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Abstract: Recently, convolutional neural networks (CNNs) achieve impressive results on remote
sensing scene classification, which is a fundamental problem for scene semantic understanding.
However, convolution, the most essential operation in CNNs, restricts the development of CNN-based
methods for scene classification. Convolution is not efficient enough for high-resolution remote
sensing images and limited in extracting discriminative features due to its linearity. Thus, there has
been growing interest in improving the convolutional layer. The hardware implementation of the
JPEG2000 standard relies on the lifting scheme to perform wavelet transform (WT). Compared with
the convolution-based two-channel filter bank method of WT, the lifting scheme is faster, taking up
less storage and having the ability of nonlinear transformation. Therefore, the lifting scheme can
be regarded as a better alternative implementation for convolution in vanilla CNNs. This paper
introduces the lifting scheme into deep learning and addresses the problems that only fixed and finite
wavelet bases can be replaced by the lifting scheme, and the parameters cannot be updated through
backpropagation. This paper proves that any convolutional layer in vanilla CNNs can be substituted
by an equivalent lifting scheme. A lifting scheme-based deep neural network (LSNet) is presented to
promote network applications on computational-limited platforms and utilize the nonlinearity of the
lifting scheme to enhance performance. LSNet is validated on the CIFAR-100 dataset and the overall
accuracies increase by 2.48% and 1.38% in the 1D and 2D experiments respectively. Experimental
results on the AID which is one of the newest remote sensing scene dataset demonstrate that 1D
LSNet and 2D LSNet achieve 2.05% and 0.45% accuracy improvement compared with the vanilla
CNNs respectively.

Keywords: scene classification; lifting scheme; convolution; CNN

1. Introduction

1.1. Background

High-resolution remote sensing images contain complex geometrical structures and spatial
patterns and thus scene classification is a challenge for remote sensing image interpretation.
Discriminative feature extraction is vital for scene classification which aims to automatically assign a
semantic label to each remote sensing image to know the category it belongs to. Recently, convolutional
neural networks (CNNs) has attracted increasing attention in remote sensing community [1,2],
which can learn more abstract and discriminative features and achieve the state-of-the-art performance
on classification. A typical CNN framework is shown in Figure 1, where three types of modules are cast
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into, including feature extraction module, quantization module, and trick module. The quantization
module includes spatial quantization, amplitude quantization, and evaluation quantization. Pooling
is a typical spatial quantization used for downsampling and dimensionality reduction to reduce
the number of parameters and calculations while maintaining significant information. Amplitude
quantization is a nonlinear process that compresses real values into a specific range. Examples
are sigmoid, tanh, ReLU [3] and its variants [4–6], which are often used to activate neurons
because nonlinearity is vital for strengthening the approximation and representation abilities.
Evaluation quantization is performed to obtain the outputs that meet the specific requirements.
For instance, the softmax function is often used in the final hidden layer of a neural network to
output classification probabilities. The trick module contains some algorithms such as dropout [7] and
batch normalization [8], for improving training effects and achieving better performance. Among all
the modules, the feature extraction module is the most essential, which is based on convolution to
extract image features. It invests CNN with some favourable characteristics such as local perception,
parameter sharing, and translation invariance.

Figure 1. Convolutional neural network (CNN) framework. CNN generally contains three modules,
including feature extraction module, quantization module, and tricks module. These three modules
are repeatedly stacked to build the deep structure, and finally, a classification module is applied for
the specific classification task. The trick module is embedded in the other two modules, which is not
displayed in this figure.

The extraction of scene-level discriminative features is the key step of scene classification.
In CNN-based methods, convolution is the most critical technology for remote sensing imagery
feature extraction. It has the properties of local connection, weight sharing, and translation invariance,
which makes full use of the spatial relationship between pixels. However, convolution has some
intrinsic drawbacks, such as considerable computational complexity and limitation in transformation
capacity due to its linearity. For high-resolution remote sensing images, the computation challenge
is severe, and the considerable computational complexity restrains scene classification from that
conducted on computationally limited hardware platforms. In addition, it is vital to learn
discriminative feature representation of remote sensing images, but the linearity impedes CNNs from
extracting more powerful features with better representation and fitting well on complex functions.
To extract more representative features, the literature [9] employs collaborative representation after a
pre-trained CNN. The literature [10] integrates multilayer features of CNNs. In [11], the last two fully
connected layer features of pre-trained VggNet are fused to improve the discriminant ability. In [12],
the pre-trained deep CNN is combined with a sparse representation to improve the performance.
Most of these methods increase the dimension of features and none of them are proposed to improve
the convolutional layer. Therefore, exploration for a better method to extract features is still of great
significance for future CNN-based scene classification research.
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Convolution is also the paramount operation of the traditional implementation of the wavelet
transform (WT). The discrete wavelet transform (DWT) is one branch of WT, which is traditionally
implemented by the two-channel filter bank representation [13]. It is widely applied in scientific
fields because it has the favourable characteristic of time-frequency localization, but is limited by the
considerable computation complexity and the linearity brought by convolution. To overcome those
difficulties, W. Sweldens proposed the lifting scheme [14–18], which mainly contains three steps: split,
predict, and update. Split: The input signal is decomposed into two non-overlapping sample sets.
A common method is the lazy wavelet transform, which splits the original signal into an even subset
and an odd subset, both of which contain half the number of input samples. Predict: The two subsets
divided by a signal with strong local correlation are highly correlated in most cases. With one subset
known, another subset is reasonably predicted with some predicted error produced. In particular,
the predicted errors are all zero for a constant signal. Update: One key characteristic of coarse signals
is that they have the same average as the input signal, which is guaranteed by this step. The lifting
scheme is an efficient algorithm for traditional DWT as Daubechies and W. Sweldens proved that any
FIR wavelet transform can be decomposed into a series of prediction and update steps [19]. The form
of the lifting scheme makes it easier to perform DWT on a hardware platform, which was adopted as
the algorithm used in the wavelet transform module in the JPEG2000 standard [20,21]. Furthermore,
the second-generation wavelet, produced directly by designing the prediction and update operators in
the lifting scheme [16], can be constructed to perform the nonlinear transformation [22–26]. Briefly,
compared with the traditional wavelet transform, the lifting scheme is superior in the following
aspects [19]: (1) It leads to a faster implementation of the discrete wavelet transform. (2) It allows a
fully in-place implementation of the fast wavelet transform, which signifies that the wavelet transform
can be calculated without allocating auxiliary memory. (3) Nonlinear wavelet transforms are easy to
build with the lifting scheme. A typical example is the integer wavelet transforms [25].

Therefore, the lifting scheme is a more efficient algorithm for DWT compared with the
convolution-based method. In this paper, we prove that the lifting scheme is also an efficient
implementation for convolution in the CNN and can substitute the convolutional layer to extract
better representations. With the lifting scheme introduced, neural networks share the advantages of
nonlinear transformation, all-integral transformation, and the facility of hardware implementation.

1.2. Problems and Motivations

This paper develops the method from the following aspects:

1. Compressing the convolutional layer is critical for easing the computational burden of
high-resolution remote sensing imagery analysis and promoting CNN applications on
computationally limited platforms. Methods of compressing the convolutional layer are diverse,
including utilizing 1 × 1 convolution to reduce the number of parameters [27,28], depthwise
separable convolution [29], and replacing the large size convolutional kernel with several
small-size kernels [30]. Most of these methods inevitably result in some accuracy losses. While
the lifting scheme is an equivalent implementation for traditional DWT, this paper provides a
new perspective on this problem, inspired by the successful application of the lifting scheme on
the hardware implementation of the JPEG2000 standard. From this aspect, this paper replaces
the vanilla convolutional layer with the lifting scheme, which may be a new direction for better
implanting the neural network to computationally limited hardware platforms.

2. Nonlinearity is vital for expanding the function space of CNN and learning discriminative feature
representation of remote sensing images. However, the utilization of the convolutional layer
limits CNN in extracting favourable representations, where the intrinsic linear characteristic
of convolution is responsible. Considering that one of the advantages of the lifting scheme is
its extension to nonlinear transformation, this paper proposes a nonlinear feature extractor to
enhance the representation ability of neural networks.
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3. To insert the lifting scheme into neural networks, for example, to substitute the convolutional
layer with the lifting scheme, it is necessary to determine the inner relationship between the
lifting scheme and the convolution. Daubechies and W. Sweldens proved that any FIR wavelet
transform can be decomposed into a series of lifting and dual lifting steps [19]. In other words,
all the first-generation wavelets have the equivalent lifting scheme. However, convolution kernels
in CNN are somewhat different from the filters in the two-channel filter bank representation
of DWT. In DWT, filter coefficients are pre-designed with some strict restraints and prefixed.
In contrast, parameters of convolutional kernels in CNN, which are commonly called weights,
are trained and updated ceaselessly in the training stage. Moreover, two-dimensional convolution
kernels in the CNN are most non-separable, bringing difficulties for lifting scheme implementation.
Therefore, this paper places great emphasis on expanding the few filters that can be replaced with
the lifting scheme to convolution kernels with random-valued parameters.

4. The lifting scheme must be compatible with the backpropagation mechanism for optimization.
Backpropagation empowers neural networks such that they can learn any arbitrary mapping
of input to output [31]. To embed the lifting scheme into neural networks without harming
the learning ability, parameters in the lifting scheme must also be trained and updated through
backpropagation, which needs to break through some restricts in the original lifting scheme.

1.3. Contributions and Structure

In this paper, the lifting scheme is introduced into neural networks to serve as the feature extraction
module, and a lifting scheme-based deep neural network (LSNet) method is proposed to enhance
network performance. The main contributions are summarized as follows. (1) This paper introduces
the lifting scheme to propose a novel CNN-based method for scene classification, which has potential in
easing the computational burden. (2) This paper expands the range of filter bases that can be replaced
with the lifting scheme, and the convolution kernel with random-valued parameters are proven to have
the equivalent lifting scheme. (3) A learnable lifting scheme block and the backpropagation approach
are given. Therefore, any vanilla convolutional layer in CNNs can be replaced with its relative lifting
scheme. (4) A novel lifting scheme-based deep neural network (LSNet) model is presented using a
nonlinear lifting scheme that is constructed by nonlinear operators. The nonlinear lifting scheme is
used as a feature extractor to substitute the vanilla linear convolutional layer to learn discriminative
feature representation of remote sensing images. (5) LSNet is validated on the CIFAR-100 and then
evaluated on the AID datasets. Experimental results demonstrate that the LSNet outperforms the
vanilla CNN and has potential in remote sensing scene classification.

The rest of this paper is organized as follows. Section 2 describes the proposed method and the
datasets. Section 3 describes the experimental results on the CIFAR-100 and AID datasets. Section 4
analyzes the results and discusses our future research directions. Section 5 closes with a conclusion.

2. Materials and Methods

In this section, the equivalence between the lifting scheme and the convolution in CNNs is first
proven, extending the few wavelet bases that can be replaced with the lifting scheme to convolution
kernels with random-valued parameters. With that, the relative lifting scheme is derived for a
1 × 3 convolution kernel as an example. Finally, we propose a novel lifting scheme-based deep neural
network (LSNet), substituting the linear convolutional layers in CNNs with the nonlinear lifting
scheme, demonstrating the superiority of the lifting scheme to introduce nonlinearity into the feature
extraction module. The datasets used in the experiment are also described in this section.

2.1. Equivalence between the Lifting Scheme and Convolution

In the two-channel filter bank representation of the traditional wavelet transform, a low-pass
digital filter h and a high-pass digital filter g are used to process the input signal x, followed by a
downsampling operation with base 2, as shown in Equations (1) and (2).
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a = (x ∗ h) ↓ 2 (1)

d = (x ∗ g) ↓ 2 (2)

The filter bank is elaborately designed according to requirements such as compact support
and perfect reconstruction, while downsampling is used for redundancy removal. The low-pass
filter is highly contacted with the high-pass filter. In other words, with the low-pass filter designed,
the high-pass filter is consequently generated. Therefore, the wavelet bases of the first-generation
wavelets are finite, restricted, and prefixed. In contrast, parameters of convolution kernels in CNNs are
changing ceaselessly during backpropagation, which makes it necessary to expand the lifting scheme
to be equivalent to a random-valued filter. In addition, to fit the structure of the convolutional layer,
the detailed component d generated by the lifting scheme is removed while the coarse component a is
retained in the following proof.

Consider a 1D convolution kernel represented by h = [h0, h1, . . . , hk−1]. It is a finite impulse
response (FIR) filter from the signal processing perspective, as only a finite number of filter coefficients
are non-zero. The z-transform of the FIR filter h is a Laurent polynomial given by

H(z) =
k−1

∑
i=0

hiz−i (3)

The degree of the Laurent polynomial H(z) is

deg(H(z)) = k− 1 (4)

In contrast to the convolution in the signal processing field [32,33], convolution in the CNN omits
the reverse operation. The convolution between the input signal x and the convolution kernel h can be
written as

y = x� h = x ∗ h̄ (5)

where y represents the matrix of output feature maps. Operators “�” and “∗” represent the
cross-correlation and the convolution in the spotlight of digital signal processing, respectively, while h̄
is the reversal signal of h. The z-transform of Equation (5) is

Y(z) = X(z)H(z−1) (6)

where H(z−1) is the z-transform of the reversal sequence h̄ = [hk−1, . . . , h1, h0].
In the lifting scheme implementation of traditional wavelets, a common method in the split stage

is splitting the original signal x = [x0, x1, x2, ...] into an even subset xe = [x0, x2, ..., x2k, ...] and an odd
subset x = [x1, x3, ..., x2k+1, ...]. Transforming the signal space to the z-domain, the two-channel filter
bank representation shown in Equations (1) and (2) is equivalent to Equation (7), with A(z) and D(z)
to represent the z-transform of a and d.(

A(z)
D(z)

)
= PT(z−1)

(
Xe(z)
Xo(z)

)
(7)

Xe(z) and Xo(z) are the z-transform of xe and xo, which are the even subset and odd subset of x,
respectively. P(z) is the polynomial matrix of h and g:

P(z) =

(
He(z) Ge(z)
Ho(z) Go(z)

)
(8)
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where He(z) and Ho(z) are the z-transform of the even subset he and the odd subset ho of h, respectively,
while Ge(z) and Go(z) are the z-transform of the even subset ge and the odd subset go of g, respectively.

Different from the DWT in Equations (1) and (2), there is only one branch in the convolution
in CNN, as shown in Equation (6). To adapt to the particular form of the convolution in CNN,
we maintain the low-pass filter h while discarding the high-pass filter g, and modify the polynomial
matrix to preserve only the relative part of H(z), as in Equation (9).

P(z) =

(
He(z)
Ho(z)

)
(9)

Instead of the lazy wavelet transform, we use the original signal x = [x0, x1, x2, ...] and a time-shift
signal x′ = [x1, x2, ...] as xe and xo in the first stage to obtain the same form as Equation (6), as shown
in Equation (10).

PT(z−2)

(
X(z)

zX(z))

)
= (He(z−2) + zHo(z−2))X(z)

= X(z)H(z−1)

(10)

Furthermore, the polynomial matrix P(z) can be decomposed into a multiplication form of finite
matrices and thus is completed by finite prediction and update steps. As mentioned above, both He(z)
and Ho(z) are Laurent polynomials. If the following conditions are satisfied:

He(z) 6= 0, Ho(z) 6= 0

deg(He(z)) ≥ deg(Ho(z))
(11)

There always exists a Laurent polynomial q(z) (the quotient) with deg(q(z)) = deg(He(z)) −
deg(Ho(z)), and a Laurent polynomial r(z) (the remainder) with deg(r(z)) < deg(Ho(z)) so that

q(z) = He(z)/Ho(z) (12)

r(z) = He(z)%Ho(z) (13)

Iterating the above step, P(z) is then decomposed. As convolution kernels frequently used in
CNN are commonly oddly size, such as 1 × 3, 3 × 1 [34], 3 × 3, 5 × 5, the above conditions are
generally satisfied. Comparing Equation (6) with (10), we reach a conclusion that convolution in CNN,
which is with random-valued parameters, has equivalent lifting scheme implementation.

2.2. Derivation of the Lifting Scheme for a Relative Convolutional Layer

2.2.1. Lifting Scheme for 1 × 3 Convolutional Layer

In this subsection, we derive the relative lifting scheme for a 1 × 3 convolutional layer as an
example to illustrate the decomposition of P(z) with the Euclidean algorithm. Given a convolution
kernel h = [h0, h1, h2], its polynomial matrix specifically is

P(z) =

(
He(z)
Ho(z)

)
=

(
h0 + h2z−1

h1

)
(14)

The first step of decomposition is to divide He(z) by Ho(z) and obtain the quotient and remainder.

r1(z) = He(z)%Ho(z) = h0

q1(z) = He(z)/Ho(z) =
h2

h1
z−1

(15)
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Then, the divisor Ho(z) in the first step serves as the dividend in the second step, divided by the
remainder r1(z) in the first step.

r2(z) = Ho(z)%r1(z) = 0

q2(z) = Ho(z)/r1(z) =
h1

h0

(16)

Iteration stops after two steps as the final remainder is 0 and the dividend in the final step
Ho(z) = h1 = gcd(He(z), Ho(z)), where the operator gcd(·) stands for the greatest common divisor.

With quotients and remainders obtained above, P(z) is decomposed into the form of matrix
multiplication, as Equation (17) shows.

P(z) =

(
q1(z) 1

1 0

)(
q2(z) 1

1 0

)(
h0

0

)
=

(
1 h2

h1
z−1

0 1

)(
1 0
h1
h0

1

)(
h0

0

)
(17)

Therefore,

PT(z−2) =
(

h0 0
)(1 h1

h0

0 1

)(
1 0

h2
h1

z2 1

)
(18)

Given the matrix multiplication form in Equation (18), parameters of the lifting scheme, including
the prediction and update operators and the scaling factor, are thus obtained. The 1 × 3 convolutional
layer and its equivalent lifting scheme in one spatial plane are shown in Figure 2. In the
1 × 3 convolution, the convolution kernel moves across the input row by row in the horizontal
direction to perform the sliding dot product. The lifting scheme can simultaneously process the
entire input image within each of the steps listed in Table 1.

Figure 2. Equivalence between the 1 × 3 convolution and the lifting scheme. The convolution kernel
moves across the entire input image row by row to conduct the sliding dot product and generate the
output feature maps. The lifting scheme can process the entire input image in parallel within each
step. The lifting scheme implementation with three steps is equivalent to a vanilla 1 × 3 convolution in
one plane.

As illustrated in Table 1, the input image passes through the three steps in the lifting scheme.
In the split stage, the input is transformed into 2 branches, xe and xo. Different from the lifting scheme
in [14], we utilize a sliding window to obtain two branches instead of the lazy wavelet transform.
Then, xo is predicted by xe with the predict operator h2

h1
z2, the outcome of which is used to update xe.

The final output is obtained by scaling the updated xe by the factor h0.
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Table 1. Steps of the lifting scheme equivalent to 1 × 3 convolutional layer.

Step Illustration

split xe[i] = x[i], xo[i] = x[i + 1]

predict xo[i] = xo[i] + h2
h1
× xe[i + 2]

update xe[i] = xe[i] + h1
h0
× xo[i]

scaling y[i] = h0 × xe[i]

Note that notation x[i] represents the ith column in image x.

2.2.2. The Lifting Scheme for the 2D Convolutional Layer

For a convolutional layer with 2D convolutional kernels, the lifting scheme can also be realized
through the 1D lifting scheme. The 2D convolution operation is the sum of several 1D convolution
operations. For instance, the output of the convolution operation between a m× n input image and
a 3× 3 convolutional kernel has a size of (m− 2)× (n− 2). Then, the element on the i-th row, j-th
column of the output matrix is obtained by

y(i, j) =
2

∑
u=0

2

∑
v=0

x(i + u, j + v) · h(u, v) (19)

which can be rewritten as

y(i, j) =
2

∑
v=0

x(i, j + v) · h(0, v) +
2

∑
v=0

x(i + 1, j + v) · h(1, v) +
2

∑
v=0

x(i + 2, j + v) · h(2, v) (20)

In other words, the 2D convolution operation is equivalent to the summation of three 1D
convolution operations. As the relative lifting scheme of the 1D convolution has been worked out as
the right side of Figure 2 shown, the 2D lifting scheme is simply the summation of the relative 1D
lifting scheme.

Thus, any convolution kernels with random-valued parameters have equivalent lifting scheme
implementation. As the prediction operator and update operator in the lifting scheme can be designed
to fit other requirements, which correspond to a larger serving range than vanilla convolution,
the lifting scheme is the superset of vanilla convolution. In other words, the vanilla convolutional layer
is just a special case of the lifting scheme. To improve the feature extractor in the CNN, a more powerful
lifting scheme structure can be designed by choosing other predict operators and update operators.

2.2.3. Backpropagation of the Lifting Scheme

In this part, we propose the backpropagation algorithm to train and update parameters in the
lifting scheme. For simplicity, a new list of weights w = [w0, w1, w2] is used to represent the parameters
in Figure 2 as

w0 = h0, w1 =
h1

h0
, w2 =

h2

h1
(21)

Assume the backpropagation error from the next layer is L, then the gradient with respect to this
layer’s output y is obtained by

∆y(i, j) =
∂L

∂y(i, j)
(22)

where y(i, j) represents one pixel in the output feature map y.
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According to the derivation rule, the gradients with respect to the weights are obtained as follows.

∆w0 = ∑
i

∑
j

∂L
∂y(i, j)

∂y(i, j)
∂w0

= ∆y� x + w1 · ∆y� x′ + w1 · w2 · x′′ (23)

∆w1 = ∑
i

∑
j

∂L
∂y(i, j)

∂y(i, j)
∂w1

= w0 · ∆y� x′ + w0 · w2 · ∆y� x′′ (24)

∆w2 = ∑
i

∑
j

∂L
∂y(i, j)

∂y(i, j)
∂w2

= w0 · w1 · ∆y� x′′ (25)

where x′ is the map whose elements in each row are the one-position left shifting elements in
the corresponding row of x. x′′ is the map whose elements in each row are the two-position left
shifting elements in the corresponding row of x. x′ and x′′ maintain the same size as x with some
boundary extension methods. The operator “�” represents the cross-correlation between two matrices.
With these gradients, the weights can be updated by stochastic gradient descent.

2.3. Lifting Scheme-Based Deep Neural Network

In this section, the lifting scheme is introduced into the deep learning field, and a lifting
scheme-based deep neural network (LSNet) method is proposed to enhance network performance.
From Sections 2.1 and 2.2, the lifting scheme can substitute the convolutional layer because it can
perform convolution and utilize backpropagation to update parameters. Specifically, operators in the
lifting scheme are flexible, which can be designed not only to make the lifting scheme equivalent to
vanilla convolutional layers but also extended to meet other requirements. Thus, we develop the LSNet
with nonlinear feature extractors utilizing the ability of nonlinear transformation of the lifting scheme.

2.3.1. Basic Block in LSNet

Nonlinearity enables neural networks to fit complex functions and thus strengthens their
representation ability. As the lifting scheme is capable of constructing nonlinear wavelets, we introduce
nonlinearity into the feature extraction module to build the LSNet. It is realized by designing nonlinear
predict and update operators in the lifting scheme, which demonstrates the enormous potential of the
lifting scheme to perform nonlinear transformation and enhance the nonlinear representation of the
neural network.

We construct the basic block in LSNet based on ResNet34 [35], as shown in Figure 3. The first layer
in the basic block is a 3 × 3 convolutional layer, which is used to change the number of channels and
downsampling. The middle layer is the LS block, mainly for feature extraction, with the same number
of channels between the input and the output. The plug-and-play LS block is used to substitute the
vanilla convolutional layer without any other alterations. In the LS block, the input is split into two
parts, including xe and xo. The nonlinear predict operator and update operator are constructed by a
vanilla convolution kernel followed by a nonlinear function. xo is then predicted by xe to gain the
detailed component, which is discarded after the update step. xe is updated by the detailed component,
the outcome of which is the coarse component and used as the final output of the LS block. Finally,
we add a 1 × 1 convolutional layer as the third layer to enhance channel-wise communication. Batch
normalization and ReLU are followed by the first two layers for overfitting avoidance and activation,
respectively. The identity of the input through a shortcut is added to the output of the third layer,
followed by batch normalization. The addition outcome is again activated by ReLU, which is the final
output of the basic block.
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Figure 3. Basic block in LSNet.

As both the 1D and 2D convolutional layers are widely used, we propose the 1D and 2D LS block,
named the LS1D block and LS2D block, respectively. The specific processes of which are illustrated in
Table 2.

Table 2. Lifting scheme steps of LS1D block and LS2D block.

Step LS1D Block LS2D Block

split xe[i] = x[i], xo[i] = x[i + 1] xe[i, j] = x[i, j], xo[i] = x[i + 1, j + 1]

predict xo = xo−N { Pconv1D(xe) } xo = xo−N { Pconv2D(xe) }

update xe = xe +M{ Uconv1D(xo) } xe = xe +M{ Uconv2D(xo) }
Note that notation x[i] represents the ith column in image x while the notation x[i, j] represents the ith row, jth column
pixel in the image x.

Note thatN {·} andM{·} denote the nonlinear transformation in the predict step and the update
step, respectively. PconvnD(·) and UconvnD(·) represent the vanilla nD convolution operation in the
predict and the update step, respectively. The operatorsN { PconvnD(·) } andN { UconvnD(·) } are
the prediction and update operators, respectively, which are changeable to meet other requirements.

2.3.2. Network Architecture and Settings

The network architecture of LSNet is shown in Figure 4. The input of LSNet passes through a
single LS block and a 1 × 1 convolutional layer for initial feature extraction. The feature maps are then
processed by stacked basic blocks to obtain low dimension image representation, which is followed by
an average pooling for dimension reduction. Finally, the representation is unfolded as a 1D vector,
and processed by a fully connected layer and a softmax function to obtain the output.

Figure 4. LSNet architecture.
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The modified ResNet34 is chosen as the baseline model to evaluate the performance of LSNet.
Experiments are separately conducted for the 1D convolution and the 2D convolution, as both are
widely used. The setups of each network are listed in Table 3.

In Table 3, the size and the number of convolution kernels in vanilla convolutional layers are
listed. For LSNet, the structure of the LS1D block and LS2D block are shown in Table 2, while the
number represents the depth of the output. To demonstrate the effect of nonlinearity, we use five
different nonlinear functions to construct different LS blocks to compare the performance, which are
ReLU [3], leaky ReLU [4], ELU [5], and CELU and SELU [6].

Table 3. Network architectures in contrast experiments.

Layer ResNet-1d LSNet-1d ResNet-2d LSNet-2d

LS1 1× 3, 3 LS1D block, 3 1× 3, 3 LS2D block, 3

C1 1× 1, 64

M1


1× 3, 64

1× 3, 64

1× 1, 64

 × 3


1× 3, 64

LS1D block,64

1× 1, 64

 × 3


3× 3, 64

3× 3, 64

1× 1, 64

 × 3


3× 3, 64

LS2D block,64

1× 1, 64

 × 3

M2


1× 3, 128

1× 3, 128

1× 1, 128

 × 4


1× 3, 128

LS1D block,128

1× 1, 128

 × 4


3× 3, 128

3× 3, 128

1× 1, 128

 × 4


3× 3, 128

LS2D block,128

1× 1, 128

 × 4

M3


1× 3, 256

1× 3, 256

1× 1, 256

 × 6


1× 3, 256

LS1D block,256

1× 1, 256

 × 6


3× 3, 256

3× 3, 256

1× 1, 256

 × 6


3× 3, 256

LS2D block,256

1× 1, 256

 × 6

M4


1× 3, 512

1× 3, 512

1× 1, 512

 × 3


1× 3, 512

LS1D block,512

1× 1, 512

 × 3


3× 3, 512

3× 3, 512

1× 1, 512

 × 3


3× 3, 512

LS2D block,512

1× 1, 512

 × 3

average pooling, fully connected, Softmax

In the experiment on the AID dataset, we use the stochastic gradient descent (SGD) as an optimizer,
with a momentum of 0.9 and a weight decay of 5× 10−4. We train the training set for 100 epochs,
setting the mini-batch size as 32. The learning rate is 0.01 initially, which decreases by 5 times every
25 epochs. For the CIFAR-100 dataset, all the settings are the same except that the mini-batch size is
128, and the initial learning rate is 0.1.

2.4. Materials

LSNet is firstly validated using the CIFAR-100 dataset [36], which is one of the most widely
used datasets for deep learning reaches. Then, we conduct experiments on the AID dataset [37] to
demonstrate the effectiveness of LSNet on the scene classification task.

CIFAR-100 dataset: This dataset contains 60,000 images, which are grouped into 100 classes.
Each class contains 600 32 × 32 colored images, which are further divided into 500 training images
and 100 testing images. The 100 classes in the CIFAR-100 dataset are grouped into 20 superclasses.
In this dataset, a “fine” label indicates the class to which the image belongs, while a “coarse” label
indicates the superclass to which the image belongs.

AID dataset: The AID dataset is a large-scale high-resolution remote sensing dataset proposed
by Xia et al. [37] for aerial scene classification. With high intra-class diversity and low inter-class
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dissimilarity, the AID dataset is suitable as the benchmark for aerial scene classification models.
Thirty classes are included, each with 220 up to 420 600 × 600 images. In our experiment, 80% images
of each class are chosen as the training data, while the rest 20% are chosen as testing data. Each image
is resized to 64 × 64. Some samples of the AID dataset are shown in Figure 5.

(a) airport (b) church (c) dense residential (d) industrial (e) medium residential

(f) park (g) pond (h) resort (i) river (j) square

Figure 5. Some samples of AID dataset.

3. Results

In this section, LSNet is firstly validated using the CIFAR-100 dataset. Then, we put
emphasis on evaluating LSNet on the AID dataset to demonstrate the effectiveness of LSNet on
the scene classification task, the performance of which is compared with ResNet34 that utilizes
vanilla convolution.

3.1. Results on the CIFAR-100 Dataset

The overall accuracy of the CIFAR-100 test set is used to evaluate the performance of LSNet,
as shown in Tables 4 and 5. This metric is defined as the ratio of the number of correctly predicted
samples to the number of samples in the whole test set, as shown in Equation (26).

pc =
∑n

k=1 Pkk

N
(26)

where Pkk represents the number of correctly classified samples in the kth class, while n and N are the
number of categories and the number of samples in the whole test set, respectively. Compared with
metrics that evaluate each category, pc is more intuitive and straightforward for comparing LSNet
and ResNet on the CIFAR-100 dataset, which has 100 categories. The parameter Delta is the accuracy
difference between LSNet-1d and ResNet-1d to demonstrate the performance of LSNet more intuitively.

Table 4. Performance of networks on the CIFAR-100 dataset in the 1D experiment.

Method ResNet-1d
LSNet-1d

ReLU Leaky ReLU ELU CELU SELU

Acc.(test) 73.00% 74.92% 74.71% 75.48% 74.98% 75.21%

Delta − +1.92% +1.71% +2.48% +1.98% +2.21%
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In the 1D experiment, all of the LSNets that utilize different nonlinear functions in the LS1D block
outperform the baseline network ResNet-1d by more than 1.5%. In between, LSNet-1d with ELU used
in the LS1D block reaches the best test set accuracy, which is superior to the baseline network by 2.48%.

In the 2D experiment, LSNet-2d, whose LS2D block uses SELU as the nonlinear function, is slightly
inferior to the baseline network ResNet-2d, while other LSNets all outperform the baseline network.
In between, LSNet-2d with leaky ReLU used in the LS2D block performs best, which advantages over
ResNet-2d by 1.38%.

Table 5. Performance of networks on the CIFAR-100 dataset in the 2D experiment.

Method ResNet-2d
LSNet-2d

ReLU Leaky ReLU ELU CELU SELU

Acc.(test) 74.64% 75.52% 76.02% 75.76% 76.00% 74.21%

Delta − +0.88% +1.38% +1.12% +1.36% −0.43%

The experimental results confirm the advantage of introducing nonlinearity into the feature
extractor module. With different nonlinear functions, LSNets perform differently, which indicates
the importance of choosing suitable nonlinear predict and update operators. For the 1D and
2D experiments, the most appropriate nonlinear functions are different, indicating that they
are structure-dependent.

3.2. Results on the AID Dataset

For each evaluated network, the results of the AID test set’s overall accuracy are listed in Table 6.
For the 1D experiment, all LSNets with different nonlinear functions used in the LS1D block outperform
the baseline ResNet-1d. Therefore, LSNet-1d with leaky ReLU performs similarly to ResNet-1d, while
LSNet-1d with ELU reaches the highest test set overall accuracy, which is superior to ResNet-1d
by 2.05%.

Table 6. Performance of networks on the AID dataset in the 1D experiment.

Method ResNet-1d
LSNet-1d

ReLU Leaky ReLU ELU CELU SELU

Acc.(test) 82.45% 84.40% 82.55% 83.90% 84.50% 83.50%

Delta − +1.95% +0.10% +1.45% +2.05% +1.05%

Confusion matrices for each evaluated network are shown in Figure 6. The probabilities whose
values are more than 0.01 are displayed on the confusion matrices. Figure 6b–f are sparser than
Figure 6a, which indicates smaller error rates and higher recalls. As Figure 6a shows, ResNet-1d
performs well on some classes, such as baseball field, beach, bridge, desert, and forest, the recalls of
which are higher than 95%. However, ResNet-1d confuses some classes with other classes. For instance,
20% of the images of the park class are mistaken as the resort class, while approximately 10% of the
images of the mountain class are cast incorrectly into the dense residential class.



Remote Sens. 2019, 11, 2648 14 of 19

(a) ResNet-1d (b) LSNet-1d with ReLU

(c) LSNet-1d with Leaky ReLU (d) LSNet-1d with ELU

(e) LSNet-1d with CELU (f) LSNet-1d with SELU

Figure 6. Confusion matrices of the AID dataset in the 1D experiment. The number on the ith row,
jth column represents the normalized number of the images in the ith class that are classified as the jth
class. The numbers below 0.01 are not displayed on the confusion matrices.
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For further comparison between LSNet-1d and ResNet-1d, we select the classes whose recalls are
below 75% in the ResNet-1d experiment and make further analysis. As shown in Figure 7, ResNet-1d
surpasses all 1D LSNets on the medium residential class, but it is inferior to all 1D LSNets on five
classes including railway station, resort, river, school, and square. All 1D LSNets are well ahead
of ResNet-1d on the square class by more than 10%, which demonstrates that features extracted by
nonlinear lifting scheme can better distinguish this class from all other classes.

Figure 7. Network performance on partial classes of the AID dataset. The classes whose test set recalls
are below 75% in the ResNet-1d experiment are selected for recall comparison between 1D LSNets
and ResNet-1d.

In the 2D experiment, LSNets slightly enhance the performance compared with ResNet-2d,
as shown in Table 7. In between, LSNet-2d with ReLU used in the LS2D block achieves the highest test
set accuracy, which is superior to ResNet-2d by 0.45%. Constructed by different nonlinear predict and
update operators, the LS blocks construct different LSNets, which are distinguished in performance.
This fact indicates the significance of seeking suitable nonlinear operators.

Table 7. Performance of networks on the AID dataset in the 2D experiment.

Method ResNet-2d
LSNet-2d

ReLU Leaky ReLU ELU CELU SELU

Acc.(test) 83.30% 83.75% 83.20% 83.70% 83.55% 83.65%

Delta − +0.45% −0.10% +0.40% +0.25% +0.35%

To explore the comparison between 2D LSNets and ResNet-2d, confusion matrices are drawn to
displace the output probabilities whose values are more than 0.01, as shown in Figure 8. Recalls and
error rates are displaced for each class. It can be determined that 2D LSNets perform better on some
classes, such as the sparse residential class and the viaduct class, where all types of 2D LSNets are
superior to ResNet-2d.

Furthermore, we select the classes whose recalls are below 80% in the ResNet-2d experiment
and conduct further analysis. As shown in Figure 9, LSNets perform better on most of these classes.
For instance, LSNet-2d with ReLU and LSNet-2d with ELU are superior to ResNet-2d by 8.4%,
while LSNet-2d with CELU surpasses ResNet-2d by 7.8% on the commercial class. Moreover, all types
of LSNets are better than ResNet-2d in river class. This fact indicates that the nonlinear lifting scheme
provides an advantage in extracting the features to distinguish the river class from all other classes.
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(a) ResNet-2d (b) LSNet-2d with ReLU

(c) LSNet-2d with Leaky ReLU (d) LSNet-2d with ELU

(e) LSNet-2d with CELU (f) LSNet-2d with SELU

Figure 8. Confusion matrices of the AID dataset in the 2D experiment. The number on the ith row, jth
column represents the normalized number of the images in the ith class that are classified as the jth
class. The numbers below 0.01 are not displayed on the confusion matrices.



Remote Sens. 2019, 11, 2648 17 of 19

Figure 9. Networks’ performance on partial classes of the AID dataset. The classes whose test set
recalls are below 80% are selected for recall comparison between 2D LSNets and ResNet-2d.

4. Discussion

Experimental results indicate that the proposed LSNet performs better than ResNet that utilizes
the vanilla convolutional layer. An analysis of the improvement is as follows.

1. LSNet can extract more discriminative features with the nonlinearity introduced by the lifting
scheme. Corresponding to larger function space, features extracted from the nonlinear module
are more distinguishable, which contains the information that cannot be represented by a linear
convolutional layer. Therefore, LSNet reaches higher recall in a single class and perform better on
the overall accuracy metric.

2. The lifting scheme shown in Figure 2 is more suitable for hardware implementation with the
advantages of in-place operation, acceleration, and auxiliary storage free, which can process
the entire input image in parallel within each step. In the LSNet, the lifting scheme block
performs prediction and update steps without transitional auxiliary storages. This characteristic
of the LSNet is expected to provide the potential for easing the computational burden of
high-resolution remote sensing imagery analysis and promoting applications on computationally
limited hardware platforms.

In the future, we will introduce other nonlinear wavelets into neural networks, such as the
morphology wavelet and the adaptive wavelet, to further enhance the nonlinear representation of
neural networks. In addition, we will attempt to implant LSNet into some computationally limited
platforms, such as FPGA, and compare its performance with existing methods.

5. Conclusions

CNN-based methods for scene classification are restricted by the computational challenge and
limited ability to extract discriminative features. In this paper, the lifting scheme is introduced into
deep learning and a lifting scheme-based deep neural network (LSNet) is proposed for remote sensing
scene classification. The innovation of this approach lies in its capability to introduce nonlinearity into
the feature extraction module to extend the feature space. The lifting scheme is an efficient algorithm
for the wavelet transform to fit on the hardware platforms, which shows the potential of LSNet to ease
the computational burden. Experiments on the AID datasets demonstrate that LSNet-1d and LSNet-2d
are superior to ResNet-1d and ResNet-2d by 2.05% and 0.45%, respectively. The method proposed in
this paper has room for further improvement, and we will introduce other nonlinear wavelets into
neural networks and implant LSNet into some computationally limited platforms in the future.
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The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
WT Wavelet Transform
LSNet Lifting Scheme Based Deep Neural Network
JPEG Joint Photographic Experts Group
CIFAR Canadian Institute for Advanced Research
AID Aerial Image Dataset
DWT Discrete Wavelet Transform
SGD Stochastic Gradient Descent
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