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Abstract: Although complex-valued (CV) neural networks have shown better classification results
compared to their real-valued (RV) counterparts for polarimetric synthetic aperture radar (PolSAR)
classification, the extension of pixel-level RV networks to the complex domain has not yet thoroughly
examined. This paper presents a novel complex-valued deep fully convolutional neural network
(CV-FCN) designed for PolSAR image classification. Specifically, CV-FCN uses PolSAR CV data that
includes the phase information and uses the deep FCN architecture that performs pixel-level labeling.
The CV-FCN architecture is trained in an end-to-end scheme to extract discriminative polarimetric
features, and then the entire PolSAR image is classified by the trained CV-FCN. Technically, for the
particularity of PolSAR data, a dedicated complex-valued weight initialization scheme is proposed to
initialize CV-FCN. It considers the distribution of polarization data to conduct CV-FCN training from
scratch in an efficient and fast manner. CV-FCN employs a complex downsampling-then-upsampling
scheme to extract dense features. To enrich discriminative information, multi-level CV features
that retain more polarization information are extracted via the complex downsampling scheme.
Then, a complex upsampling scheme is proposed to predict dense CV labeling. It employs the
complex max-unpooling layers to greatly capture more spatial information for better robustness to
speckle noise. The complex max-unpooling layers upsample the real and the imaginary parts of
complex feature maps based on the max locations maps retained from the complex downsampling
scheme. In addition, to achieve faster convergence and obtain more precise classification results,
a novel average cross-entropy loss function is derived for CV-FCN optimization. Experiments on
real PolSAR datasets demonstrate that CV-FCN achieves better classification performance than other
state-of-art methods.

Keywords: complex-valued deep fully convolutional neural network (CV-FCN); polarimetric
synthetic aperture radar (PolSAR) image classification; pixel-level labeling

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) images have received a lot of attention as
they can provide more comprehensive and abundant information compared with SAR images [1].
In recent decades, the application of PolSAR images has received sustained development in the
remote sensing field. In particular, land use land cover (LULC) classification is one of the most
typical and important applications in automatic image analysis and interpretation [2]. Until now,
numerous traditional schemes have been put forward for PolSAR image classification, such as Wishart
classifiers [3–5], target decompositions (TDs) [6–9] and random fields (RFs) [10–12]. Those traditional
methods often use some low-level or mid-level features, which are usually extracted by some feature
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extraction techniques. Generally, the extracted features include statistic features [5,10], backscattering
elements [13], TDs-based features [8,9] as well as some popular features used for other images [14–18].
However, the extracted features are not only mostly class-specific and hand-crafted but also involve
a considerable amount of manual trial and error [2]. Moreover, some extracted features such as TDs
features rely heavily on the complex analysis of PolSAR data. Meanwhile, the selection of descriptive
feature sets often increases computation time.

With the rapid development of learning algorithms, several machine learning tools do perform
feature learning (or at least feature optimization), such as support vector machines (SVMs) [15,19]
and random forest (RF) [2]. However, they are still shallow models that focus on many input features
and may not be robust to nonlinear data [20]. Recently, deep learning (DL) methods represented
by the deep convolutional neural networks (CNNs) have demonstrated remarkable learning ability
in many image analysis fields [13,21–23]. With the rapid development of DL, many deep networks
have been developed for the semantic segmentation, such as sparse autoencoder (SAE), deep fully
convolutional neural network (FCN), deep belief network (DBN), generative adversarial network
(GAN), and graph convolutional networks (GCN). Compared with the aforementioned conventional
methods, DL techniques can automatically learn discriminative features and perform advanced tasks
by multiple neural layers in an end-to-end manner, thereby reducing manual error and achieving
promising results [23,24]. In recent years, some better DL-based algorithms have significantly improved
the performance of PolSAR image classification. De et al. [25] proposed a classification scheme
of urban areas in PolSAR data based on polarization orientation angle (POA) shifts and the SAE.
Liu et al. [26] proposed the Wishart DBN (W-DBN) for PolSAR image classification. They defined the
Wishart-Bernoulli restricted Boltzmann machine (WBRBM), and stacked WBRBM and binary RBM to
form the W-DBN. Zhou et al. [27] introduced CNN for PolSAR image classification to automatically
learn hierarchical polarimetric spatial features. Bin et al. [28] improved a CNN model and presented a
graph-based semisupervised CNN for PolSAR image classification. Inspired by the success of FCN,
Wang et al. [29] presented an effective PolSAR image classification scheme to integrate deep spatial
patterns learned automatically by FCN. Li et al. [30] proposed the sliding window FCN and sparse
coding (SFCN-SC) for PolSAR image classification. They employed sliding window operation to apply
the FCN architecture directly to PolSAR images. Mohammadimanesh et al. [31] specially designed a
new FCN architecture for the classification of wetland complexes using PolSAR imagery. Furthermore,
Pham et al. [32] employed the SegNet model for the classification of very high resolution (VHR)
PolSAR data. However, most studies on DL methods for PolSAR classification tasks predominantly
focus on the case of real-valued neural networks (RV-NNs).

Notably, in RV-NNs, inputs, weights, and outputs are all modeled as real-valued (RV) numbers.
This means that projections are required to convert the PolSAR complex-valued (CV) data to RV
features as RV-NNs input. Although RV-NNs have demonstrated excellent performance in PolSAR
image classification tasks, there are a couple of problems stated by RV features. First, it is unclear
which projection yields the best performance towards a particular PolSAR image. Although the
descriptive feature set generated by multi-projection has achieved remarkable results, a larger feature
set means larger computation time and memory consumption, and may even cause data redundancy
problems [2]. Secondly, projection sometimes means a loss of valuable information, especially the
phase information, which may lead to unsatisfactory results. Actually, the phase of multi-channel
SAR data can provide useful information in the interpretation of SAR images. Especially for PolSAR
systems, the phase differences between polarizations have received significant attention for a couple of
decades [33–35].

In view of the aforementioned problems, some researchers have begun to investigate networks
which are tailored to CV data of PolSAR images rather than requiring any projection to classify
PolSAR images. Hansch et al. [36] first proposed the complex-valued MLPs (CV-MLPs) for land
use classification in PolSAR images. Shang et al. [37] suggested a complex-valued feedforward
neural network in the Poincare sphere parameter space. Moreover, an improved quaternion neural
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network [38] and a quaternion autoencoder [39] have been proposed for PolSAR land classification.
Recently, a complex-valued CNN (CV-CNN) specifically designed for PolSAR image classification has
been proposed by Zhang et al. [40], where the authors derived a complex backpropagation algorithm
based on stochastic gradient descent for CV-CNN training.

Although CV-NNs have achieved remarkable breakthroughs for PolSAR image classification, they
still suffer some challenges. First, we find that relatively deep network architectures have not received
considerable attention in the complex domain. The structures of the above CV-NNs are relatively
simple with limited feature extraction layers. This results in limited learning characteristics, which
may yield the risk of sub-optimal classification results. Secondly, these networks fail to sufficiently
take spatial information into account to effectively reduce the impact of speckles on classification
results. Due to the inherent existence of speckle in PolSAR images, the pixel-based classification is
easily affected and even leads to incorrect results. In this case, these CV-NNs would be ineffective to
explicitly distinguish complex classes, since only local contexts caused by small image patches are
considered. Thirdly, it is necessary to construct a CV-NN for direct pixel-wise labeling to predict fast
and effectively. Actually, the image classification is a dense (pixel-level) problem that aims at assigning
a label to each pixel in the input image. However, existing CV-NNs usually assign an entire input
image patch to a category. This results in a large amount of redundant processing and leads to serious
repetitive computation.

In response to the above challenges, this paper explores a complex-valued deep FCN architecture,
which is an extension of FCN to the complex domain. The FCN is first proposed in [41] and is an
excellent pixel-level classifier for semantic labeling. Typically, FCN outputs a 2-dimensional (2D) spatial
image and can preserve certain spatial context information for accurate labeling results. Recently,
FCNs have demonstrated remarkable classification ability in the remote sensing community [42,43].
However, to use FCN in the complex domain (i.e., CV-FCN) for PolSAR image classification, some
tricky problems need to be tackled. First, the CV-FCN tailored to PolSAR data requires a proper
scheme for the initialization of complex-valued weights. Generally, FCNs are often pre-trained on
VGG-16 [44], whose parameters are first trained using optical images and are all real-valued numbers.
However, those parameters are not appropriate to initialize CV weights of CV-FCN and are ineffective
for PolSAR images since they cannot preserve polarimetric phase information. Therefore, a proper
complex-valued weight initialization scheme not only can effectively initialize CV weights but also has
the potential to reduce the risks of vanishing or exploding gradients, thereby speeding up the training
process and improving the performance of networks. Secondly, layers in the upsampling scheme of
CV-FCN should be constructed in the complex domain. Although some works have extended some
layers to the complex domain [36,40,45], upsampling layers have not yet thoroughly examined in
such domain. Finally, it is necessary to select a loss function for predicted CV labeling in the training
processing of CV-FCN. The aim is to achieve faster convergence during CV-FCN optimization and
obtain higher classification accuracy. Thus, how to design a reasonable loss function in the complex
domain that is suitable for PolSAR images classification needs to be solved.

In view of the above-involved limitations, we present a novel complex-valued deep fully
convolutional network (CV-FCN) for the classification of PolSAR imagery. The proposed deep CV-FCN
adopts the complex downsampling-then-upsampling scheme to achieve pixel-wise classification
results. To this end, this paper focuses on four works: (1) complex-valued weight initialization for
faster PolSAR feature learning; (2) multi-level CV feature extraction for enriching discriminative
information; (3) more spatial information recovery for stronger speckle noise immunity; (4) average
cross-entropy loss function for more precise labeling results. Specifically, CV weights of CV-FCN are
first initialized by a new complex-valued weight initialization scheme. The scheme explicitly focuses
on the statistical characteristics of PolSAR data. Thus, it is very effective for faster training. Then,
different-level CV features that retain more polarization information are extracted via the complex
downsampling section. Those CV features have a powerful discriminative capacity for various classes.
Subsequently, the complex upsampling section upsamples low-resolution CV feature maps and
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generates dense labeling. Notably, for more spatial information retaining, the complex max-unpooling
layers are used in the upsampling section. Those layers recover more spatial information by the max
locations maps to reduce the effect of speckles on coherent labeling results as well as improve boundary
delineation. In addition, to promote CV-FCN training more effectively, an average cross-entropy loss
function is employed in the process of updating CV-FCN parameters. The loss function performs the
cross-entropy operation on the real and imaginary parts of CV predicted labeling, respectively. In this
way, the phase information is also taken into account during parameter updating, which makes the
classification of PolSAR images more precise. Extensive experimental results reflect the effectiveness
of CV-FCN for the classification of PolSAR imagery. In summary, the major contributions of this paper
can be highlighted as follows:

• The CV-FCN structure is proposed for PolSAR image classification, whose weights, biases, inputs,
and outputs are all modeled as complex values. The CV-FCN directly uses raw PolSAR CV data
as input without any data projection. In this case, it can extract multi-level and more robust CV
features that retain more polarization information and have a powerful discriminative capacity
for various categories.

• A new complex-valued weight initialization scheme is employed to initialize CV-FCN parameters.
It allows CV-FCN to mine polarimetric features with relatively few adjustments. Thus, it can
speed up CV-FCN training and save computation time.

• A complex upsampling scheme for CV-FCN is proposed to capture more spatial information
through the complex max-unpooling layers. This scheme cannot only simplify the upsampling
learning optimization but also recover more spatial information by max locations maps to reduce
the impact of speckles. Thus, smoother and more coherent classification results can be achieved.

• A new average cross-entropy loss function in the complex domain is employed for CV-FCN
optimization. It takes the phase information into account during parameters updating by average
cross-entropy operation of predicted CV labels. Therefore, the new loss function enables CV-FCN
optimization more precise while boosting the labeling accuracy.

The remainder of this paper is organized as follows. Section 2 formulates a detailed theory
for the classification method of CV-FCN. In Section 3, the experiment results on real benchmark
PolSAR images are reported. In addition, some related discussions are presented in Section 4. Finally,
the conclusion and future works are given in Section 5.

2. Proposed Method

In this work, a deep CV-FCN is proposed to conduct the PolSAR image classification. The CV-FCN
method integrates the feature extraction module and the classification module in a unified framework.
Thus, features extracted through CV-FCN trained by PolSAR data are more able to distinguish
various categories for PolSAR classification tasks. In the following, we first give the framework
of the deep CV-FCN classification method in Section 2.1. Then, to learn more discriminative features
for classification faster and more accurately, it is critical to train CV-FCN suitable for PolSAR images.
Thus, we highlight and introduce four critical works for CV-FCN training in Section 2.2–2.4. They
include CV weight initialization, deep and multi-level CV feature extraction, more spatial information
recovery, and loss function for more precise optimization. Finally, the CV-FCN classification algorithm
is summarized in Section 2.5.

2.1. Framework of the Deep CV-FCN Classification Method

The framework of the CV-FCN classification method is shown in Figure 1, which consists of
two separate modules: the feature extraction module and the classification module. In the feature
extraction module, CV-FCN is trained to exploit the discriminative information. Then, the trained
CV-FCN is used to classify PolSAR images in the classification module.
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Figure 1. The deep CV-FCN framework for PolSAR image classification. It includes two modules:
the feature extraction module (in the upper part) and the classification module (in the lower part).
’Complex Conv’ denotes the complex convolution layer, ’Complex BN’ denotes the complex batch
normalization layer, and ’CReLU’ denotes the complex-valued ReLU activation. The purple dotted
arrow denotes the transfer of the max locations map.

The data patches set and the corresponding label patches set are first prepared as input to
CV-FCN before training. The two sets are generated from the PolSAR data set and the corresponding
ground-truth mask, respectively. Let the CV PolSAR dataset beH ∈ Ch×w×B, where h and w are the
height and width of the spatial dimensions respectively, B is the number of complex bands, and C is
the complex domain. The corresponding ground-truth mask is denoted as G ∈ Rh×w. The set of all
data patches cropped from the given data set is denoted as I = {I1, I2, . . . , In}, and the corresponding
label patches set is T = {T1, T2, . . . , Tn}, where Ii ∈ CH×W×B and Ti ∈ RH×W (i ∈ [1, n]) represent one
data patch and corresponding label patch, respectively. Here n is the total number of patches, H and
W are the patch size in the spatial dimension.

In the feature extraction module, a novel complex-valued weight initialization scheme is first
adopted to initialize CV-FCN. Then, a certain percent of patches from the set I are randomly chosen as
the training data patches Itrain to the network. These data patches are forward-propagated through
the complex downsampling section of CV-FCN [marked by red dotted boxes in Figure 1] to extract
multi-level CV feature maps. Then those low-resolution feature maps are upsampled by the complex
upsampling section [marked by blue dotted boxes in Figure 1] to generate the predicted label patches.
Subsequently, calculate the error between the predicted label patches and the corresponding label
patches Ttrain according to a novel loss function, and then iteratively updating CV parameters in
CV-FCN. According to certain conditions, the updating iteration will terminate when the error value
does not substantially change.

In the classification module, we feed the entire PolSAR datasetH to the trained network. The label
of every pixel in this PolSAR image is predicted based on the output of the last complex SoftMax layer.
Notably, compared with a CNN model that predicts a single label for the center of each image patch,
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the CV-FCN model can predict all pixels in the entire image at one time. Thus, this enables pixel-level
labeling and can decrease the computation time during the prediction.

2.2. New Complex-Valued Weight Initialization Scheme Using Polarization Data Distribution for Faster
Feature Learning

Training deep networks generally rely on proper weight initialization to accelerate learning [46]
and reduce the risks of vanishing or exploding gradients [45]. To train CV-FCN, we will first consider
the problem of complex-valued (CV) weights initialization. Generally, deep ConvNets can update
from pre-trained weights generated by the transfer learning technique. However, those weights
are all real-valued (RV) and are not appropriate to initialize CV-FCN. Additionally, deep ConvNets
pre-trained by RV weights can only consider the backscattering intensities, which means a loss of the
polarimetric phase [47]. Here, based on the distributions of polarization data, a new complex-valued
(CV) weight initialization scheme is employed for faster network learning.

For RV networks that process PolSAR images, learned weights can well characterize scattering
patterns, particularly in high-level layers [27]. In [40], the initialization scheme just initializes the
real and imaginary parts of a CV weight separately with a uniform distribution. Fortunately, for a
reciprocal medium, a complex scattering vector u = [S1, S2, S3]

T can be modeled by a multivariate
complex Gaussian distribution, where individual complex scattering coefficient Si(i = 1, 2, 3) of u is
assumed to have the complex Gaussian distribution [1]. Thus, we use this distribution to initialize the
complex-valued weights in CV-FCN.

Suppose that a CV weight is denoted as w = R(w) + j.J(w), where the real component R(w)

and the imaginary component J(w) are all identically Gaussian distributed with 0 mean and variance
σ2/2. Here, the initialization criterion proposed by He et al. [46] is used to calculate the variance of
w, i.e., Var(w) = 2/nin, where nin is the number of input units. Notably, this criterion provides the
current best practice when the activation function is ReLU [45]. Moreover, the CV weight w can also
be denoted as

w = |w|ejθ , (1)

where |w| and θ are the magnitude and the phase of w, respectively. j =
√
−1 is the imaginary unit.

Since w is assumed to have a complex Gaussian distribution, the magnitude |w| follows the Rayleigh
distribution [1]. The expectation and the variance are given by

E[|w|] = σ
√

π

2
, (2)

Var(|w|) = 4− π

2
σ2, (3)

where σ is the single parameter in the Rayleigh distribution. In addition, the variance Var(|w|) and
the variance Var(w) can be defined as

Var(|w|) = E [|w||w|∗]− (E[|w|])2

= E
[
|w|2

]
− (E[|w|])2 , (4)

Var(w) = E [ww∗]− (E[w])2

= E
[
|w|2

]
− (E[w])2. (5)

According to the initialization rules of [45], in the case of w symmetrically distributed around 0,
Var(w) = E

[
|w|2

]
. Thus, from Equation (4) and Equation (5), Var(w) can be formulated as

Var(w) = Var(|w|) + (E[|w|])2. (6)
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By substituting Equation (2) and Equation (3) into Equation (6), Var(w) is calculated as

Var(w) =

(
σ
√

π

2

)2

+
4− π

2
σ2 = 2σ2. (7)

According to He’s initialization criterion and Equation (7), the single parameter in the Rayleigh
distribution can be computed as σ =

√
2/nin. At this point, the Rayleigh distribution can be used to

initialize the amplitude |w|. In addition, the phase θ is initialized by using the uniform distribution
between −π and π. Then, a complex-valued weight can be initialized using a random number that is
generated according to Equation (1) by the multiplication of the amplitude |w| by the phasor ejθ . In this
way, according to He’s initialization criterion and Equation (1), each complex-valued weight in the
CV-FCN model can be initialized. Therefore, we perform the new complex-valued weight initialization
for CV-FCN.

It is worth noting that our initialization scheme is quite different from the random initialization
on both the real and imaginary parts of a CV weight [40]. The most notable superiority of the new
initialization scheme lies in explicitly focusing on the statistical characteristics of training data, which
makes it possible for the network to learn properties suitable for PolSAR images after a small amount
of fine-tuning. We can understand that the network exhibits some of the same properties as the data to
be learned at the beginning, which seems to give a priori rather than the initial random information.
Thus, it is possible to increase the potential opportunity to learn some special properties of PolSAR
datasets and is much effective for faster training.

2.3. Deep CV-FCN for Dense Feature Extraction

In the forward propagation of the CV-FCN training procedure, dense features are extracted
through the complex downsampling-then-upsampling scheme. The detailed configuration of CV-FCN
is shown in Table 1. The complex downsampling section first extracts effective multi-level CV features
through downsampling blocks (i.e., B1–B5 in Figure 1). Then, the complex upsampling section
recovers more spatial information in a simple manner and produces dense labeling through a series of
upsampling blocks (i.e., B7–B11 in Figure 1). In particular, fully skip connections between the complex
downsampling section and the complex upsampling section fuse shallow, fine features and deep,
coarse features to preserve sufficient detailed information for the distinction of complex classes.

2.3.1. Multi-Level Complex-Valued Feature Extraction via the Complex Downsampling Section

The complex downsampling section consisting of downsampling blocks extracts 2-D CV features
of different levels. In CV-FCN, five downsampling blocks are employed to extract more abstract and
extensive features. Each of them contains four layers, including a complex convolution layer, a complex
batch normalization layer, a complex activation layer, and a complex max-pooling layer. Among these
layers, the main feature extraction work is performed in the complex convolution layer. Compared
with the real convolution layer, the complex convolution layer extracts CV features that retain more
polarization information and discriminative information through the complex convolution operation.

In the lth complex convolution layer, the complex-valued weight parameters and the
complex-valued bias are denoted by Wl : Wl ∈ CH×H×Ml−1×Nl and bl ∈ CNl , respectively, where H
denotes the complex convolutional kernel size, Ml−1 is the number of input complex feature maps and
Nl is the number of output complex feature maps. The output complex feature maps Yl ∈ CHl×Ml×Nl

outputted by the complex convolution layer is computed by

Yl = Wl ⊗ Xl−1 + bl , (8)
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where Xl−1 ∈ CHl−1×Wl−1×Ml−1 denotes the given input complex feature maps, Hl−1 ×Wl−1 is the
input feature map size, and ⊗ denotes the convolution operation in the complex domain. The matrix
notation of the nth output complex feature map Yl

n (n ∈ [1, Nl ]) [40] is given by R
(

Yl
n

)
I
(

Yl
n

)  =
Ml−1

∑
m=1


 R

(
Wl

nm

)
−J
(

Wl
nm

)
J
(

Wl
nm

)
R
(

Wl
nm

) �
 R

(
Xl−1

m

)
I
(

Xl−1
m

) +

 R
(

bl
n

)
I
(

bl
n

)  , (9)

where Wl
nm = R

(
Wl

nm

)
+ j.I

(
Wl

nm

)
, and R

(
Wl

nm

)
and I

(
Wl

mn

)
are respectively the real part and

the imaginary part of Wl
nm. � denotes the convolution operation in the real domain. Thus, the nth

output complex feature map can be represented as

Yl
n = R

(
Yl

n

)
+ j.I

(
Yl

n

)
. (10)

Table 1. Detailed configuration of the CV-FCN. K denotes the total number of classes. The complex BN
layers and CReLU layers are omitted for brevity.

Section Block Module Type Dimension Stride Pad

Downsampling
Section

B 1 Complex Convolution 3 × 3 × 6 × 12 1 1
Complex Max-Pooling 2 × 2 2 0

B 2 Complex Convolution 3 × 3 × 12 × 24 1 1
Complex Max-Pooling 2 × 2 2 0

B 3 Complex Convolution 3 × 3 × 24 × 48 1 1
Complex Max-Pooling 2 × 2 2 0

B 4 Complex Convolution 3 × 3 × 48 × 96 1 1
Complex Max-Pooling 2 × 2 2 0

B 5 Complex Convolution 3 × 3 × 96 × 192 1 1
Complex Max-Pooling 2 × 2 2 0

B 6 Complex Convolution 1 × 1 × 192 × 192 1 1

Upsampling
Section

B 7 Complex Up-Pooling 2 × 2 1 0
Complex Convolution 3 × 3 × 192 × 96 1 1

B 8 Complex Up-Pooling 2 × 2 1 0
Complex Convolution 3 × 3 × 96 × 48 1 1

B 9 Complex Up-Pooling 2 × 2 1 0
Complex Convolution 3 × 3 × 48 × 24 1 1

B 10 Complex Up-Pooling 2 × 2 1 0
Complex Convolution 3 × 3 × 24 × 12 1 1

B 11 Complex Up-Pooling 2 × 2 1 0
Complex Convolution 3 × 3 × 12 × K 1 1

Complex SoftMax

The complex batch normalization (BN) layer [45] is performed for normalization after complex
convolution, which holds great potential to relieve networks from overfitting. For the nonlinear
transformation of CV features, we find that the complex-valued ReLU (CReLU) [45] as the complex
activation can provide us good results. The CReLU is defined as

CRe LU(x) = Re LU(R(x)) + j. Re LU(I(x)), (11)
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where (x = R(x) + j.I(x)) ∈ C. Then the output Zl+1 ∈ CHl×Wl×Nl in the (l + 1)th complex nonlinear
layer can be given

Zl+1 = CRe LU
(

Yl
)

= CRe LU
[
R
(

Yl
)
+ j.I

(
Yl
)]

= Re LU
(
R
(

Yl
))

+ j. Re LU
(
I
(

Yl
)). (12)

Furthermore, the complex max-pooling layer [40] is adopted to generalize features to a higher
level. In this way, features are more robust and CV-FCN can converge well. After five downsampling
blocks, the block 6 (B6 in Figure 1) including a complex convolution layer with 1 × 1 kernels and a
complex batch normalization layer densifies its sparse input and extracts complex convolution features.

2.3.2. Using Complex Upsampling Section for More Spatial Information Recovery to Stronger Speckle
Noise Immunity

After the complex downsampling section for multi-level CV features extraction, a complex
upsampling section is implemented to upsample those CV feature maps. In particular, the new complex
max-unpooling layers are employed in the complex upsampling section. The reason is two-fold.
On the one hand, compared with the complex deconvolution layer, which is another upsampling
operation, the complex max-unpooling layer reduces the number of trainable parameters and mitigates
information loss due to complex pooling operations. On the other hand, obtaining smooth labeling
results is not easy owing to the inherent existence of speckle in PolSAR images. This issue can be
addressed by the complex max-unpooling layer that recovers more spatial information by the max
locations maps [represented by purple dotted arrows in Figure 1]. The spatial information is a critical
indicator for confusing categories classification, which captures more wider visual cues to stronger
speckle noise immunity.

To be more intuitive, Figure 2 illustrates an example of the complex max-unpooling operation.
The green and black boxes are simple structures of the complex max-pooling and complex
max-unpooling, respectively. As shown in the green box, the amplitude feature map is formed
by the real and imaginary feature maps where the red dotted box represents a 2 × 2 pooling window
with a stride of 2. In the amplitude feature map, four maximum amplitude values are chosen by
corresponding pooling windows which are marked by orange, blue, green, and yellow, respectively.
They construct the pooled map. At the same time, locations of those maxima are recorded in a set of
switch variables which are visualized by the so-called max locations map. On the other hand, in the
black box, the real and imaginary input maps are upsampled by the usage of this max locations map,
respectively. Then the real and imaginary unpooled maps are produced. Here, those unpooled maps
are sparse wherein white regions have the values of 0. This will ensure that the resolution of the output
is higher than the resolution of its input.
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Figure 2. A simple illustration of the complex max-pooling operator and the complex max-unpooling
operator. Where the green box and the black box are the structures of the complex max-pooling operator
and the complex max-unpooling operator, respectively.

In particular, we perform the fully skip connections that can fuse multi-level features to preserve
sufficient discriminative information for the classification of complex classes. Finally, the complex
output layer with the complex SoftMax function [40] is used to calculate the prediction probability
map. Thus, the output of CV-FCN can be formulated as

Ol = g
(

Yl−1
)

= g
(
R
(

Yl−1
))

+ j.g
(
I
(

Yl−1
))

=
1

1 + e−R(Yl−1)
+ j.

1

1 + e−I(Yl−1)
,

(13)

where Yl−1 ∈ CH×W×K indicates the inputs of the complex output layer and g(.) is the SoftMax
function in the real domain. In this layer, output feature maps are the same size as the data patch
fed into CV-FCN. This enables pixel-to-pixel training. After the complex downsampling section and
the complex upsampling section, the complex forward propagation process of the training phase
is completed.

2.4. Average Cross-Entropy Loss Function for Precise CV-FCN Optimization

To promote CV-FCN training more effectively and achieve more precise results, a novel loss
function is used as the learning objective to iteratively update CV-FCN parameters Θ during the
backpropagation. Θ includes Wl and bl . Usually, for multi-class classification tasks, the cross-entropy
loss function performs well to update parameters. Compared with the quadratic cost function, it can
lead to faster convergence and better classification results [48]. Thus, a novel average cross-entropy
loss function is employed for predicted CV labels in PolSAR classification tasks, which is based on the
definition of the popular cross-entropy loss function. Formally, the average cross-entropy (ACE) loss
function is defined as

JACE = −1
2
· 1

N
·

N

∑
n=1
{[R (R[n]) · ln (R (O[n])) + (1−R (R[n])) · ln (1−R (O[n]))]

+ [I (R[n]) · ln (I (O[n])) + (1− I (R[n])) · ln (1− I (O[n]))]} ,

(14)

where O ∈ CH×W×K indicates the output data patch in the last complex SoftMax layer and K is the total
number of classes. R ∈ CH×W×K denotes the sparse representation of the true label patch T ∈ RH×W ,
which is converted by one-hot encoding. Notably, non-zeros positions within R ∈ CH×W×K are 1+ 1 · j
instead of 1 + 0 · j. This means that we also take the phase information into account during parameters
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updating. As a result, the updated CV-FCN can work effectively to provide more precise classification
results for PolSAR images.

Θ can be updated iteratively by J and learning rate η according to

Wl
nm[t + 1] = Wl

nm[t]− η
∂J[t]

∂Wl
nm[t]

, (15)

bl
n[t + 1] = bl

n[t]− η
∂J[t]

∂bl
n[t]

. (16)

To calculate Equation (15) and Equation (16), the key point is to calculate the partial derivatives.
Note J is a real-valued loss function, it can be back-propagated through CV-FCN according to the
generalized complex chain rule in [36]. Thus, the partial derivatives can be calculated as follows:

∂J
∂Wl

nm
=

∂J
∂R
(
Wl

nm
) + ∂J

∂I
(
Wl

nm
)

=

(
∂J

∂R
(
Yl

n
) ∂R

(
Yl

n
)

∂R
(
Wl

nm
) + ∂J

∂I
(
Yl

n
) ∂I

(
Yl

n
)

∂R
(
Wl

nm
))+ j.

(
∂J

∂R
(
Yl

n
) ∂R

(
Yl

n
)

∂I
(
Wl

nm
) + ∂J

∂I
(
Yl

n
) ∂I

(
Yl

n
)

∂I
(
Wl

nm
)) ,

(17)

∂J
∂bl

n
=

∂J
∂R
(
bl

n
) + ∂J

∂I
(
bl

n
)

=

(
∂J

∂R
(
Yl

n
) ∂R

(
Yl

n
)

∂R
(
bl

n
) +

∂J
∂I
(
Yl

n
) ∂I

(
Yl

n
)

∂R
(
bl

n
))+ j.

(
∂J

∂R
(
Yl

n
) ∂R

(
Yl

n
)

∂I
(
bl

n
) +

∂J
∂I
(
Yl

n
) ∂I

(
Yl

n
)

∂I
(
bl

n
) ) .

(18)

When the value of loss function no longer decreases, the parameter update is suspended, and the
training phase is completed. The trained network will then be used to predict the entire PolSAR image
in the classification module.

2.5. CV-FCN PolSAR Classification Algorithm

For more intuitive, the proposed CV-FCN PolSAR Classification algorithm is illustrated by
Algorithm 1. Specifically, we first construct the entire training set for CV-FCN and employ the new
complex-valued weight initialization scheme to initialize the network. Then, we train CV-FCN by
alternately updating CV-FCN parameters using the average cross-entropy loss function. Finally,
the entire PolSAR image is classified using the trained CV-FCN.

Algorithm 1 CV-FCN classification algorithm for PolSAR imagery

Input: PolSAR dataset H ∈ Ch×w×B, ground-truth image G ∈ Rh×w; learning rate η, batch size,

momentum parameter.

1: Construct the data patches set I and the label patches set T usingH and G, respectively;
2: Initialize CV-FCN parameters Θ by Section 2.2;
3: Choose the entire training set Dtrain = {Itrain, Ttrain} from I and T ;
4: Repeat:
5: Forward pass the complex downsampling section to obtain multi-level feature maps by

Section 2.3.1;
6: Call the complex upsampling section to recover more spatial information by Section 2.3.2;
7: Calculate loss function J by Section 2.4;
8: Update Θ by J and η.
9: Until:meet the termination criterion.

10: Classify the entire PolSAR image by forward passing the trained network to obtain k.
11: End

Output: Pixel-wise class labels k.
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3. Experimental Results

In this section, experimental datasets description and evaluation metrics are first presented. Then,
the input data vector and experimental settings for CV-FCN training are listed. Finally, comparisons
with other classification methods on three PolSAR datasets are presented to demonstrate the superiority
of the proposed CV-FCN.

3.1. Experimental Datasets Description

We use three benchmark PolSAR datasets for experiments. Details about these datasets are listed
as follows.

3.1.1. Flevoland Benchmark Dataset

Figure 3a shows the PauliRGB image of Flevoland Benchmark dataset, which was acquired by
NASA/JPL AIRSAR in 1991 and can be downloaded from https://earth.esa.int/web/polsarpro/data-
sources/sample-datasets. The size of the image is 1020 × 1024. The ground-truth class labels and the
corresponding color codes are shown in Figure 3b,c, respectively. There are 14 classes in the image,
including potato, fruit, oats, beet, barley, onions, wheat, beans, peas, maize, flax, rapeseed, grass,
and lucerne.

(a) (b) (c)

Figure 3. Flevoland Benchmark PolSAR image and related ground-truth categorization information.
(a) The PauliRGB image; (b) The ground-truth categorization map; (c) Color code of different classes.

3.1.2. San Francisco Dataset

This AIRSAR full PolSAR image provides good coverage of four targets, including water,
vegetation, low-density urban, and high-density urban. The original data has a dimension of
900 × 1024 pixels with a spatial resolution of 10 m, as shown in Figure 4a. The ground-truth class
labels and color codes are shown in Figure 4b,c, respectively. This dataset can be downloaded from
https://earth.esa.int/web/polsarpro/data-sources/sample-datasets.

https://earth.esa.int/web/polsarpro/data-sources/sample-datasets
https://earth.esa.int/web/polsarpro/data-sources/sample-datasets
https://earth.esa.int/web/polsarpro/data-sources/sample-datasets
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(a) (b) (c)

Figure 4. San Francisco PolSAR image and related ground-truth categorization information.
(a) The PauliRGB image; (b) The ground-truth categorization map; (c) Color code of different classes.

3.1.3. Oberpfaffenhofen Dataset

This dataset is an ESAR data of the Oberpfaffenhofen area in Germany, which is provided
by the German Aerospace Center. It has a size of 1300 × 1200 pixels, which can be downloaded
from https://earth.esa.int/web/polsarpro/data-sources/sample-datasets. The Pauli-RGB image,
the ground-truth class labels, and color codes are respectively shown in Figure 5a–c. There are three
classes in the image: built-up areas, wood land, and open areas.

3.2. Evaluation Metrics

With the hand-marked ground-truth images, the overall accuracy (OA), average accuracy (AA)
and Kappa coefficient (κ) are used as the evaluation measures for classification performance evaluation.
Where OA represents the ratio of the number of correctly labeled pixels divided by the total number of
test pixels; AA is defined as the average of individual class accuracy; Kappa, which does not consider
the successful classification obtained by chance, gives a good representation of the overall performance
of the classifiers. The larger the three criteria values, the better the classification performance.

(a) (b) (c)

Figure 5. Oberpfaffenhofen PolSAR image and related ground-truth categorization information.
(a) The PauliRGB image; (b) The ground-truth categorization map; (c) Color code of different classes.

3.3. Preparing for Classifier Model Training

3.3.1. Complex-Valued Input Vector for CV-FCN

Before training CV-FCN, the CV input vector needs to be determined. CV-FCN works directly
on the PolSAR CV data without any data projection from the complex to the real domain. Since the

https://earth.esa.int/web/polsarpro/data-sources/sample-datasets
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coherency matrix or covariance matrix completely describes the distributed target [1], the PolSAR data
is usually presented in these formats. The polarimetric coherency matrix T is calculated as

T =
1
L

L

∑
i=1

uiuH
i =

 T11 T12 T13

T21 T22 T23

T31 T32 T33

 , (19)

where the superscript H denotes the complex conjugate transpose, L is the number of looks, and ui

denotes the ith scattering vector in the multi-look processing window.
The coherency matrix T is a Hermitian positive semidefinite matrix, which implies that the main

diagonal elements are RV and other CV elements are conjugate symmetric about the main diagonal.
Therefore, the six elements of the upper triangular matrix of T can be used to fully represent the
PolSAR data [1]. Therefore, we use these six elements to construct the CV input vector for CV-FCN,
which is represented by

{T11 + 0.j, T22 + 0.j, T33 + 0.j, T12, T13, T23} . (20)

Here, imaginary parts of T11, T22, T33 in the CV input feature vector are all expanded with a value
of 0. On the other hand, compared with the CV input feature vector with phase information, the RV
input feature vector without phase information can be represented by

{T11, T22, T33,R (T12) ,R (T13) ,R (T23) , I (T12) , I (T13) , I (T23)}. (21)

3.3.2. Parameter Settings

Relevant parameter settings are required before CV-FCN training. For the PolSAR image
classification, some works of literature have discussed the sampling rate and parameter settings
of NNs structures [28,29] in detail. Therefore, we no longer spend time discussing these parameters,
and we will select them through experiments.

In this paper, the sliding window operation in [30,49] is used to generate the data patches set from
the experimental image and the corresponding label patches set from the ground-truth image. Here,
we choose 128 as the default setting of sliding windows size and 25 as the default setting of stride
for all experimental datasets, which is a trade between classification performance and computational
burden. Additionally, to mitigate overfitting on datasets, the data augmentation strategy [31] was
carried out by vertically and horizontally flipping all patches. All these patches are used as input to
the proposed CV-FCN, with 90% for training and 10% for validation, respectively. It is worth noting
that only the labeled pixels in an individual label patch are considered when modifying network
parameters during the training [30].

Moreover, Adam with momentum 0.9 is used to update CV-FCN parameters. The learning rate η

is 0.0001. The size of the mini-batch is empirically set to 30. The training epoch number is 200 until the
model converges. Additionally, dropout regularization is adopted to reduce overfitting. In this paper,
all non-deep methods are run on Matlab R2014b, and DL-based methods are implemented in the Keras
framework with TensorFlow as the back end. The machine used for experiments is a Lenovo Y720
cube gaming PC with an Intel Core i7-7700 CPU, an Nvidia GeForce GTX 1080 GPU, and 16GB RAM
under Ubuntu 18.04 LTS operating system. To make comparisons as fair as possible, all experiments
are conducted ten times, and the means and standard deviations of evaluation metrics are reported.

3.4. Comparing Models

We demonstrate the effectiveness of the proposed CV-FCN by comparison with some state-of-art
methods including SVM [19], Wishart classifier [4], Markov random field (MRF) [10], MLP [25],
CVNN [36], CNN [27], CV-CNN [40], and FCN [30]. In the preceding part, we have already introduced
the structure of CV-FCN. The specific settings of comparison methods are briefly described as follows.



Remote Sens. 2019, 11, 2653 15 of 29

• Non-deep methods: The non-deep methods include SVM [19], Wishart classifier [4], and MRF [10].
They all adopt the input feature vector shown in Equation (21). For the SVM-based method,
the radial basis function (RBF) kernel is chosen advised by [19]. For MRF, parameters are set
according to the original publication [10]. Notably, to compare logically with other spatial
methods, we use the post-processing method based on the spatial information [26] to improve the
classification performance of the SVM method and the Wishart method.

• RV-FCN: To compare with CV-FCN, we adjust the RV-FCN [30] to have the same structure as
CV-FCN. Since the dimension of the input patch for RV-FCN is 9 and the dimension for CV-FCN
is 6. For a fair comparison, we adjust the parameter settings of RV-FCN to have the same degree
of freedom (DoF) as CV-FCN. We mainly adjust the number of output feature maps in each
convolutional layer of RV-FCN, which is about 1.5 times that in CV-FCN.

• RV-MLP/CV-MLP: Referring to [25], we choose a three-layer RV-MLP network, which consists of
128 neurons in the first complex hidden layer and 256 in the second complex hidden layer.
The last layer is a SoftMax classifier to predict the probability distribution. For CV-MLP,
there are 96 neurons in the first hidden layer and 180 in the second hidden layer. For MLPs,
we choose a 32 × 32 neighborhood of each pixel as the patch to networks to consider more
contextual information.

• RV-SCNN/CV-SCNN: We use RV-SCNN and CV-SCNN to represent networks in [27,40],
respectively. According to RV-SCNN in [27], the architecture of CV-SCNN is adjusted, which
contains the input layer, two convolution layers interleaved with two pooling layers, two fully
connected layers, and the SoftMax layer. Table 2 reports the detailed configuration of RV-SCNN
and CV-SCNN. For SCNNs, a 32 × 32 neighborhood of each pixel is employed as the patch
for training.

• RV-DCNN/CV-DCNN: The downsampling section of FCN is transformed from a CNN structure.
Therefore, for a fair comparison between FCN and CNN, we construct a new CNN structure
represented by DCNN based on the CV-FCN structure. Table 3 reports the detailed configuration
of RV-DCNN and CV-DCNN. Compared with CNNs in [40], DCNNs contain more convolutional
layers. For DCNNs, we have the same operation as SCNNs to generate patches for training.

Table 2. Detailed configuration of the RV-SCNN and the CV-SCNN. K denotes the total number
of classes.

Network Module Type Dimension Stride Pad

RV-SCNN

Convolution 3 × 3 × 9 × 20 1 1
ReLU

Max-Pooling 2 × 2 2 0

Convolution 3 × 3 × 20 × 40 1 1
ReLU

Max-Pooling 2 × 2 2 0

Fully Connection 40 × 2560 1
Fully Connection 2560 × K 1

SoftMax

CV-SCNN

Complex Convolution 3 × 3 × 6 × 12 1 1
CReLU

Complex Max-Pooling 2 × 2 2 0

Complex Convolution 3 × 3 × 12 × 24 1 1
CReLU

Complex Max-Pooling 2 × 2 2 0

Complex Fully Connection 24 × 1536 1
Complex Fully Connection 1536 × K 1

Complex SoftMax
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Table 3. Detailed configuration of the RV-DCNN and the CV-DCNN. K denotes the total number of
classes. The ReLU layers in RV-DCNN, complex BN layers and CReLU layers in CV-DCNN are omitted
for brevity.

Network Module Type Dimension Stride Pad

RV-DCNN

Convolution 3 × 3 × 9 × 18 1 1
Max-Pooling 2 × 2 2 0

Convolution 3 × 3 × 18 × 36 1 1
Max-Pooling 2 × 2 2 0

Convolution 3 × 3 × 36 × 72 1 1
Max-Pooling 2 × 2 2 0

Convolution 3 × 3 × 72 × 144 1 1
Max-Pooling 2 × 2 2 0

Convolution 3 × 3 × 144 × 288 1 1
Max-Pooling 2 × 2 2 0

Fully Connection 288 × 288 1
Fully Connection 288 × K 1

SoftMax

CV-DCNN

Complex Convolution 3 × 3 × 6 × 12 1 1
Complex Max-Pooling 2 × 2 2 0

Complex Convolution 3 × 3 × 12 × 24 1 1
Complex Max-Pooling 2 × 2 2 0

Complex Convolution 3 × 3 × 24 × 48 1 1
Complex Max-Pooling 2 × 2 2 0

Complex Convolution 3 × 3 × 48 × 96 1 1
Complex Max-Pooling 2 × 2 2 0

Complex Convolution 3 × 3 × 96 × 192 1 1
Complex Max-Pooling 2 × 2 2 0

Complex Fully Connection 192 × 192 1
Complex Fully Connection 192 × K 1

Complex SoftMax

3.5. Classification Performance Evaluation

To evaluate the effectiveness of CV-FCN, comparisons with the above models on three PolSAR
datasets are presented as follows.

3.5.1. Flevoland Benchmark Dataset Result

For this dataset, we randomly choose 5% of available labeled samples per class for training.
The classification maps obtained from all methods are shown in Figure 6, and the accuracies are
reported in Table 4.
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(a) GroundTruth (b) SVM (c) Wishart (d) MRF

(e) RV-MLP (f) RV-SCNN (g) RV-DCNN (h) RV-FCN

(i) CV-MLP (j) CV-SCNN (k) CV-DCNN (l) CV-FCN

Figure 6. Classification results of Flevoland Benchmark area data with different methods.

As shown in Figure 6b–d, non-deep methods perform badly in recognizing different categories.
Although non-deep methods can clearly classify wheat class and flax class, they cannot recognize
onions class and grass class well. Figure 6e–l demonstrate the classification results for all DL-based
methods, where Figure 6e–h are the results of different RV-NNs and Figure 6i–l give the results of
different CV-NNs. As shown, all DL-based methods outperform non-deep methods, which indicates
that learning features have stronger discriminative ability than traditional features.

When comparing RV-NNs, it can be seen that RV-FCN performs best for the classification of flax
class [marked by white ovals in Figure 6e–h]. In addition, among CV-NNs, CV-FCN has the highest
classification accuracy on the beet class [marked by yellow ovals in Figure 6i–l], and the whole class
label map of CV-FCN is much clearer than others. The above two results indicate that proposed
FCN architecture is advantageous for PolSAR classification compared to other network structures,
especially CNNs.
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Table 4. Individual class, overall, average accuracies (%) and Kappa coefficient of all competing methods on the Flevoland Benchmark PolSAR image.

Class SVM Wishart MRF RV-MLP RV-SCNN RV-DCNN RV-FCN CV-MLP CV-SCNN CV-DCNN CV-FCN

1 98.11 ± 0.12 92.95 ± 0.40 99.26 ± 0.16 99.01 ± 0.27 99.86 ± 0.08 99.90 ± 0.08 99.89 ± 0.10 99.14 ± 0.17 99.63 ± 0.09 99.69 ± 0.10 99.98 ± 0.05
2 98.13 ± 0.20 93.70 ± 0.54 96.78 ± 0.40 99.98 ± 0.16 98.87 ± 0.68 98.19 ± 1.10 99.05 ± 1.67 88.54 ± 1.96 97.37 ± 1.16 96.53 ± 1.21 99.97 ± 0.09
3 94.53 ± 0.25 93.64 ± 0.22 96.63 ± 0.19 83.14 ± 2.62 55.42 ± 1.85 99.97 ± 0.09 66.94 ± 1.47 95.34 ± 0.44 100 ± 0 100 ± 0 77.57 ± 0.49
4 80.60 ± 1.37 76.13 ± 1.20 82.25 ± 1.43 76.91 ± 0.96 84.87 ± 1.47 83.25 ± 1.29 99.28 ± 0.92 80.82 ± 1.71 85.52 ± 1.73 90.42 ± 2.34 99.97 ± 0.02
5 89.59 ± 0.69 85.28 ± 0.96 93.47 ± 0.93 99.91 ± 0.05 100 ± 0 99.99 ± 0.02 99.67 ± 0.54 99.65 ± 0.28 99.76 ± 0.53 100 ± 0 100 ± 0
6 38.90 ± 1.86 35.71 ± 1.56 32.68 ± 2.24 56.81 ± 1.21 65.36 ± 2.94 89.08 ± 1.58 69.89 ± 0.88 50.80 ± 2.27 83.50 ± 1.49 89.13 ± 1.92 99.24 ± 0.14
7 93.90 ± 0.43 95.27 ± 0.45 97.27 ± 0.30 99.92 ± 0.07 99.97 ± 0.03 99.99 ± 0.03 99.96 ± 0.06 99.86 ± 0.10 99.99 ± 0.01 99.97 ± 0.01 100 ± 0
8 97.54 ± 0.45 92.30 ± 0.51 99.54 ± 0.37 81.33 ± 0.48 82.57 ± 1.91 88.69 ± 1.72 90.51 ± 1.68 71.16 ± 1.02 91.65 ± 2.40 97.79 ± 1.80 98.79 ± 1.11
9 99.86 ± 0.01 99.91 ± 0.02 99.95 ± 0.04 100 ± 0 99.96 ± 0.07 100 ± 0 99.82 ± 0.40 100 ± 0 100 ± 0 100 ± 0 99.90 ± 0.13

10 76.19 ± 1.83 72.47 ± 1.54 14.19 ± 2.75 98.91 ± 0.28 93.23 ± 1.06 87.74 ± 1.80 91.00 ± 0.86 99.53 ± 0.17 90.12 ± 1.29 98.15 ± 1.04 98.85 ± 1.21
11 99.51 ± 0.05 97.69 ± 0.29 99.51 ± 0.04 61.78 ± 1.68 56.41 ± 2.59 69.04 ± 2.16 99.79 ± 0.54 87.77 ± 1.13 64.96 ± 2.06 96.65 ± 0.26 99.97 ± 0.03
12 95.46 ± 0.48 76.88 ± 0.90 94.76 ± 0.74 100 ± 0 100 ± 0 100 ± 0 99.94 ± 0.07 100 ± 0 99.98 ± 0.03 100 ± 0 99.99 ± 0.01
13 73.71 ± 0.84 69.31 ± 1.27 74.22 ± 0.92 88.13 ± 0.78 98.54 ± 0.71 99.12 ± 0.86 93.53 ± 1.31 83.11 ± 1.21 98.35 ± 0.67 100 ± 0 99.87 ± 0.19
14 88.63 ± 0.38 88.76 ± 0.40 89.19 ± 0.52 98.95 ± 0.38 99.93 ± 0.09 100 ± 0 99.36 ± 0.26 98.17 ± 0.72 99.99 ± 0.02 100 ± 0 99.97 ± 0.08

OA 91.72 ± 0.17 85.68 ± 0.24 92.58 ± 0.21 95.34 ± 0.51 96.09 ± 0.30 97.18 ± 1.00 98.63 ± 0.96 96.21 ± 0.53 97.06 ± 0.25 98.75 ± 0.49 99.72 ± 0.42
AA 87.47 ± 0.51 83.57 ± 0.34 83.55 ± 1.15 88.91 ± 0.21 88.21 ± 0.65 93.92 ± 1.02 93.47 ± 0.51 90.35 ± 1.19 93.63 ± 0.57 97.74 ± 0.67 98.14 ± 0.89

kappa 0.9033 ± 0.0021 0.8336 ± 0.0027 0.9131 ± 0.0024 0.9450 ± 0.0061 0.9538 ± 0.0035 0.9668 ± 0.0118 0.9837 ± 0.0112 0.9554 ± 0.0062 0.9654 ± 0.0030 0.9853 ± 0.0049 0.9967 ± 0.0049
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Moreover, comparing RV-NNs and CV-NNs directly, we can observe that CV-NNs have better
performance than their RV counterparts. For example, Figure 6h,l are classification results from
RV-FCN and CV-FCN, respectively. The confusion between oats class and beet class is severe in
Figure 6h but does not appear in Figure 6l [marked by sky-blue rectangles]. This confirms the
effectiveness of complex-valued features with the phase information for the classification of PolSAR
imagery. From the overall effects depicted in Figure 6, the classification map of CV-FCN is noticeably
closer to the ground-truth map.

The evaluation indices of all methods are listed in Table 4. As shown in Table 4, all DL-based
methods achieve OA exceeding 95%. All CV-NNs methods achieve better performance than their RV
counterparts in terms of all evaluation metrics. In particular, the largest part of changes in metrics is
AA values. Furthermore, CV-FCN outperforms other compared methods in terms of three quantitative
criteria. Although compared with CV-DCNN, CV-FCN attains only 0.97% improvement in terms of
OA, all classes besides oats show comparable or higher accuracy which is consistent with the results
shown in Figure 6. In summary, from Figure 6 and Table 4, for the Flevoland Benchmark dataset,
CV-FCN achieves the best performance compared with other methods and has the powerful ability to
distinguish different terrain categories.

3.5.2. San Francisco Dataset Result

For the San Francisco dataset, we randomly choose 1% labeled pixels per class for training, and the
remaining for testing. The classification results obtained from all methods are shown in Figure 7,
and Table 5 reports the evaluation metrics of them.

Figure 7b–d demonstrate the classification results using non-deep classifiers. It can be viewed
that vegetation, low-density urban and high-density urban are severely mixed, and there are many
misclassified areas. We conjecture that due to the limited discriminative features, it is difficult for
non-deep methods to distinguish complex backscatters, especially for vegetation and urban areas.
Figure 7e–l show the classification results of DL-based methods. From Figure 7e–h, it is worth noting
that RV-FCN outperforms than the other three methods, and the boundaries between categories are
much clearer. In addition, from Figure 7i–l, CV-FCN yields the optimal visual effect compared with
other CV-NNs. All the above analyses about NNs demonstrate the effectiveness of the proposed
FCN structure, which can capture more discriminative features and effectively incorporate more
spatial information. Furthermore, from Figure 7, CV-FCN achieves the best performance, which
illustrates that both the FCN structure and the phase information have contributions to improve
classification accuracies.

As Table 5 shows, CV-FCN achieves the highest classification accuracy. The OA value of CV-FCN
is about 3% and 4% higher than CV-DCNN and CV-SCNN, respectively, which indicates the superiority
of the proposed FCN structure for PolSAR classification. In addition, the results of CV-FCN are better
than RV-FCN. This confirms that the phase information plays an important role in the improvement of
classification accuracy. Furthermore, CV-FCN yields the highest accuracies in all evaluation metrics,
which is coincident with results in Figure 7.
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(a) GroundTruth (b) SVM (c) Wishart (d) MRF

(e) RV-MLP (f) RV-SCNN (g) RV-DCNN (h) RV-FCN

(i) CV-MLP (j) CV-SCNN (k) CV-DCNN (l) CV-FCN

Figure 7. Classification results of San Francisco area data with different methods.

3.5.3. Oberpfaffenhofen Dataset Result

For the Oberpfaffenhofen dataset, we choose 1% of pixels with ground-truth class labels for
training. Figure 8 shows the visual classification results. The overall evaluation indices are given
in Table 6, and Figure 9 demonstrates the classification accuracies of every class obtained from
different methods.

In Table 6, CV-FCN achieves the best performance in terms of all metrics. The accuracies of
non-deep methods are poor which are all below 85% in terms of OA. This might be a result of limited
labeled pixels as prior information and little discriminative features. It can also be seen that CV-NNs
have better performance than their RV counterparts. However, this superiority is not prominent.
In terms of OA, CV-MLP, CV-SCNN, CV-DCNN, and CV-FCN are only 0.66%, 0.17%, 1.01%, and 1.75%
higher than RV-MLP, RV-SCNN, RV-DCNN, and RV-FCN, respectively.

Figure 8e–l show classification results of RV-NNs and CV-NNs, respectively. As shown in
Figure 8e–h, the classification result using RV-FCN is much clear than the other three, especially in the
purple boxes which are noticeably closer to the ground-truth map. This situation also occurs in the
comparison among CV-NNs. Comparing all results shown in Figure 8, for this dataset, the classification
map of CV-FCN is the best close to the ground-truth map.
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Table 5. Individual class, overall, average accuracies (%) and Kappa coefficient of all competing methods on the San Francisco PolSAR image.

Class SVM Wishart MRF RV-MLP RV-SCNN RV-DCNN RV-FCN CV-MLP CV-SCNN CV-DCNN CV-FCN

1 100 ± 0 96.43 ± 0.19 99.37 ± 0.01 99.05 ± 0.20 97.78 ± 1.42 93.35 ± 1.33 99.62 ± 0.35 99.12 ± 0.18 99.68 ± 0.07 97.59 ± 1.39 99.98 ± 0.03
2 89.08 ± 0.31 85.79 ± 1.00 89.09 ± 0.32 91.65 ± 0.99 84.77 ± 1.38 97.10 ± 1.10 98.91 ± 0.61 93.28 ± 0.87 89.68 ± 1.87 98.69 ± 0.44 99.38 ± 0.35
3 80.17 ± 0.72 63.94 ± 1.66 82.85 ± 0.59 90.51 ± 1.74 96.88 ± 1.43 95.16 ± 0.77 96.68 ± 1.30 92.34 ± 1.26 96.50 ± 0.84 95.75 ± 0.57 99.54 ± 0.40
4 81.65 ± 1.10 68.57 ± 0.84 82.16 ± 0.77 96.91 ± 0.27 98.09 ± 0.56 99.81 ± 0.15 98.79 ± 0.68 96.65 ± 0.42 97.62 ± 1.43 99.45 ± 0.30 99.72 ± 0.16

OA 90.04 ± 0.08 82.10 ± 0.39 90.53 ± 0.08 94.96 ± 0.37 94.23 ± 1.50 95.74 ± 1.01 98.61 ± 0.55 95.77 ± 0.64 96.26 ± 0.68 97.74 ± 0.36 99.69 ± 0.13
AA 87.73 ± 0.09 78.68 ± 0.44 88.37 ± 0.10 94.53 ± 0.36 93.96 ± 1.69 96.36 ± 1.21 98.49 ± 0.56 95.35 ± 0.62 95.87 ± 0.70 97.87 ± 0.27 99.65 ± 0.13

kappa 0.8615 ± 0.0012 0.7531 ± 0.0053 0.8683 ± 0.0008 0.9303 ± 0.0050 0.9203 ± 0.0206 0.9416 ± 0.0269 0.9807 ± 0.0077 0.9415 ± 0.0088 0.9483 ± 0.0093 0.9687 ± 0.0050 0.9957 ± 0.0018

Table 6. Individual class, overall, average accuracies (%) and Kappa coefficient of all competing methods on the Oberfaffenhofen PolSAR image.

Method SVM Wishart MRF RV-MLP RV-SCNN RV-DCNN RV-FCN CV-MLP CV-SCNN CV-DCNN CV-FCN

OA 83.05 ± 0.07 82.00 ± 0.11 83.70 ± 0.04 89.36 ± 1.30 93.35 ± 0.33 94.75 ± 0.88 95.51 ± 0.50 90.02 ± 0.56 93.52 ± 0.12 95.76 ± 0.57 97.26 ± 0.33
AA 76.99 ± 0.15 75.88 ± 0.26 77.83 ± 0.12 86.27 ± 0.56 94.16 ± 0.15 93.42 ± 1.33 94.38 ± 0.72 86.39 ± 0.71 93.46 ± 0.35 94.87 ± 0.73 96.38 ± 0.43

kappa 0.7045 ± 0.0014 0.6862 ± 0.0021 0.7156 ± 0.0009 0.8186 ± 0.0082 0.8889 ± 0.0051 0.9097 ± 0.0156 0.9227 ± 0.0086 0.8279 ± 0.0090 0.8909 ± 0.0023 0.9274 ± 0.0098 0.9531 ± 0.0056
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(a) GroundTruth (b) SVM (c) Wishart (d) MRF

(e) RV-MLP (f) RV-SCNN (g) RV-DCNN (h) RV-FCN

(i) CV-MLP (j) CV-SCNN (k) CV-DCNN (l) CV-FCN

Figure 8. Classification results of Oberpfaffenhofen area data with different methods.
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Figure 9. Classification accuracies of Oberpfaffenhofen area classes with different methods.

As shown in Figure 9, non-deep methods have poor abilities to distinguish built-up areas and
wood land. That can also be observed in Figure 8b–d where the misclassification in whole images
is severe and all classification maps have many isolated pixels. However, the accuracies of wood
land and open areas using DCNNs and FCNs are all over 95%, which illustrates the discriminative
feature learning ability of deep networks. In addition, CV-FCN is advantageous in terms of accuracies
for all categories relative to other methods, which demonstrates its effectiveness in extracting more
discriminative features. Overall, the above analyses precisely illustrate that CV-FCN can exhibit better
contextual consistency and extract more discriminative features from PolSAR imagery.
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As demonstrated in the above comparisons, the classification performance of CV-FCN exceeds
other methods on all PolSAR datasets. On the one hand, CV-FCN effectively improves the classification
accuracy compared to its RV counterpart (i.e., RV-FCN). Meanwhile, this conclusion is also established
in other network structures, which confirms the validity of complex-valued features containing
the phase information. On the other hand, compared with CNN structures, CV-FCN can perform
more coherent labeling and exhibit better robustness to the speckle noise, while resulting in smooth
classification with precise location. This demonstrates the effectiveness of CV-FCN architecture
in considering more spatial information and extracting more discriminative features for PolSAR
image classification.

4. Discussion

To evaluate the performance of some aspects of the CV-FCN model, we conduct two ablation
experiments and two comparison experiments as follows. Notably, the most perspective of the
proposed CV-FCN is the complex-valued upsampling scheme, where the fully skip connections
and the max locations maps are the two critical strategies. Therefore, two ablation experiments
are designed for comparison and evaluation. Specifically, the impact of fully skip connections in
the CV-FCN structure is investigated first. Then, the effect of max locations maps on classification
performance is evaluated on all datasets. Additionally, a comparison experiment about the new
complex-valued weight initialization scheme is conducted. Finally, the effectiveness of different loss
functions on precise classification is compared. The two ablation experiments are all conducted on
all three datasets. Moreover, the third experiment and the fourth experiment are conducted on the
Flevoland Benchmark dataset and the Oberpfaffenhofen dataset, respectively.

4.1. Ablation Experiment 1—Impact of Fully Skip Connections

The fully skip connection is an important part of CV-FCN because it enables the network
to enhance more feature details. The core idea is to superimpose feature maps of different
levels to improve the final classification effect. Here, to evaluate the effectiveness of fully skip
connections on classification accuracy, we construct the CV-FCN structure without skip connections.
We use NS_CV-FCN to represent this CV-FCN network. Table 7 contains the evaluation indices
for classification.

Table 7. Overall, average accuracies (%) and Kappa coefficient of the NS_CV-FCN method and the
CV-FCN method.

Dataset Methods OA AA Kappa

Flevoland NS_CV-FCN 98.73 94.97 0.9851
CV-FCN 99.72 98.14 0.9967

SanFrancisco NS_CV-FCN 98.37 98.12 0.9774
CV-FCN 99.69 99.65 0.9957

Oberpfaffenhofen NS_CV-FCN 93.36 90.51 0.8831
CV-FCN 97.26 96.38 0.9531

As illustrated in Table 7, CV-FCN outperforms NS_CV-FCN, which reveals that fully skip
connections are useful for improving classification accuracy. Compared with NS_CV-FCN,
the proposed CV-FCN increases the accuracy by 0.99% of OA, 3.17% of AA, and 0.0116 of the Kappa
coefficient, respectively, on the Flevoland dataset. Moreover, on the SanFrancisco dataset, CV-FCN
can achieve the accuracy increments by 1.32% of OA, 1.53% of AA, and 0.0183 of Kappa, respectively.
In particular, on the Oberpfaffenhofen dataset, CV-FCN increases the accuracy significantly by 3.9% of
OA, 5.87% of AA, and 0.07 of Kappa, respectively. This superiority can be attributed to the fact that
fully skip connections fuse features of different levels to preserve more discriminative information for
PolSAR image classification.
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4.2. Ablation Experiment 2—Impact of Max Locations Maps

The most prominent trait in the complex upsampling section is that the max locations maps are
used to perform nonlinear upsampling of the feature maps, which are beneficial for more precise
reconstruction output. To examine the effect of max locations maps, we construct a CV-FCN structure
wherein complex upsampling layers upsample feature maps without the guidance of max locations
maps. We call this network NL_CV-FCN. The experimental results on all datasets are shown in Table 8.

Table 8. Overall, average accuracies (%) and Kappa coefficient of the NL_CV-FCN method and the
CV-FCN method.

Dataset Methods OA AA Kappa

Flevoland NL_CV-FCN 99.29 96.41 0.9915
CV-FCN 99.72 98.14 0.9967

SanFrancisco NL_CV-FCN 98.97 98.84 0.9857
CV-FCN 99.69 99.65 0.9957

Oberpfaffenhofen NL_CV-FCN 95.80 94.31 0.9273
CV-FCN 97.26 96.38 0.9531

As illustrated in Table 8, CV-FCN outperforms NL_CV-FCN on all three datasets. Specifically,
CV-FCN is able to achieve the accuracy increments by 0.43% of OA, 1.73% of AA, and 0.0052 of Kappa,
respectively, on the Flevoland dataset; by 0.72% of OA, 0.81% of AA, and 0.001 of Kappa, respectively,
on the SanFrancisco dataset; by 1.46% of OA, 2.07% of AA, and 0.0258 of Kappa, respectively, on the
Oberpfaffenhofen dataset. These results suggest that the max locations maps benefit the classification
accuracy since they have the capacity to retrieve sufficient spatial information.

4.3. Comparison Experiment 1—Complex-Valued Weight Initialization

To evaluate the impact of complex-valued weight initialization, which is critical for CV-FCN
learning, we conduct a comparison experiment on the Flevoland Benchmark dataset. We only use the
complex-valued weight initialization in [40] as the old CV initialization scheme for comparison. The old
CV initialization scheme is to initialize the real and imaginary parts of a CV weight separately with a
uniform distribution [40]. Figure 10 illustrates the difference in the validation curves of one presentative
experiment, where the proposed weight initialization and the compared weight initialization are
denoted by CWI-1 and CWI-2, respectively. Furthermore, we also report the evaluation indices of two
initialization schemes as a function of epoch. Specifically, we first train CV-FCN for 10 epochs and
then update classification results every 10 epochs. Table 9 contains a comparison of the results.

As shown in Figure 10, both old initialization and proposed initialization lead to convergence,
but proposed initialization trains CV-FCN faster and reaches the optimal value earlier. As illustrated in
Table 9, the proposed initialization achieves the best results when the training epoch is set as around 60,
while the old initialization achieves is around 120. These results validate that the proposed initialization
not only facilitates faster learning but also improves the classification performance of CV-FCN. It may
be attributed to the ability of proposed initialization to reduce risks of vanishing or exploding gradients,
which has great significance for deep networks training. Additionally, these phenomena partially
illustrate that the proposed initialization scheme is suitable for CV-FCN to achieve a given PolSAR
image classification task.
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Figure 10. The validation curves of different complex-valued weight initialization schemes on the
Flevoland Benchmark dataset. The red line denotes the proposed complex-valued weight initialization
scheme, and the blue line denotes the old initialization scheme.

Table 9. Overall, average accuracies (%) and Kappa coefficient of different complex weight initialization
methods on the Flevoland Benchmark PolSAR image.

Epochs 10 20 30 40 50 60 70 80 90 100 110 120 130 140

CWI-1
OA 68.51 84.58 89.05 94.99 96.08 97.56 97.78 98.54 99.03 99.12 98.85 99.25 98.40 97.60
AA 28.55 48.55 62.30 75.13 79.90 88.89 89.31 96.34 96.56 96.66 95.82 98.02 96.30 95.14

Kappa 0.6163 0.8174 0.8709 0.9410 0.9539 0.9713 0.9738 0.9828 0.9885 0.9897 0.9865 0.9912 0.9812 0.9717

CWI-2
OA 91.78 94.89 97.79 99.09 98.93 99.36 98.07 98.81 98.03 98.77 98.79 97.70 95.17 94.11
AA 67.31 75.51 90.08 96.59 96.99 98.08 95.06 96.26 95.64 97.50 97.13 94.11 94.95 73.15

Kappa 0.9029 0.9398 0.9740 0.9893 0.9874 0.9925 0.9773 0.9865 0.9768 0.9855 0.9857 0.9729 0.9434 0.9305

4.4. Comparison Experiment 2—Loss Function

We carry out a comparison experiment on the Oberpfaffenhofen dataset to evaluate the
effectiveness of the average cross-entropy loss function (ACE). The complex-valued mean square
error (MSE) [40] and the complex-valued mean absolute error (MAE) are loss functions for comparison,
which will be respectively denoted by CMSE and CMAE. The CMSE and the CMAE can be respectively
expressed as

JCMSE =
1

2N
·

N

∑
n=1

[
(R(R[n])−R(O[n]))2 + (I(R[n])− I(O[n]))2

]
, (22)

JCMAE =
1
N
·

N

∑
n=1

[|R(R[n])−R(O[n])|+ |I(R[n])− I(O[n])|]. (23)

The overall accuracy curves of training and validation using different loss functions are illustrated
in Figure 11. Moreover, the typical classification maps using different loss functions are shown in
Figure 12.

As seen from Figure 11, CV-FCN using ACE and CMAE can converge faster than CMSE.
The training and validation curves using ACE and CMAE remain relatively stable after 120 epochs,
while curves using CMSE still do not achieve similar stability until 250 epochs. Additionally, the best
accuracy of the proposed loss function is higher than CMAE when validation. As shown in Figure 12,
the classification map using CMSE is smoother than CMAE and ACE. This finding is potentially
explained that CV-FCN using CMSE can mitigate the effects of the speckle noise. However, boundary
delineations between different categories are ambiguous due to being too smooth. Although the
classification map using CMAE contains clear structural information, it has more misclassification
points due to the speckle noise. Notably, CV-FCN using the proposed ACE can achieve correct
boundary localization as well as show better robustness to speckle noise. Thus, these above phenomena
can partially establish the effectiveness of the proposed loss function.



Remote Sens. 2019, 11, 2653 26 of 29

50 100 150 200 250
60

65

70

75

80

85

90

95

100

Num of Epochs

O
A

(%
)

 

 

CMSE−train

CMAE−train

ACE−train

CMSE−val

CMAE−val

ACE−val

Figure 11. The overall accuracy (OA) curves of training and validation using different loss functions on
the Oberpfaffenhofen dataset. CMSE-train, CMAE-train, and ACE-train denote training curves using
CMSE, CMAE, and ACE, respectively. CMSE-val, CMAE-val, and ACE-val denote validation curves
using CMSE, CMAE, and ACE, respectively.
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Figure 12. Classification results of Oberpfaffenhofen area with different loss functions. (a) CMSE loss
function; (b) CMAE loss function; (c) Proposed ACE loss function.

5. Conclusions

In this paper, a novel complex-valued (CV) pixel-level model called CV-FCN has been proposed
for PolSAR image classification, which obtains better classification performance than non-deep
methods and other DL-based methods. This model integrates the feature extraction module and
the classification module in a unified framework. For learning meaningful features faster, a new
complex-valued weight initialization scheme is proposed to initialize CV-FCN. It greatly facilitates
faster learning for this network and is beneficial to improve CV-FCN performance. Then, different-level
and robust CV features that retain more discriminative information are extracted via CV-FCN.
In particular, a new complex upsampling scheme in CV-FCN is proposed to output CV predicted
labeling. It also recovers rich spatial information with max locations maps to alleviate the problem of
speckle noise. Furthermore, a novel average cross-entropy loss function is presented for more precise
CV-FCN optimization. The proposed CV-FCN model can directly use the PolSAR CV data to enable
pixel-to-pixel classification results without any data projection. Moreover, it automatically learns
higher-level feature representations and fuses multi-level features for accurate category identification.
Experimental results on real benchmark PolSAR images show that CV-FCN achieves comparable or
better results than the comparing models.

In the future, this work may be continued with the following ideas: (1) Although some
experiments have demonstrated the effectiveness of the new complex-valued weight initialization
scheme, it still needs strong cues to prove the superiority and some visualization to observe the
difference; (2) With the limitation of available PolSAR datasets and high-quality training datasets,
training deeper complex-valued networks devoted to PolSAR classification is very challenging, often
yielding the risk of overfitting and model collapse. Moreover, data augmentation strategies for
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natural images are generally not suited for PolSAR images to enlarge training datasets because of
the difference in imaging mechanisms. So, it appears that an available data augmentation strategy is
urgently necessary to tackle the above issues.
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