9299

Ours-DL-SS 0.9965 0.9953 0.9983 0.9848 0.9808

Table 2. Average AUC of each competitor using all data sets and average performance improvement
of our method to each competitor.

Methods LRX SRD GRX RSAD BACON LSMAD DL Ours-DL-S Ours-DL-SS

AUC 0.8800 0.8925 0.9503 0.8488 0.7255 0.9389 0.8409 0.9483 0.9911
Improvement 11.11% 9.86% 4.08% 14.23% 26.56% 5.22% 15.02% 4.28% -

Figure 4 illustrates the visualization pictures of all the detection methods on HYDICE Urban
data set. It can be seen that RSAD and BACON made many obvious mistakes that recognize the
background area as abnormal targets. LRX cannot seem to effectively locate the targets for there are
many omissions. The result of DL presents much background clutter. SRD, GRX, LSMAD, Ours-DL-S,
and Ours-DL-SS show better detection performance, because anomalies can be clearly recognized
from their visualization results. Moreover, Ours-DL-SS outperforms the other four methods for it
can not only assign high intensities to anomalies but also effectively suppress the background clutter.
The ROC curve shown in Figure 9a demonstrates this conclusion as well. The ROC curve of our
proposed method (denoted as Ours-DL-SS) is almost significantly above all the other methods’ curves.
It always obtains a higher detection rate for a given false alarm rate among all the ROC curves.
Our method can achieve promising detection performance, even though the false positive rate is less
than 10−3, which fully proves its good distinctiveness. As for the quantitative analysis, the highest
AUC value shown in Table 1 demonstrates the excellent detection performance again. Therefore, it can
be concluded that our proposed method has superior ability to be aware of the difference between the
target and the background.
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Figure 4. The visualization results of different detectors on HYDICE Urban. (a) Local Reed-Xiaoli
(LRX): window size (19,7); (b) sparse representation-based detector (SRD): window size (15,7);
(c) global Reed-Xiaoli (GRX); (d) random-selection-based anomaly detector (RSAD); (e) blocked
adaptive computationally efficient outlier nominator (BACON); (f) low-rank and sparse matrix
decomposition-based Mahalanobis distance method (LSMAD); (g) traditional sparse dictionary
learning (DL); (h) Ours-DL-S; (i) Ours-DL-SS; and (j) Ground truth. Anomaly probabilities are denoted
by the values in the color bar.

Figure 5 illustrates the visualization pictures of all the detection methods on AVIRIS Airport
hyperspectral image. Similarly, BACON has a serious problem of high false alarm rate. As for RSAD,
it can significantly detect all the anomalies with less background detection mistakes. LRX seems to
completely miss all the abnormal targets. The result is hard to estimate for SRD from its visualization
map. DL also contains lots of background clutter. As for GRX, LSMAD, Ours-DL-S, and Ours-DL-SS,
they show the similar detection results for all the targets have been effectively detected. The most
difference is that anomalies are highlighted with different intensities by them. Compared with the other
three methods, Ours-DL-SS is better for its detected targets are much more notable while the background
is well suppressed. To carry out a fair and convincing evaluation of the detection performance,
we further analyze ROC curves and AUC values on this image. From Figure 9b, it can be seen that
Our-DL-SS defeats all the other methods except for LSMAD, because its ROC curve lies above their ROC
curves. Comparing with LSMAD, when the false positive rate takes the smaller value, the detection
rate of our method is slightly lower than that of LSMAD, but when the false positive rate takes a larger
value, our ROC curve will keep above LSMAD. From the results shown in Table 1, we can see that
our method obtains the highest AUC value. On the whole, all the results have demonstrated the good
performance of the proposed method. It has good distinctiveness to recognize anomalies from the
real scene.

                 (f)                                              (g)                                             (h)                                              (i)                                              (j)          
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Figure 5. The visualization results of different detectors on AVIRIS Airport. (a) LRX: window size
(19,9); (b) SRD: window size (17,9); (c) GRX; (d) RSAD; (e) BACON; (f) LSMAD; (g) DL; (h) Ours-DL-S;
(i) Ours-DL-SS; and (j) Ground truth. Anomaly probabilities are denoted by the values in the color bar.
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Figure 6 illustrates the visualization pictures of all the detection methods on Texas Coast image.
Both RSAD and BAON have serious false alarm rates. LRX, SRD, and DL seem to miss the targets.
As for LSMAD, although it can detect some anomalies, it has a problem of false alarm rate as well.
GRX, Our-DL-S, and Our-DL-SS show better performance for they can detect more targets. Moreover,
compared with the other three, the targets detected by our method are more salient. The ROC curves
shown in Figure 9c further verify the superior performance of the proposed method. Our ROC curve
has absolute advantage for it is far higher than other curves. Our method shows good detection
ability, even though the alarm rate is very low. It also obtains the highest AUC value as shown
in Table 1. According to all these comparison, the effectiveness of the proposed method has been
demonstrated. Our method benefits the good virtue of subtly perceiving the discrepancy between
targets and background through separability-aware sample cascade selection process.

                 (f)                                            (g)                                               (h)                                             (i)                                             (j)          
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Figure 6. The visualization results of different detectors on Texas Coast. (a) LRX: window size (17,7);
(b) SRD: window size (17,7); (c) GRX; (d) RSAD; (e) BACON; (f) LSMAD; (g) DL; (h) Ours-DL-S;
(i) Ours-DL-SS; and (j) Ground truth. Anomaly probabilities are denoted by the values in the color bar.

Figure 7 illustrates the visualization pictures of all the detection methods on Gainesville image.
BACON still faces an obvious problem of high false alarm rate. RSAD also suffers from some
background detection mistakes. SRD can locate a few targets but with lots of background clutters.
LRX and DL cannot clearly locate anomalies. As for GRX, LSMAD, Ours-DL-S, and Ours-DL-SS,
they show better results that are similar to each other from the view of visualization. Figure 9d shows
the ROC curves of all the methods on this data set. Our curve also achieves the best performance for it
nearly outperforms all the other curves along all the value range of false positive rate. At the same
time, our method also achieves the highest AUC value that is far ahead of those of most other methods.
All these results convincingly verify that out method has the good distinctiveness to recognize different
targets from the background. Through separating all the hyperspectral pixels into different sample
sets, better background representation can be obtained specific to different material properties.

Figure 8 illustrates the visualization pictures of all the detection methods on PaviaC image. As for
BACON and RSAD, their results’ analyses are similar to their corresponding results on the previous
data. SRD, DL, and Ours-DL-S have obvious background clutter. LRX, GRX, and LSMAD have similar
results, and they can detect some targets. As for the proposed method, it shows better result for it
completely recognizes all the targets and simultaneously assigns salient intensities to them. The highest
ROC curve shown in Figure 9e fully verifies the effectiveness of our method. It always stays above all
the other curves, which shows its good detection ability. Our method also obtains the optimal AUC
value which is really a promising result. Owing to sifting out samples according to their separability,
the background information can be deeply and accurately discovered, and the deviation of anomalies
from background can be significantly enlarged. Consequently, our method can successfully distinguish
different kinds of anomalies.
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Figure 7. The visualization results of different detectors on Gainesville image (a) LRX: window size
(19,7); (b) SRD: window size (13,7); (c) GRX; (d) RSAD; (e) BACON; (f) LSMAD; (g) DL; (h) Ours-DL-S;
(i) Ours-DL-SS; and (j) Ground truth. Anomaly probabilities are denoted by the values in the color bar.
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Figure 8. The visualization results of different detectors on PaviaC image (a) LRX: window size (17,7);
(b) SRD: window size (13,7); (c) GRX; (d) RSAD; (e) BACON; (f) LSMAD; (g) DL; (h) Ours-DL-S;
(i) Ours-DL-SS; and (j) Ground truth. Anomaly probabilities are denoted by the values in the color bar.

The above parts mainly carry out the comparison with other representative competitors. So as
to deeply analyze the effectiveness of different stages of our proposed method, we further discuss
the ablation study experiment. Through completely analyzing both qualitative results shown in
Figure 9 and quantitive values illustrated in Table 1, some reasonable conclusions can be drawn. First,
the performance of traditional DL belongs to lower middle level of detection ability among all the
methods. Second, the performance of Ours-DL-S is obviously better than that of DL, which robustly
demonstrates the effectiveness of our spectral–spatial feature extraction strategy. Nevertheless,
Ours-DL-S just improves the performance to the level slightly above moderate of detection ability
for it is still inferior to many state-of-the-art methods. At last, Ours-DL-SS is significantly better
than Ours-DL-S which convincingly verifies the excellent performance of separability-aware sample
cascade anomaly detection process. Ours-DL-SS successfully raises the detection performance to the
highest level. According to all these analyses, each stage of our proposed method has demonstrated
its effectiveness.

On the whole, based on all the comparison and analyses, the proposed method outperforms all
the representative detectors. It not only has the good ability to recognize different kinds of targets from
various real-world scenes, but also shows its superiority in suppressing the background. The highest
average AUC value of all the results on five hyperspectral images achieved by our method also
objectively verifies its robust and excellent detection performance as shown in Table 2. Compared with
seven representative anomaly detection methods, our method improves the average detection accuracy
by approximately 11.11%, 9.86%, 4.08%, 14.23%, 26.56%, 5.22%, and 15.02%, respectively. Owing to the
spectral–spatial extraction strategy, the generated features have more expressive ability to recognize
the deviation of targets from background. Through further separating various and complex materials
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into different samples and simultaneously removing some potential targets, accurate and complete
background characteristics resisting to anomalies’ effects can be fully explored, which forcefully
ensures the good performance of our method.

                                       (e)            

                 (a)                                                                                               (b)                                                 

                 (c)                                                                                               (d)                                                 

Figure 9. All the ROC curves of different detectors on five hyperspectral images. (a) HYDICE Urban;
(b) AVIRIS Airport; (c) Texas Coast; (d) Gainesville; and (e) PaviaC.

3.4. Parameters Setting Discussion

In this section, the effects of crucial parameters involved in the proposed method are analyzed
and discussed in detail. We further explore the setting criteria or selection suggestions for them.
The experiments are mainly conducted on the five mentioned parameters consisting of the number of
divided blocks K, the space standard deviation δs, the range standard deviation δr, the regularization
parameter λ, and separable percentile ηb. To completely and objectively explore their effects on
detection performance, experiments are carried out on all the five hyperspectral images.



Remote Sens. 2019, 11, 2537 17 of 21

The number of divided blocks K deciding the dimension of extracted feature is chosen from the
set of {3, 5, 10, 15, 20, 25, 30, 35, 40, 50} in sequence. Figure 10 presents the experimental result. It can be
seen that the curves’ trends of all the data sets are nearly similar. When K is equal to 3, although their
AUC are slightly lower, they are still satisfactory results. Then all the curves rapidly move up to
promising performance and nearly maintain the higher AUC values. On the whole, our method has
good robustness to different number of divided blocks. Therefore, we finally fix it at 20 for all the data
sets for simplicity.
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Figure 10. The effects of the number of divided blocks K on all the hyperspectral images: HYDICE
Urban, AVIRIS Airport, Texas Coast, Gainesville, and PaviaC.

As for the filtering parameters δs and δr, their effects are jointly analyzed. The space standard
deviation δs is chosen from the set of {10, 20, 40, 60, 80, 100, 120, 150, 180, 200, 250, 300}. The range
standard deviation δr changes from 0.1 to 1 at the interval of 0.1. The experiments are illustrated in
Figure 11. Taking all the results of all the hyperspectral images into consideration, our method is almost
not sensitive to these two parameters. The detection performance stably changes within a promising
range in most cases. Specifically, for all the real-world images, when δr is approximately less than 0.6,
all the AUC values are good and nearly unchanged, which fully demonstrates the effectiveness of our
method. Consequently, we set δs as 100 and δr as 0.2 for all the hyperspectral images.
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Figure 11. The effects of space standard deviation δs and range standard deviation δr on all the
hyperspectral images. (a) HYDICE Urban; (b) AVIRIS Airport; (c) Texas Coast; (d) Gainesville; (e) PaviaC.
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Then, the effects of regularization parameter λ is analyzed. Totally, 14 different values build the set{
5× 10−7, 10−6, 5× 10−6, 10−5, 5× 10−5, 10−4, 5× 10−4, 10−3, 5× 10−3, 10−2, 5× 10−2, 10−1, 100, 101

}
to be chosen for λ. Comparing all the curves shown in Figure 12, on the whole, these five curves have
similar slopes in despite of some small difference in local areas. When λ ≤ 10−3, all the curves achieve
good detection results, and each of them stably and gently changes within slight floating. When λ

continues to increase, both curves of AVIRIS Airport and Gainesville still gradually move up initially,
and then they begin to go down from different values, whereas the curve of HYDICE Urban has a
relatively obvious rise at the very beginning, and then its trend changes like the curve of Gainesville;
however, curves of Texas Coast and PaviaC are a little different because they first decrease, and then
increase again to become stabilized. Comprehensively considering all the results, although the
optimal values of λ for each images are different, when λ is equal to or lesser than 1, our detection
performance on all the different data sets is decent, which becomes better and more stable especially in
the range of equal to or lesser than 10−3. In the experiments, for each hyperspectral image, λ takes the
corresponding optimal value. Specifically, the values of λ are set as 0.05, 0.05, 10−5, 0.005, and 10−4 for
HYDICE Urban, AVIRIS Airport, Texas Coast, Gainesville, and PaviaC, respectively.
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Figure 12. The effects of regularized parameter λ on all the hyperspectral images including HYDICE
Urban, AVIRIS Airport, Texas Coast, Gainesville, and PaviaC.
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Figure 13. The effects of separable percentile ηb on all the hyperspectral images including HYDICE
Urban, AVIRIS Airport, Texas Coast, Gainesville, and PaviaC.

As for separable percentile ηb, its values change from 5 to 40 at the interval of 5. The corresponding
results are plotted in Figure 13. It can be clearly seen that our method also has good robustness to
this parameter for all the curves are either nearly unchanged or just have slight changes within the
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higher AUC value range. Moreover, all the results corresponding to all different values of ηb are
excellent for they are larger than 0.97, which strongly verifies the good performance of our method.
For convenience, ηb is fixed at 10 in the comparison experiment.

4. Conclusions

This paper presents an effective anomaly detection method for hyperspectral images through
designing a separability-aware sample cascade model. It aims at addressing the unsatisfactory
detection performance caused by the inaccurate scene information representation because of complex
spectral interactions and inter-/intra-difference of different samples. Through sifting out all the
hyperspectral pixel samples according to their different separable degrees, more accurate and complete
background information can be explored specific to different separated sample sets with various
material characteristics. The proposed method mainly consists of three important procedures including
spectral–spatial feature extraction, separability-aware sample cascade selection, and multilayer
anomaly detection. Taking use of spectral–spatial feature extraction, both spectral information and
spatial structure information can be obtained which can enhance the expressive ability to recognize
targets. Then, we construct the separability-aware sample cascade selection framework, which can
divide samples into different sets layer-by-layer and simultaneously removes the potential abnormal
targets at each selection step. Consequently, our learned background representation can not only have
good distinctiveness to recognize different anomalies from real images scenes, but also benefits from
the good ability to restrain effects of potential anomalies. Finally, we simply adopt the multilayer
anomaly detection strategy in order to comprehensively take different good characteristics of all the
separability-aware layers into consideration. In the experiments, our proposed method is compared
with seven state-of-the-art detectors on five different real-world hyperspectral images to fairly and
convincingly evaluate its performance. Extensive experimental results demonstrate the effectiveness
of our method. It has achieved superior performance to all these representative competitors.
Specifically, compared with LRX, SRD, GRX, RSAD, BACON, LSMAD, and DL, our method has
obvious performance improvement of about 11.11%, 9.86%, 4.08%, 14.23%, 26.56%, 5.22%, and 15.02%,
respectively, in accordance with their average AUC values of all the hyperspectral images. Besides,
through deeply analyzing and discussing the sufficient parameter setting experiment, our method
also has good robustness to different parameters. On the whole, the proposed method has good
performance to detect different abnormal targets from various hyperspectral scenes covering different
materials, which outperforms all the employed state-of-the-art competitors.
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43. Bati, E.; Çalışkan, A.; Koz, A.; Alatan, A. Hyperspectral anomaly detection method based on autoencoder.
Proc. SPIE 2015, 9643, 220–226.

44. Zhao, C.; Li, X.; Zhu, H. Hyperspectral anomaly detection based on stacked denoising autoencoders. J. Appl.
Remote Sens. 2017, 11, 042605. [CrossRef]

45. Ma, N.; Peng, Y.; Wang, S.; Phw, L. An unsupervised deep hyperspectral anomaly detector. Sensors. 2018,
18, 693. [CrossRef] [PubMed]

46. Li, W.; Wu, G.; Du, Q. Transferred deep learning for anomaly detection in hyperspectral imagery. IEEE Geosci.
Remote Sens. Lett. 2017, 14, 597–601. [CrossRef]

47. Ma, D.; Yuan, Y.; Wang, Q. Hyperspectral anomaly detection via discriminative feature learning with
multiple-dictionary sparse representation. Remote Sens. 2018, 10, 745. [CrossRef]

48. Kang, X.; Li, S.; Benediktsson, J. Feature extraction of hyperspectral images with image fusion and recursive
filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3742–3752. [CrossRef]

49. Gastal, E.; Oliveira, M. Domain transform for edge-aware image and video processing. ACM Trans. Graph.
2011, 30, 1–11. [CrossRef]

50. Ma, D.; Yuan, Y.; Wang, Q. A sparse dictionary learning method for hyperspectral anomaly detection with
capped norm. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium,
Fort Worth, TX, USA, 23–28 July 2017; pp. 648–651.

51. Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G. Online dictionary learning for sparse coding. In Proceedings of the
2017 IEEE International Geoscience and Remote Sensing Symposium, Montreal, QC, Canada, 14–18 June
2009; pp. 689–696.

52. Du, B.; Zhang, Y.; Zhang, L.; Tao, D. Beyond the sparsity-based target detector: A hybrid sparsity and
statistics-based detector for hyperspectral images. IEEE Trans. Image Process. 2016, 25, 5345–5357. [CrossRef]

53. Kang, X.; Zhang, X.; Li, S.; Li, K.; Li, J.; Benediktsson, J. Hyperspectral anomaly detection with attribute and
edge-preserving filters. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5600–5611. [CrossRef]

54. Soofbaf, S.; Sahebi, M.; Mojaradi, B. A sliding window-based joint sparse representation (swjsr) method for
hyperspectral anomaly detection. Remote Sens. 2018, 10, 434. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TGRS.2004.841481
http://dx.doi.org/10.1109/TGRS.2015.2493201
http://dx.doi.org/10.3390/rs8040289
http://dx.doi.org/10.1109/TGRS.2016.2616649
http://dx.doi.org/10.1109/TGRS.2014.2343955
http://dx.doi.org/10.1109/JSTARS.2015.2437073
http://dx.doi.org/10.1109/TGRS.2015.2479299
http://dx.doi.org/10.1109/LGRS.2014.2306209
http://dx.doi.org/10.1109/TGRS.2017.2664658
http://dx.doi.org/10.1109/TGRS.2018.2872900
http://dx.doi.org/10.1117/12.2264160
http://dx.doi.org/10.1117/1.JRS.11.042605
http://dx.doi.org/10.3390/s18030693
http://www.ncbi.nlm.nih.gov/pubmed/29495410
http://dx.doi.org/10.1109/LGRS.2017.2657818
http://dx.doi.org/10.3390/rs10050745
http://dx.doi.org/10.1109/TGRS.2013.2275613
http://dx.doi.org/10.1145/2010324.1964964
http://dx.doi.org/10.1109/TIP.2016.2601268
http://dx.doi.org/10.1109/TGRS.2017.2710145
http://dx.doi.org/10.3390/rs10030434
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Our Method
	Spectral-Spatial Feature Extraction 
	 Separability-Aware Sample Cascade Selection 
	 Multiple-Layer Anomaly Detection 

	Experiments
	Data Sets
	Experimental Details
	Evaluation Criterion
	Competitors
	Parameter Settings

	Comparison Results
	Parameters Setting Discussion 

	Conclusions
	References

