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Abstract: C-band polarimetric synthetic aperture radar (PolSAR) data has been previously explored
for estimating the leaf area index (LAI) of rice. Although the rice-growing cycle was partially covered in
most of the studies, details for each phenological phase need to be further characterized. Additionally,
the selection and exploration of polarimetric parameters are not comprehensive. This study evaluates
the potential of a set of polarimetric parameters derived from multi-temporal RADARSAT-2 datasets
for rice LAI estimation. The relationships of rice LAI with backscattering coefficients and polarimetric
decomposition parameters have been examined in a complete phenological cycle. Most polarimetric
parameters had weak relationships (R2 < 0.30) with LAI at the transplanting, reproductive, and
maturity phase. Stronger relationships (R2 > 0.50) were observed at the vegetative phase. HV/VV
and RVIFD had significant relationships (R2 > 0.80) with rice LAI for the whole growth period. They
were utilized to develop empirical models. The best LAI inversion performance (RMSE = 0.81)
was obtained when RVIFD was used. The acceptable error demonstrated the possibility to use the
decomposition parameters for rice LAI estimation. The HV/VV-based model had a slightly lower
estimation accuracy (RMSE = 1.29) but can be a practical alternative considering the wide availability
of dual-polarized datasets.

Keywords: rice; leaf area index (LAI); polarimetric synthetic aperture radar (PolSAR); RADARSAT-2;
polarimetric decomposition

1. Introduction

The staple food for approximately one-half of the global population is rice [1]. The development
and health status of the rice crop are of great significance. The leaf area index (LAI) of the crop is
crucial in the quantitative description of the canopy structure and photosynthetic processes [2,3].
However, the ground LAI measurements using digital photography [4,5] or integrated sensors [6,7] are
time-consuming and laborious, restricting their practical application over a large region. Spaceborne
or airborne remote sensing techniques and datasets are a possible alternative for the LAI monitoring
at a regional scale [8–10]. Several vegetation indices (VIs) are used to estimate the LAI base on the
contrast in the reflectance among different spectral bands of optical data [11–14]. However, the rice
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cultivation period is typically within the humid and warm months of a year. The cloud cover can be
pervasive, severely affecting the acquisition of cloud-free optical datasets [15,16]. Consequentially,
the application of optical datasets to estimate the rice LAI becomes unpractical.

Synthetic aperture radar (SAR) has both day and night and nearly all-weather imaging capability.
SAR backscatter is influenced by the biophysical characteristics of crops [17–19]. The penetration
depth of microwave energy into the canopy is positively associated with the wavelength. The C-band
microwave has a longer wavelength than X-band. Therefore, the C-band backscatter can provide more
information on the rice subcanopy structure and stems than the X-band backscatter [20]. Interaction
between polarized microwaves and vegetation canopy leads to different responses in different
polarizations of polarimetric SAR (PolSAR) [21,22]. During the last decade, the RADARSAT-2 acquired
a significant volume of C-band quad-pol (VH, VV, HH, and HV) PolSAR datasets. The backscattering
coefficient (σ0) is the most basic SAR parameter that varies at different growing stages of the rice
crop [23–25]. The coefficient is affected by plant moisture content and plant constituents [26–28].
Kumar et al. [29] estimated the LAI of lowland rice using RADARSAT-2 data with a semi-empirical
model. The highest accuracy (RMSE = 0.63) was achieved for non-basmati rice from the tillering to
harvested stages using HV backscatter. Inoue et al. [30] demonstrated that rice LAI had a strong
relationship (R2 = 0.84) with RADARSAT-2 VH backscatter from vegetative to maturing growth periods.
Yang et al. [31] analyzed the RADARSAT-2 backscattering coefficients at the vegetative phase and found
that cross-polarization (VH and HV) data had better correlation with rice LAI than co-polarization (VV
and HH) data. These studies have explored the relationship between C-band backscattering coefficients
and rice LAI. However, their analyses partially covered the rice-growing cycle, and the details of
parameter relationships for each phenological phase were not well characterized. The dynamic
responses of quad-pol backscatter to rice LAI evolution remain to be systematically interpreted using
particular scattering mechanism descriptors. In addition, the potential of polarization combinations
for the rice LAI estimation needs further investigation.

Previous studies revealed that the radar echo from crops was a complicated combination of
different scattering components [32–34] including the surface backscatter from the ground, volume
backscatter from the plants, double-bounce backscatter between the underlying ground and plants,
and multi-scattering mechanisms. The polarimetric decomposition technique is useful for interpreting
the scattering mechanisms. The eigenvector-based Cloude–Pottier decomposition [35] and the
model-based Freeman–Durden decomposition [36] are two widely used decomposition algorithms.
Several polarimetric parameters are obtained to describe the specific scattering properties of the
vegetation. The decomposition parameters have the potential to assess not only the LAI but also the
development of the crop. Jiao et al. [21] examined the parameters derived from both decomposition
algorithms using the RADARSAT-2 data collected over corn and soybean fields. The LAI of the
two crops was highly correlated with entropy and volume scattering. Zhang et al. [37] found the
scattering-type angle and double-bounce scattering were significantly correlated with maize LAI using
simulated C-band PolSAR data. Although the dependence of decomposition parameters on the LAI
of several crops (e.g., corn, soybean, and maize) has been investigated, few studies have focused on
rice. The relationship between the polarimetric parameters and LAI is crop-type specific due to the
different vertical and branching structures [38]. The interactions between the microwave energy and
rice plants can be elucidated clearly by analyzing the temporal and spatial variations of decomposition
components. The dynamic change of quad-pol backscattering coefficients can also be interpreted based
on the decomposition parameters.

In this research, we study the quad-pol backscattering coefficients, Cloude–Pottier decomposition
components, Freeman–Durden decomposition parameters, as well as their combinations. The relationship
between polarimetric SAR variables and rice LAI at different phenological phases during the whole
growing cycle is evaluated. The most suitable polarimetric index or indices for rice LAI estimation can
be found to build empirical models. Four RADARSAT-2 datasets acquired during the 2016 rice-growing
season in Meishan City, Sichuan, China are analyzed.
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2. Materials and Methods

2.1. Study Area and In Situ Observation

Chengdu Plain is one of the major rice cultivation areas in China and is characterized by a
subtropical monsoon climate and basin terrain, with cloudy and rainy weather from May to September.
The study area is in the west of the plain, near Meishan City. Rice is usually farmed from May to August
annually. Four field campaigns were completed simultaneously with the RADARSAT-2 observations
from 15 May 2016 to 26 July 2016. The ground LAI measurements had the same time interval with the
revisit period (24 days) of the RADARSAT-2. Thirty sample sites (50 m × 50 m each) within the study
area were selected for in situ measurements, as seen in Figure 1.
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Figure 1. The study area is shown in the Landsat-8 true-color image acquired on 17 July 2016. Thirty
sample sites are marked in yellow. Eleven ground control points are marked in red.

The LI-COR LAI-2200 instrument was used to measure the LAI at each site. A 90◦ view-cap was
used to mask the operator. All measured LAI values were called effective LAI, which computed LAI
using the gap fraction of the canopy based on Beer’s law [39]. A hand-held Trimble GeoExplorer-2008
was used to record the GPS coordinates of the sample sites as well as 11 ground control points
(GCPs). The GCPs were used to geo-reference the SAR images and in situ datasets. The cultivation
management (transplanting time, planting density, and cultivar), field conditions (field water and
weeds), and biophysical parameters (plant height, plant water content, size of leaves and stems,
and number of tiller and ear) were recorded. Four principle phenological phases (i.e., transplanting,
vegetative, reproductive, and maturity phases) were identified based on the BBCH scale [40] shown in
Table 1.
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Table 1. Rice phenology described by BBCH scale.

Principle Phase BBCH Name

Transplanting 00–09 Germination
10–19 Leaf development

Vegetative 20–29 Tillering
30–39 Stem elongation
40–49 Booting

Reproductive 50–59 Heading
60–69 Flowering

Maturity 70–79 Development of fruit
80–89 Ripening
90–99 Senescence

Rice in the study area was grown under the transplanting procedure occurring mostly in early
May and had about 19, 45, 16, and 30 days for the four principle phenological phases respectively.
The four phases fell on the four dates of in situ observation, as shown in Figure 2.
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Figure 2. Rice phenological phases identified at the 30 sample sites on the four dates of in
situ observation.

Fields were under frequent weed control and inundated with water. The fields were then drained
shortly before the harvest. Due to the differences in the timing of the transplanting, the rice varieties,
and the selection and use of fertilization, the rice growth status varied at different sample sites. At the
first fieldwork carried out on 15 May, rice fields in 67% of the sample sites were in the transplanting
phase. On 8 June, all of the sites were in the vegetative phase. On 2 July, about 47% of the sample sites
were in the reproductive phase. On the date of the final field trip (26 July), more than one-half of the
fields were in the maturity phase.

The growth status of rice plants at the four phenological phases are shown in Figure 3. At the
transplanting phase, rice plants were small and short. As rice entered the vegetative phase, the plant
heights increased, and the number of leaves and stems accumulated. At the reproductive phase,
new elements (tassels and ears) began to appear near the plant tops. With the grain ripeness and plant
senescence, the geometry of the rice canopy became complicated at the maturity phase.
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Figure 3. Growth status of rice plants at the (a) transplanting phase, (b) vegetative phase, (c) reproductive
phase, and (d) maturity phase. The above are nadir-view photographs.

2.2. RADARSAT-2 Datasets and Polarimetric Parameters

Four RADARSAT-2 images were obtained on 15 May, 8 June, 2 July, and 26 July 2016. They
are quad-polarized and single-look complex (SLC). The spatial resolution in the slant range and
azimuth directions is 5.4 m × 7.9 m. The temporal resolution is 24 days. The four acquisition dates are
coincidentally within the four principle phenology phases.

The RADARSAT-2 datasets were processed using the Sentinel Application Platform software
(SNAP) (http://step.esa.int/main/download/). The analyses include radiometric correction,
multi-looking, speckle filtering, and geometry reprojection. Multi-looking was implemented in
the software with the ground range (GR) square pixel option selected, and the number of looks for
azimuth and range direction is 2 and 1, respectively. A 3 × 3 Lee filter was utilized for speckle
reduction. For geometry reprojection, Range-Doppler terrain correction was applied using Shuttle
Radar Topography Mission (SRTM) 1 arcsec Digital Elevation Model (DEM), and the field measured
GCPs were also used for precise geometry correction. The spatial resolution of the processed (ground)
images is 10 m × 10 m. The monostatic antenna configuration of RADARSAT-2 gives approximately
the same backscattering coefficients for HV and VH polarizations. Thus, only HH, HV, and VV data
were used. The combinations of different polarized backscattering coefficients, such as ratios and radar
vegetation index (RVIσ, given by 8HV/(HH+VV+2HV)), were calculated because they were sensitive
to the morphological structure change of rice plants [41,42].

The Cloude–Pottier and Freeman–Durden decomposition algorithms were performed using the
polarimetric decomposition module of the SNAP software. The Cloude–Pottier algorithm decomposed
the target coherence/covariance matrix of PolSAR data into eigenvectors and eigenvalues, from which
the entropy (H), anisotropy (A), alpha (α), and radar vegetation index (RVICP) were obtained [35].
H describes the dominance of the first-contributed scattering mechanism. A represents the power

http://step.esa.int/main/download/
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disparity between the second- and third-contributed scattering mechanisms. α is related to the type
of the dominant scattering mechanism [43]. RVICP measures the complexity and randomness of the
vegetated area [10,29,44]. The Freeman–Durden algorithm modeled the coherence/covariance matrix
as the contribution of three scattering components. The powers of the surface (PS), double-bounce
(PD), and volume (PV) scatterings were obtained after the Freeman–Durden decomposition, as seen
in Figure 4 [36], as well as the ratios of different scattering mechanism, and the radar vegetation
index (RVIFD, given by PV/(PS + PD + PV)) [45]. For vegetation area, surface scattering is the scatter
from the ground. Double-bounce scattering describes the interaction between the plants and ground.
Volume scattering comes from the plant canopy [37,46,47]. The derived images (backscatter and
decomposition images) were registered and stacked. Because the processed images had a pixel size
of 10 m × 10 m while each sample site was 50 m × 50 m, all pixels inside the sample site area were
extracted and averaged.Remote Sens. 2019, 11, x FOR PEER REVIEW  6 of 15 
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Figure 4. The study area is shown in the Freeman–Durden decomposition image (26 July 2016). The red,
green, and blue bands correspond to PD, PV, and PS, respectively.

2.3. Method of Data Analysis and Model Construction

The different transplanting dates of 30 rice sample sites resulted in various phenological phases
on the SAR imaging dates. SAR variables obtained from the multi-temporal datasets associated
with the ground measurements were regrouped into four collections corresponding to the four
phenological phases. For each phase, the data were partitioned into the training dataset (3/4 of the
total) and validation dataset (1/4). The training dataset was used in statistical analyses including data
visualization, regression analysis, and model development. The validation dataset was used for the
accuracy assessment of the model.

The multi-temporal polarimetric parameters and their combinations during the rice phenology
succession were analyzed using boxplots. To better understand the time-varying responses of the
polarimetric parameters to LAI, we conducted the regression analyses not only for the entire growth
cycle but also under different phenological phases. For each phenological phase, the optimal relationship
between rice LAI and each polarimetric parameter was identified according to the highest coefficient
of determination (R2) of the linear, logarithmic, and exponential regression relationships. For the
entire growth cycle, the polynomial (quadratic and cubic) regression fits were additionally performed
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considering the complicated variation of polarimetric parameters during the phenology sequence. The
Statistical Product and Service Solutions (SPSS) software (https://www.ibm.com/analytics/spss-statistics-
software) was used for the regression analyses. Regression models are expressed respectively as

LAI(linear) = b0 + b1 × SARpara, (1)

LAI(logarithmic) = b2 + b3 × ln(SARpara), (2)

LAI(exponential) = b4 × e(b5×SARpara), (3)

LAI(polynomial-quadratic) = b6 + b7 × SARpara + b8 × SAR2
para, (4)

LAI(polynomial-cubic) = b9 + b10 × SARpara + b11 × SAR2
para + b12 × SAR3

para, (5)

where SARpara is the polarimetric parameter. bi (i = 0, 1, . . . , 12) coefficients in the regression equations.
Parameters with the strongest relationship of the rice LAI for the entire growth cycle were used to
construct the inversion models. The difference between the modeled and measured LAI values was
plotted and the linear regression analysis was conducted to quantify the relationship. The inversion
accuracy was quantified by the Root Mean-Square Error (RMSE) using the validation dataset.

3. Results

3.1. Phenological Variation of Ground Measured Rice LAI and Polarimetric SAR Variables

The succession of rice LAI (training dataset) of four phenological phases is shown in Figure 5.
The ranges of LAI values at each phase were illustrated by the boxplots. The trend was illustrated with
the connection of median values at four phases. The LAI increased monotonously during the growth
cycle. In particular, from the transplanting to reproductive phases, a significant increase and narrow
overlaps between phases were observed due to the rapid plant development and consequent increase
of canopy density. As rice plants completed the vegetative growth and entered the reproductive
phase, panicle (later rice heads) emerged from the flag leaf sheath then anthers appeared at the top of
panicle. The basal leaves gradually turned yellow and withered when most of the spikelets completed
flowering. The effect of canopy development on the LAI growth weakened since the growth of stems
and leaves almost stopped. Thus, the increase rate significantly slowed after the reproductive phase.
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Figure 5. Phenological variation of rice LAI derived from the ground measurement.

Figure 6 shows the phenological variation of the basic polarimetric parameters (training dataset)
obtained from the four SAR acquisitions. Different parameters should reflect the characteristics of plant
morphological structure change. Some parameters were dominated by the same physical characteristics
and consequently had similar phenological trends, such as HV and PV (increased monotonously),
and HH and PD (peaked at vegetative phase then decreased). Among quad-polarized backscattering
coefficients, HV backscatter had the lowest values (lower than −17 dB) and increased continuously
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with the phenology sequence. HH backscatter peaked at the vegetative phase (higher than −10
dB), then decreased gradually. VV backscatter had comparable amplitudes with HH backscatter
and declined from the vegetative to reproductive phases. For the Cloude–Pottier decomposition
parameters, the entropy (H) kept the values higher than 0.65 and consistently increased to 0.82, while
the anisotropy (A) sharply dropped from 0.62 to 0.33. The alpha angle (α) climbed to the maximum
(up to 55◦) at the reproductive phase and was generally within an interval from 45◦ to 50◦ at the last
three phases. As for the Freeman–Durden decomposition parameters, the volume scattering power
(PV) rose from −11 to −6 dB during the growing cycle, while the surface scattering power (PS) fell
significantly from −10 to −17 dB. The double-bounce scattering power (PD) increased slightly from the
transplanting phase (−15.2 dB) to the vegetative phase (−14.8 dB) then slowly decreased to −18 dB at
the maturity phase.Remote Sens. 2019, 11, x FOR PEER REVIEW  8 of 15 
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The ratios of the polarimetric parameters and radar vegetation indices (RVIσ, RVIFD, and RVICP)
are plotted in Figure 7. Monotonic trends were observed for most of the ratios, such as HV/HH
and PD/PV. Radar vegetation indices derived from different algorithms responded positively to rice
growth and showed similar trends.
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3.2. Regression Analyses between Rice LAI and Polarimetric Parameters

R2 values of regression analyses are summarized in Table 2. The numbers of samples (training
dataset) used were 15, 42, 18, and 15, respectively, for the transplanting, vegetative, reproductive,
and maturity phases. As shown in the table, for the entire growth cycle, several tested polarimetric
parameters exhibited moderate relationships (R2 > 0.50) with the rice LAI, such as HV/VV, PV/PS,
and RVIs. In comparison with the results obtained with the basic polarimetric parameters, the use
of parameter combinations (ratios and radar vegetation indices) might achieve higher R2 values,
suggesting that LAI was related to multiple scattering mechanisms produced by the complex physical
structure of the scattering elements. Because rice LAI increased monotonously during the growth cycle,
the ratios of two parameters that changed monotonously but moved inversely would enhance the
sensitivity of SAR signatures to the biophysical development of rice plants, such as the PV/PS. Among
all polarimetric descriptors, HV/VV and RVIFD data showed relatively strong relationships (R2 > 0.80).

For the four segmented phenological phases, the strongest relationships between polarimetric
parameters and rice LAI were found at the vegetative phase, during which the HV/VV and RVIFD

values were the most sensitive variables to the LAI variation, as evidenced by high R2 values (0.75
for the HV/VV data and 0.68 for RVIFD data). At the transplanting and reproductive phases, weak
relationships (R2 < 0.30) were observed except for parameters such as HH and VV. At the maturity phase,
polarimetric descriptors lost sensitivity for high LAI values having negligible relationships (R2 < 0.15).
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Table 2. Coefficients of determination (R2) between rice LAI and polarimetric parameters
(training dataset).

Coefficients of Determination (R2)

Transplanting Vegetative Reproductive Maturity Entire Growth Cycle

HV 0.25 L 0.16 E* 0.34 L* 0.00 L 0.52 E*
VV 0.30 L 0.45 L* 0.36 L* 0.00 E 0.08 P*
HH 0.43 L 0.01 E 0.48 L* 0.26 E 0.13 P*

HV/HH 0.17 L 0.16 E* 0.09 L 0.14 E 0.56 P*
HV/VV 0.03 L 0.75 E* 0.09 L 0.02 L 0.81 E*
VV/HH 0.20 L 0.52 E* 0.01 L 0.18 E 0.15 E*

RVIσ 0.06 E 0.50 E* 0.10 L 0.03 E 0.70 L*
H 0.02 E 0.04 L 0.07 L 0.08 E 0.34 P*
A 0.12 E 0.58 E* 0.00 L 0.07 N 0.63 E*
α 0.05 L 0.18 E* 0.02 E 0.00 L 0.43 E*

RVICP 0.16 N 0.26 E* 0.02 N 0.00 E 0.60 P*
PD 0.33 L 0.33 L* 0.21 L 0.05 E 0.31 L*
PS 0.12 L 0.40 E* 0.23 L 0.00 E 0.62 P*
PV 0.09 L 0.15 E* 0.40 L* 0.02 L 0.51 E*

PD/PS 0.03 L 0.03 E 0.00 L 0.04 L 0.21 E*
PD/PV 0.05 L 0.35 L* 0.06 L 0.05 E 0.54 P*
PV/PS 0.03 E 0.54 E* 0.07 L 0.04 E 0.77 P*
RVIFD 0.05 E 0.68 E* 0.11 L 0.04 E 0.84 E*
L Linear regression achieved the highest R2 value. N Logarithmic regression achieved the highest R2 value.
E Exponential regression achieved the highest R2 value. P Polynomial regression achieved the highest R2 value.
* Significance level at 1%.

3.3. Model Development and Validation

Because the HV/VV and RVIFD data were the most relevant to the rice LAI for the entire growth
cycle, the scatterplots and trends of rice LAI (training dataset) as a function of these two parameters
are shown in Figure 8. LAI increased exponentially as the HV/VV or RVIFD increased. In comparison
with the RVIFD data, the HV/VV values were relatively dispersed for LAI higher than 5. Exponential
equations of the best fits for the rice LAI and HV/VV or RVIFD were derived using the training dataset
of all phenological phases and SPSS software. They were

LAI = 39.7× e(0.41×HV/VV), R2 = 0.81 (6)

LAI = 8.8× e(0.55×RVIFD), R2 = 0.84 (7)

On the basis of the validation dataset, the modeling RMSE was 1.29 for (6) and 0.81 for (7).
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Modeled and measured rice LAIs are plotted (validation dataset) in Figure 9. Overestimates
appeared using both models during the seedling period, when ground observed values ranged from 0
to 2. The heterogeneity of water depth and soil roughness could deteriorate the relationship between
the rice LAI and polarimetric parameters [25]. Uncertainty might occur for the models when the
ground observed LAI shows a saturation near 5. The leaf density of rice canopy peaked in this period.
The plant moisture content, seed plumpness, and the randomness of plant canopy gradually changed
and affected the SAR backscatter.
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In a comparison of both models, the RVIFD-based model offered promising results with a small
RMSE of 0.81 and the ability to estimate LAI at high values well. Intuitively, the RVIFD was the most
suitable index for the rice LAI inversion. Possible causes for the best performance included that RVIFD

was calculated as PV/(PS + PD + PV). The development of rice canopy led to a continuous increase
in PV while (PS + PD + PV) integrated the signal from all polarizations and reflected the total power
scattered from the rice fields.

The HV/VV-based model had a slightly larger RMSE of 1.29 in the rice LAI estimation. The increase
in error in comparison with the RMSE for the RVIFD-based model was probably due to the fact that
only amplitude information of the SAR data was considered. Without the polarimetric phase difference
information that relates to the physical structure and dielectric properties of the underlying surface and
vegetation components, the complex microwave scattering process could not be adequately revealed
by the amplitude data alone. Nevertheless, HV/VV is a suitable alternative to RVIFD for monitoring
the rice LAI because dual-polarization SAR data such as the Sentinel-1 SAR are widely-accessible.

4. Discussion

The changes in quantity, geometry, and distribution of leaves, stems, and ears had significant effects
on the SAR backscatter. The responses of backscattering coefficients and decomposition parameters to
the rice plant growth were further interpreted. At the transplanting phase, rice plants were sparsely
distributed in the fields, with the measured LAI ranged from 0.35 to 1.42. The water in the fields resulted
in strong surface scattering, and the backscatter characteristics of rice fields were mainly affected by the
water [48]. In this period, VV backscatter was moderate, with −13 dB on the average. HV backscatter
was low and with −22 dB on the average. HH backscatter started at relatively low values, with an
average of −11.5 dB as shown in Figure 6a. Moderate entropy (about 0.68) and anisotropy (about 0.62)
are observed in Figure 6b, indicating two strong scattering components existed [49]. Due to the small
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rice plants, the amount of scattering attenuation was small. The median value of the alpha angle was
~38◦, suggesting that the surface scattering contributed significantly to the total backscatter [49,50].
The strong surface scattering power (−10 dB on average) and weak double-bounce scattering (−15 dB
on average) supported this assessment, as seen in Figure 6c. The sparse rice canopy also resulted in
relatively weak volume scattering (−11 dB on average), which predicted low HV backscatter values [34].
Strong surface scattering contributed to moderate VV values [51]. Weak double-bounce scattering
resulted in low HH values [49,50]. The weak relationship between polarimetric parameters and rice
LAI at transplanting phase was mainly due to the disturbance caused by the diversity of field conditions
such as field water depth and soil roughness.

At the vegetative phase, the measured rice LAI had a 0.87–5.81 range. The wide range of LAI
values implied the marked temporal and spatial variation of rice vegetative growth. As the plants
grew, HV backscatter increased by 3 dB, as seen in Figure 6a. HH backscatter increased by 3.5 dB due
to the increase in the plant size. As a result, volume scattering and double-bounce scattering increased,
as seen in Figure 6c. VV backscatter increased slightly by ~0.4 dB because it was attenuated by the
strong extinction caused by the vertical orientated stems and leaves as well as possibly the Brewster
angle effect [18,49,52]. The alpha angle was mostly within an interval from 44◦ to 48◦, even reaching
52◦, together with increased entropy and decreased anisotropy, as seen in Figure 6b. Lopez-Sanchez et
al. [49,50] and Koppe et al. [52] attributed these to the presence of adequate double-bounce scattering,
which was on par with the surface scattering. At the vegetative phase, the radar signal responded
to the accumulation of leaves and stems, resulting in the moderate to high relationships (R2 > 0.50)
for several parameters (e.g., HV/VV, PV/PS, and RVIFD). For most of the polarimetric parameters, the
R2 value at the vegetative phase had the dominant influence on the overall R2. One reason was that
the radar signal responded clearly to the obvious biophysical changes of rice plants in this period.
In addition, the vegetative phase not only went through from the tillering stage to the booting stage
but also was the longest phenological phase (almost accounted for one-half of a growth cycle). Thus,
there were a greater number of LAI measurements for the vegetative phase within a long time span.

At the reproductive phase, rice completed its vegetative growth, and the LAI ranged from
4.33 to 7.59. Emerged tassels and ears were new scatterers in the upper portion of the canopy.
A slight increase (about 0.5 dB) was observed in the HV backscatter, as seen in Figure 6a. The dense
canopy attenuated the microwave energy penetrated the plants and bounced off the ground, as seen
in Figure 6c [53]. Accordingly, HH backscatter decreased by 1.5 dB. The predominantly vertical
orientation of most of the stems and leaves led to the attenuation in the VV polarization. The alpha
angle increased, to a maximum of 55◦, and the median value of anisotropy fell to 0.35 (Figure 6b),
indicating an enhancement of volume scattering along with the rice phenology advancement. The weak
relationship between LAI and the polarimetric parameters this time mainly suffered from a saturation
trend of LAI values. Rice ears and the changes in plant structure and moisture were attributed to the
polarimetric parameter variation. The relationship between LAI and the polarimetric parameters was
less straightforward.

At the maturity phase, the rice LAI ranged from 4.84 to 6.92. The augmentation of rice grain
produced strong backscattering, which contributed to the increase (about 1 dB) in HV backscatter,
as shown in Figure 6a. HH backscatter further decreased by almost 0.5 dB. The reduction was mainly
due to a large amount of rice canopy attenuation. The orientation of the plants became random
and the moisture content of the plants reduced. Therefore, less attenuation occurred in the VV
polarization [52]. High entropy (0.82 on average) and low anisotropy (0.33 on average) denoted the
almost random volume structure of the rice plants, as seen in Figure 6b. The dominant scattering
mechanism transformed into volume scattering (Figure 6c). Despite the attenuation caused by the
dense canopy, the C-band RADARSAT-2 microwave energy could still penetrate the rice plants and
reveal the changing information, while the LAI reached saturation. Therefore, the dependence of the
polarimetric parameters on the LAI was further weakened.
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Although the relationships of the rice LAI to RVIFD and HV/VV were empirically established,
uncertainty remained during the rice-growing cycle. The uncertainty could be attributed to the
diversity of the cultivation management and field circumstances [54]. To improve the predictive
accuracy, physical model should be used to elucidate the effects of plant and field properties on the
polarimetric parameters [29,55].

5. Conclusions

We estimated the LAI of rice using the multi-temporal quad-polarized RADARSAT-2 datasets.
Polarimetric parameters including backscattering coefficients, the Cloude–Pottier and Freeman–Durden
decomposition parameters, and their combinations were analyzed. The relationship between the
rice LAI and polarimetric parameters as well as the phenology evolution was explored. HV/VV and
RVIFD showed strong relationships (R2 > 0.80) with the rice LAI for the entire growth cycle. Both
were used to develop two empirical models, respectively. The strongest relationship (R2 = 0.84) and
lowest error (RMSE = 0.81) were achieved when the RVIFD was used in the modeling. The model
was simple but had satisfactory results in the rice LAI inversion. The HV/VV-based model had a
slightly lower estimation accuracy (RMSE = 1.29) but could be a practical alternative considering
that fully polarimetric data is expensive. Thus, it should be possible to assess rice LAI timely using
multi-temporal C-band PolSAR datasets.
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