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Abstract: Biodiversity monitoring in the Niger delta has become pertinent in view of the incessant
spillages from oil production activities and the socio-economic impact of these spillages on the
inhabitants who depend on the resources for their livelihood. Conventional methods of post-impact
assessments are expensive, time consuming, and cause damage to the environment, as they often
require the removal of affected samples/specimens for laboratory analysis. Remote sensing offers the
opportunity to track biodiversity changes from space while using the spectral variability hypothesis
(SVH). The SVH proposes that the species diversity of a sampled area is linearly correlated with
the variability of spectral reflectance of the area. Several authors have tested the SVH on various
land cover types and spatial scales; however, the present study evaluated the validity of the SVH
against the backdrop of oil pollution impact on biodiversity while using vascular plant species as
surrogates. Species richness and diversity indices were computed from vegetation data collected from
polluted and non-polluted transects. Spectral metrics that were derived from Sentinel 2 bands and
broadband vegetation indices (BVIs) using various algorithms, including averages, spread, dimension
reduction, and so on, were assessed for their ability to estimate vascular plants species richness
and diversity. The results showed significant differences in vegetation characteristics of polluted
and control transects (H = 76.05, p-value = <0.05 for abundance and H = 170.03, p-value < 0.05 for
richness). Spectral diversity metrics correlated negatively with species data on polluted transects and
positively on control transects. The metrics computed using Sentinel 2A bands and vegetation indices
proved to be sensitive to changes in vegetation characteristics following oil pollution. The most
robust relationship was observed between the metrics and indices on control transects, whereas the
weakest relationships were observed on polluted transects. Index-wise, the Simpson’s diversity index
regressed better with spectral metrics (R2 > 0.5), whereas the Chao-1 richness index regressed the
least (R2 < 0.5). The strength of the relationship resulted in successfully estimating species richness
and diversity values of investigated transects, thereby enhancing biodiversity monitoring over time
and space.

Keywords: Spectral Variability Hypothesis (SVH); Sentinel 2; biodiversity; spectral metrics; vegetation
indices; diversity indices

1. Introduction

The Spectral Variability Hypothesis (SVH) that was proposed by Palmer et al. [1] asserts that
the spatial heterogeneity of plant species positively correlates with spectral diversity of remotely
sensed images. Spectral diversity, on the one hand, is determined by the extent of variation in the
reflectance values of corrected images. Plants, like other materials on the earth surface, uniquely
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reflect radiation from the sun for different species. The shape of the spectrum is dependent on the
optical properties of the plants, which in turn are controlled by biophysical and biochemical factors,
such as cellular structure, leaf anatomy, pigment concentrations, and moisture content. According to
Clevers et al. [2], the control of leaf reflectance is by pigments (chlorophyll a and b, β-carotene, and so
on) in the visible (VIS); the cellular structure in the near-infrared (NIR) and moisture content in the
short-wave infrared (SWIR) regions of the electromagnetic spectrum. Variations in these properties that
are induced by plant response to environmental stress, such as oil pollution, manifest in the spectral
signatures acquired by satellite sensors in orbit. Plants response to environmental stress has been
well-studied [3], as well as the adverse effect of such stressors to plant productivity [4]. Environmental
stressors that affect plants also result in biodiversity loss globally [5,6].

Hydrocarbons in the soil displace oxygen and nutrients and adversely affect plant growth and
productivity [7–9]. Zhang et al. [10] investigated the effect of lubricating oil pollution on mangrove
species in Hong Kong and reported that the hydrocarbons induced the formation of excessive free
radicals in plant cells. These radicals caused oxidative stress by impairing biological processes that
enhance growth and productivity in plant seedlings. In their work at a leakage site in Central Bohemia,
Czechoslovakia (present-day Czech Republic) Pyšek and Pyšek [6] noted a decrease in the growth and
number of individual plants that are present on contaminated sites.

Species diversity is an ecosystem status indicator according to the Group on Earth Observation
(GEO BON), the World Climate Research Programme (WRCP), the International Geosphere-Biosphere
Program (IGBP), and the Committee on Earth Observation systems (CEOS) [11]. Past studies show
links between species diversity and ecosystem productivity, such that loss of the former threatens the
goods and services derived from the latter [12–16]. Similarly, Pereira and Cooper [17] observed that
species diversity determines the ecosystem functioning and type of ecosystem services provided at the
local, regional, or global scale. Effort to minimize or halt the rapid and significant loss of biodiversity
worldwide led to the development of initiatives and frameworks (such as the Convention on Biological
Diversity, CBD) and gauging the effectiveness of these policies require timely, standardized, and
scalable information on the status and trends of biodiversity [18,19]. Remote sensing offers great
potential for the achievement of these goals and provides the basis for the development of essential
biodiversity variables by GEO BON [19]. Remote sensing is used in biodiversity monitoring to estimate
plant species diversity while using very high spectral and spatial resolution images that are analysed
for spectral diversity [19–22]. Hence, the SVH represents a valuable resource that integrates spectral
and field data for detecting various effects of oil pollution on the ecosystem.

The spectral variability hypothesis (SVH) was tested in this study to determine the suitability
of spectral diversity metrics that are derived from Sentinel 2A data for biodiversity monitoring in
oil-polluted locations. To achieve this, the following questions were tackled

1. Is there any difference in the reflectance spectra of polluted and non-polluted vegetation?
2. Is there a significant relationship between spectral diversity metrics and field measured variables?
3. Is the application of the SVH valid for oil polluted locations?

2. Materials and Methods

2.1. Study Area

Rivers State is located in Nigeria between latitude 4.75◦ North and longitude 6.83◦ East in the
eastern part of the Niger Delta, on the ocean ward extension of the Benue trough (Figure 1). It occupies
an area approximately 11,077 km2 of the delta described as constructive and mainly fed with sediments
from the heavily-laden (about 330,000 cm3/annum) Niger River originating from Guinea travelling
through Mali, Niger, Benin Republic, and Northern Nigeria [23]. The Delta also receives sediments
from the Benue River, albeit to a lesser degree. Rivers State is bounded on the South by the Atlantic
Ocean, to the North by Imo, Abia, and Anambra States, to the East by Akwa Ibom State, and to the
West by Bayelsa and Delta States. It receives some of the highest rainfall in the world of up to 3000 mm
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annually [24]. The temperature ranges from 20◦ to 30◦ C during the day. The Intertropical Front wind
originates from the meeting point of humid air masses of the Gulf of Guinea and dry air masses from
the north continuously blow over the delta, which results in high levels of humidity of up to 75% [25].
The area is also characterised by high cloud cover, which invariably affects the quality of satellite data
obtained at certain times of the year [24].
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Figure 1. Map of Rivers State showing the location of investigated spill transects (Polluted and
non-polluted i.e., control), ecological zones, and waterbodies (rivers and creeks).

In line with the rest of the Delta geomorphology, Rivers State consists of alluvial deposits of
sands, silts, and clays deposited during the late Miocene-Pliocene times. Coarse sands and gravels
underlie parts of the area while fine sands and clays underlie other areas [26]. The landscape of the
area is generally flat with altitude that ranges between 6 to 14m above sea level. The investigated
transects located in various local government areas fall in the coastal plain and freshwater ecological
zone populated by forest tree species, mangrove, palms, shrubs, ferns, lianas, and so on; however,
the rainforest is degraded as observed during the field work. Vegetation around spill transects is
variable with evidence of fire occurrence within 30 m radius of the spill epicentre at one of the polluted
locations in Kporghor. Other features include untarred roads, which are part of the oil companies’
right of way (ROW), vegetated land (natural and farmed), and bare soil. Records from the Nigerian
Oil Spill Monitor website [27] (https://oilspillmonitor.ng) indicate that the spills occurred between
July to December 2015 with sabotage being the leading cause. The sabotage of oil pipelines is the
typical method by which crude oil is illegally extracted or diverted. It involves exploding dynamites
near pipelines, loosening valves, cutting the pipes, drilling holes in the pipes to fit taps, and applying
corrosive substances all in the bid to access the crude oil [28]. The extracted crude is either sold in
the black market or locally refined for personal use. Estimated spill volumes reported the range from
46 barrels to over 5000 barrels. Hence, between July and December, 2015 (about six months) over
10,641 barrels of crude oil were spilt into the vulnerable ecosystem of Rivers State in the Niger Delta
region of Nigeria.

https://oilspillmonitor.ng
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2.2. Soil Sampling and Vegetation Survey

Vegetation sampling involved the line-intercept method that was discussed in Cummings and
Smith [29]. The line intercept method was sufficient for capturing field data to determine species
diversity and abundance due to the unique circumstances prevailing at the study area during this
campaign [30]. Ten oil spill locations in the Rivers State of Nigeria were investigated. Most of the
spills emanated from damaged pipelines that crisscross the landscape of the Niger Delta; however,
a few occurred at oil well wellhead locations that were inaccessible; hence, survey was limited to
affected and accessible pipelines. Four transects 100 m long transverse the polluted locations in the
four cardinal directions starting from the spill epicentre were labelled A, B, C, and D, respectively.
The spill epicentre was marked by a 20 × 20 m quadrant from where transects were measured and
labelled SS0. Two unpolluted (control) transects that were located within the same towns and ecological
zones to ensure ecological similarity, but at least 2 km from the polluted transects, were labelled
control 1 and control 2. Control transects were randomly located in areas that have no record of
oil spill based on the data available from the Nigerian oil spill monitor website. Polluted transects
were subdivided into five segments of 20 m length labelled SS1 to SS5, corresponding to increasing
distance from the spill epicentre (SS0). Similarly, control transects were also subdivided into five
segments. For each segment, a composite soil sample, species richness and diversity (alpha) values,
and vegetation abundance based on the number of individuals observed in the segment were recorded.
Abundance is a unit-less measure and it was calculated for each segment as the ratio of the number
to occurrence frequency of individual plants [31]. The soil samples were analysed in the laboratory
for total petroleum hydrocarbon (TPH) concentration. However, to correct for spatial autocorrelation
effects, analysis of data involved alternate segments on each transect including the SS0s.

Inventory of all vascular plant species present on transects was done in February and March
2016 and in May and June 2017 with the aid of prepared tally sheets and local experts. Tally sheets
listing indigenous species and photographs were taken to the field to help in species identification
with consideration given to the type and shape of leaf, margin, apex, and base of each species; as well
as the arrangement of leaves and leaflets on the petioles. Previous reports of common species in the
Niger Delta area, such as Ubom [32] and Agbagwa and Ekeke [33] provided material for tally sheets.
A deliberate effort was made to minimise any damage to vegetation during the field campaign, hence
photographs of unknown plants were taken to the Herbariums of the Forestry Research Institute of
Nigeria, Umuahia, and the Michael Okpara University of Agriculture, Umudike both in Abia State,
Nigeria for identification.

2.3. Sentinel-2A Image Acquisition and Processing (S2AD)

The Multi-Spectral Imager (MSI) sensor on board the Sentinel 2A satellite acquired the images
that were used in this analysis. The Sentinel-2A satellite launched on the 23rd of June 2015 is one of
the fleets of satellites owned by the European Commission (EC), in partnership with the European
Space Agency (ESA). It is designed to provide imagery that supports environmental monitoring under
the EC/ESA’s Copernicus programme. The data from this satellite are open and freely downloadable
from the Copernicus website. The MSI sensor acquires images in 13 spectral bands with wavelengths
ranging from 443–2190 nm. The spectral bands include three visible (Red, Green, and Blue), one near
infrared (NIR), and three short-wave infrared (SWIR) bands. As an added advantage, the MSI also has
three red-edge bands, which are useful for differentiating crop types and detecting vegetation stress and
one coastal aerosol band useful for atmospheric correction (http://www.esa.int//Copernicus/Sentinel-2).
However, only eight bands relevant for vegetation analysis were used for the present study. These were
the visible (bands 2, 3, and 4), NIR (band 8) and red-edge bands (bands 5, 6, 7, and 8A). Table 1 shows
the bands, bandwidths, central wavelengths, and spatial resolution of the Sentinel 2A image relevant
to this study.

http://www.esa.int//Copernicus/Sentinel-2
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Table 1. Spectral and spatial resolution of Sentinel-2A image.

Sentinel-2A Bands Band Number Bandwidth
(nm)

Central Wavelength
(nm)

Resolution
(m)

Blue 2 65 490 10

Green 3 35 560 10

Red 4 30 665 10

Vegetation Red Edge 5 15 705 20

Vegetation Red Edge 6 15 740 20

Vegetation Red Edge 7 20 783 20

NIR 8 115 842 10

Vegetation Red Edge 8A 20 865 20

Spatially, Sentinel-2A images have a swath width of 290km and a resolution of 10 m (VNIR),
20 m (Red-edge and SWIR), and 60 m (atmospheric correction bands). These are some of
the best spatial resolutions for freely available satellite data. Six level 1C processed images
(geometric and radiometrically corrected) were downloaded from the Copernicus Services Data
Hub (https://cophub.copernicus.eu/) to cover the study area. These images were acquired between
29 December 2016 and 5 January 2017 and downloaded as 100 by 100 km2 granules were selected
based on very low cloudy pixel percentage. Each image was atmospherically corrected while
using the Sen2cor plugin tool to remove the atmospheric effects from sentinel 2A level 1C images.
The processor computes surface reflectance from the top of the atmosphere reflectance values in
the level 1C images. Details of the procedure are documented and are available at the ESA SNAP
website (http//www.step.esa.int/main/third-party-plugins-2/sen2cor). Further analysis performed on
the images included band analysis, vegetation index computation, and derivation of spectral metrics.
These were completed before basic geo-processing procedures, such as resampling, mosaicking, and
clipping were done, in order to retain as much original information in the pixel texture as possible.
Rocchini et al. [11] observed that the image analysis that involves smoothing processes could cause a
loss of vital information. Resampling was undertaken to downscale the pixel resolution of the various
bands to 10 m to achieve uniformity in the results. This procedure was necessary for also performing
further image processing on the ESA SNAP platform. Upsampling (resampling to a higher resolution)
that was performed in SNAP used the bilinear interpolation method, which is highly recommended
for satellite data.

2.4. Scale Matching Satellite Image and Study Area

Sentinel 2A image was spatially scaled to match the sampling units of the field survey.
Rocchini et al. [34] suggested that appropriately scaling imagery resolution with species data was
essential for implementing the SVH. Similarly, Small [35] and Rocchini [36] noted that matching the field
sampling units with the spatial resolution of an image will enhance the detection of sub-pixel variability
and strengthen the relationship between species diversity and spectral variability. Additionally,
Turner et al. [37] and Chen and Henebry [38] suggested that the calculation of spectral variability is
enhanced when several pixels cover the spatial dimension of sampling units.

Vector polygons of each segment on the investigated transects were created in ENVI 5.3. Each
segment of 20 m corresponded to 2 × 10 m pixels of the Sentinel 2A image; however, a 2 × 2-pixel
window was used in this analysis to incorporate information from the surrounding area. Although the
total area of the pixel window was more than the sampling units (segments), this was not considered
to be limitation, since incorporating spectral information of landscape surrounding sampling units
improve the performance of models linking species to spectral diversity [34,39]. In total, 210 × 4 pixels

https://cophub.copernicus.eu/
http//www.step.esa.int/main/third-party-plugins-2/sen2cor
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(equivalent to an area of 84,000 square meters) were used to test the spectral variability hypothesis in
this study.

2.5. Spectral Diversity Metrics

Spectral diversity metrics are spatial quantifications of the diversity of satellite imagery (Warren et al.
2014). Metrics were computed from Sentinel 2A bands and from known vegetation indices that were
computed from the Sentinel 2A data. Vegetation reflectance in the 400 to 2500 nm region of the
electromagnetic spectrum provides valuable information for the remote sensing of vegetation. Previous
research using both in situ and satellite spectral data show that various plant physiological parameters
control both leaf and canopy reflectance at different regions of the spectrum. For instance, Gitelson [40]
and Wu [41] showed that chlorophyll pigments strongly influence reflectance in the red and blue
spectral regions. Diversity metrics were computed from individual bands of the Sentinel 2 image in
order to maximize the information inherent in vegetation spectrum. This is because according to Mielke,
Schaffer and Schilling [42], differences in leaf internal structure and presence of other pigments affect
leaf reflectance of different species at similar wavelengths. Hence, band-based diversity metrics are
expected to reveal differences in the species composition of the study area in line with the SVH.

Furthermore, vegetation indices are derived from the application of mathematical expressions
on the spectral reflectance of plant materials. They are functions of the reflectance in visible and
near-infrared (NIR) spectral bands and they are designed to enhance sensitivity to the parameter of
interest, while minimising atmospheric interferences. Most indices are derived from a combination
of visible and NIR reflectance depending on the objective of the study [43]. Based on the nature of
vegetation indices, it is expected that the spectral diversity of selected indices might be a reflection
of the diversity of the measured vegetation. Both sets of indices were compared on their predictive
performance in models estimating species diversity in the study area.

2.6. Spectral Diversity Metrics from Bands

The study only utilized eight bands out of the original 13 bands of the Sentinel-2A imagery, these
were bands 2 = blue; 3 = green; 4 = red; 5–7, 8A = red edge and 8 = near infrared (NIR). A vector
layer of polygons representing segments of investigated transects was overlaid on the pre-processed
satellite imagery. For each segment measuring 20m in length, four pixels were identified to encompass
it and each pixel was treated as a distinct species to determine the spectral variability of the locations.
The reflectance of individual Sentinel-2A bands was then extracted from these four pixels and used in
computing the spectral diversity of segments based on various approaches that were adopted from
literature. Most procedures involved the center and spread of the band reflectance values from the
corresponding pixels, others included the use of information theory (Shannon index) and probability
(Simpson index). Metrics computed from the mean, standard deviation, Shannon and Simpson’s
indices of the pixels followed the method outlined in Warren et al. [44]. Two additional metrics
that were defined as spectral heterogeneity (SH) and quartile-based coefficient of variation (QCV)
derived from the methods of Hall et al. [21] and Heumann, Hackett and Monfils [20], respectively,
were computed from the Sentinel 2A bands. SH is the mean difference between the mean of each
2 × 2-pixel window overlaying a segment and the mean of all 2 × 2-pixel windows on each transect
(overlaying five segments in total). QCV is a non-parametric approach that measures the dispersion of
data around a center (median value) by taking the ratio of the interquartile range to the median of
the data set (IQR/Median). Further spectral metrics computed from the original 8 Sentinel-2A bands
include those that were obtained by principal component analysis (PCA), which is a mathematical
algorithm that transforms high dimensional and correlated data to lower dimension and uncorrelated
components. Data reduction involves identifying the direction (eigenvectors) of the most variance in
the data [45]. These statistics were calculated while using reflectance values of eight bands from the
four pixels overlaying the investigated segments. In total, 56 band indices were derived from the eight
Sentinel-2A bands utilized. Table 2 presents a list of derived metrics.
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Table 2. Spectral indices derived from the Sentinel-2A bands used in the study. Band reflectance of
four pixels overlaying each segment provided data for this analysis.

Band Statistic Index

2 (Blue)

Mean M2

Standard deviation Sd2

Spectral heterogeneity Sh2

Quartile coefficient of variation QCV2

Shannon’s Index H2

Simpson’s Index D2

Sorenson’s Similarity Index SI2

3 (Green)

Mean M3

Standard deviation Sd3

Spectral heterogeneity Sh3

Quartile coefficient of variation QCV3

Shannon’s Index H3

Simpson’s Index D3

Sorenson’s Similarity Index SI3

4 (Red)

Mean M4

Standard deviation Sd4

Spectral heterogeneity Sh4

Quartile coefficient of variation QCV4

Shannon’s Index H4

Simpson’s Index D4

Sorenson’s Similarity Index SI4

5–7, 8A (Red Edge)

Mean M5–M7, M8A

Standard deviation Sd5–Sd7, Sd8A

Spectral heterogeneity Sh5–Sh7, Sh8A

Quartile coefficient of variation QCV5–QCV7, QCV8A

Shannon’s Index H5–H7, H8A

Simpson’s Index D5–D7, D8A

Sorenson’s Similarity Index SI5-SI7, SI8A

8 (NIR)

Mean M8

Standard deviation Sd8

Spectral heterogeneity Sh8

Quartile coefficient of variation QCV8

Shannon’s Index H8

Simpson’s Index D8

Sorenson’s Similarity Index SI8

PC1 Scores PC1

PC2 Scores PC2

PC3 Scores PC3
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2.7. Spectral Diversity Metrics from Vegetation Indices (VIs)

Table 3 lists vegetation indices that are useful for detecting the chlorophyll content, primary
productivity, and vegetation stress in plants extracted from the original bands of the Sentinel-2A image.
Metrics that were derived from VIs include the mean, standard deviation, Shannon’s and Simpson’s
diversity indices, which were used in further analyses.

Table 3. Summary of selected vegetation indices used in evaluating the spectral variation
hypothesis (SVH).

Parameter Index Formula Reference

Chlorophyll Content

Canopy Chlorophyll Index (CCI) Band8−Band5
Band8+Band4 [46]

Normalised Difference Vegetation Index (NDVI) Band8−Band4
Band8+band4 [47,48]

Red Edge Position 2 Band5−Band4
Band5+Band4 [49]

Primary Productivity Soil Adjusted Vegetation Index (SAVI) Band8−Band4
Band8+Band4+L (1 + L) [50]

Leaf Pigments
Anthocyanin Reflectance Index (ARI) 1

Band3 −
1

Band5 [51]

Structure Insensitive Pigment Index (SIPI) Band8−Band1
Band8−Band4 [52]

2.8. Statistical Analysis

The analysis of vegetation data utilized the Paleontological Statistics Software Package, (PAST) to
compute the species richness and diversity of the study area and ecological packages labdsv and vegan
to compute the phytosociological characteristics of vegetation in R-studio. Spectral diversity metrics
of segments across the entire study area were explored to identify the outliers and the probability
distribution while using the Anderson–Darling normality test. The results showed that the datasets
did not fulfil the assumptions of a normal distribution; hence, the application of non-parametric
analytical methods. The Kruskal–Wallis one-way analysis of variance by ranks was employed to test
the null hypothesis of no difference in median values of more than two independent samples [53].
It compared soil TPH and vegetation abundance data from segments of polluted and control transects
for all locations investigated, and significant results from the omnibus test were subjected to pairwise
multiple-comparisons of mean rank sums while using the Dunn’s test. Dunn’s test identified which
samples differed significantly. The Bonferroni correction procedure adjusted the p-values, which
controlled the family-wise error that might lead to false discoveries. The Bonferroni adjustment divides
the overall alpha (0.05) by the total number of multiple tests [54].

The correlation of each spectral metric with each species diversity measure identified the most
sensitive metrics to oil pollution. Following the Spearman’s Rank Correlation (SRC) of the data, metrics
with large coefficient values (r > ±0.2) were selected and further tested for significance at alpha = 0.05
while using the Student t-test. A p-value of less than 0.05 implies that there is sufficient evidence to
conclude that there is a significant linear relationship between the spectral metric and the particular
field-measured variable and that the relationship is replicable. Selected spectral metrics were grouped
according to their sources (Sentinel 2A bands or vegetation indices) and regressed with field data
to establish the strength of any relationships amongst the variables while using a non-parametric
regression model (NPM). NPM allow for the modelling of densities and local polynomial regression on
both continuous and categorical data, which do not necessarily follow any pre-defined distribution [55].
Hayfield and Racine [56] developed the np package in R used for this analysis. The procedure involves
using the Akaike information criterion (AIC) to select the optimum bandwidths estimated from
second-order Gaussian kernel densities. Local linear regressions are performed on the data while using
the selected bandwidths to determine the fitting of the curve, and calculate the fitted, predicted, and
error values. The np package has a multi-start function, which helps to avoid errors that occur in the
presence of local minima.
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The regression analysis was performed to investigate the possibility that the MSI detected
changes in vegetation reflectance that are caused by oil pollution. Firstly, the spectral diversity of
polluted transects should vary significantly with that of non-polluted transects. The rationale for this
presumption is the documented effects of oil pollution on vegetation, which includes the decrease
in plant productivity and loss of vulnerable plant species, thereby reducing the spectral diversity.
Secondly, species diversity indices that were measured from the field were expected to linearly and
positively regress with spectral diversity metrics (particularly on control transects) in line with the
spectral variability hypothesis. Finally, selected spectral diversity metrics were predictors in models
designed to test the SVH and estimate vascular plant species diversity in the study area. Metrics were
selected based on the strength of their relationships with the diversity indices and the variance inflation
factor (VIF). The VIF that was adopted to correct for collinearity in the explanatory variables was
determined in R while using the car package. Only metrics with VIF < 10 were selected for the
models. Prediction modelling involved a non-parametric multivariate regression (NPMR) analysis
while using the np package in R. Two groups of spectral metrics namely, band-based (those derived
from Sentinel 2A bands) and index-based (those derived from common vegetation indices) were used
in models to estimate vascular plant species diversity. The dataset was randomly subdivided into
training and test (validation data) while using a ratio of 7:3, respectively. Thus, the training data
contained 150 observations and the test data contained 60 observations. Regression coefficients that
were derived from the calibration process were applied to the test data for validation. The assessment
of model performance was conducted by comparing the adjusted coefficient of determination values
(Adj.R2), root mean square error (RMSE), and predicted square error (PSE) of both band-based and
index-based models.

The presence of spatial autocorrelation among the data points was acknowledged in this study
and it was minimized by the selection of alternate segments on investigated transects. However, the
spatial structure of the field data aggregated over transects and locations might lead to model over fit.
Table 4 lists the models and parameters.

Table 4. Parameters of models used to estimate soil properties and other response variables from spectral
diversity metrics computed using A. sentinel 2A bands 2 to 8A and B. common vegetation indices.

Model ID Predictors Response Variables

1A. Band-Based Metrics
Selected spectral metrics from
Sentinel 2A bands 2 to 8A with

−0.2 < r > 0.2

Species richness
Species diversity

Vegetation abundance

1B. Index-Based Metrics
Selected spectral metrics from

vegetation indices with
−0.2 < r > 0.2

Species richness
Species diversity

Vegetation abundance

3. Results

3.1. Total Petroleum Hydrocarbon (TPH) Distribution in Soil Samples

Figure 2 shows the average concentration of TPH in polluted and control transects across
investigated locations. The highest concentration of TPH (>99,000 mg/kg) occurred in samples from
the Amuruto spill epicentre. Overall mean and median TPH values for polluted transects were 12,692
and 3933 mg/kg, respectively, while for the control, the values were 40.53 and 36.50 mg/kg respectively.
In Figure 2, the TPH concentration values are log-transformed and plotted to highlight the reference
line, which signifies the average recommended Environmental Guidelines and Standards for the
Petroleum Industry in Nigeria (EGASPIN) intervention value of different components of petroleum
hydrocarbon in the soil. EGASPIN intervention values (mg/kg of soil) that were documented for
different aromatic hydrocarbons that make up crude oil range from 1 for Benzene to 130 for Toluene
(Department of Petroleum Resources, (DPR), 2002). The plot reveals that TPH concentration in polluted
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transects are well above EGASPIN intervention values. Although lower TPH values were observed in
control transects, these values were just within the borderline of intervention values and also above
the target values of 0.05 mg/kg for the various petroleum hydrocarbon components.
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Figure 2. Total petroleum hydrocarbons levels in soil samples from polluted and control transects
(N = 210). Bar charts were plotted using transformed (common log) values. The coloured reference
lines illustrate the average Environmental Guidelines and Standards for the Petroleum Industry
in Nigeria (EGASPIN) intervention value for A: Ethylbenzene = 50 mg/kg (1.669 on the log scale);
B. Phenol = 40 mg/kg (1.6); C. Toluene = 130 mg/kg (2.11) and D. Xylene = 25 mg/kg (1.4). Total
petroleum hydrocarbon (TPH) levels in polluted transects were well over the recommended intervention
value, whereas levels in control 1 transects were borderline.

3.2. Species Composition, Richness and Diversity on Investigated Locations

163 plant species belonging to 52 families were recorded on transects. There were 37 families
on polluted, and 52 on control (non-polluted) transects. In all of the locations, Poaceae was the
most abundant family with 19 species. Cyperaceae followed with 13 species, then Euphorbiaceae and
Leguminoceae with ten species each. Other families with over five members were Asteraceae, eight;
Arecaceae and Fabaceae, seven each; Malvaceae and Rubiaceae, six each and Sterculiaceae, five. Species-wise,
polluted transects had fewer species than control transects. The total number of different species (taxa)
recorded on all the polluted transects was 93 and it was substantially lower than the 154 observed on
all of the control transects. Generally, 11 species on polluted transects occurred in at least 30 segments
out of 130 while on control transects, 15 species occurred in 30 segments out of 80. The most common
species on the polluted transects was Ageratum conyzoides (Ageconh), and on control transects, it
was Manihot esculenta (Manescs). At soil TPH levels greater than 50,000 mg/kg; only two species,
namely Costus afer (Cosafes) and Chloris pilosa (Chlpilh), both annual plants occurred up to six times.
Significant differences were apparent in vegetation characteristics that were measured from polluted
and control transects. The species number (taxa) indicates the total number of unique species that
occur on transects at the time of the investigation. Anyu had the highest taxa of 28 and 52 on polluted
and control transects, respectively. The median taxa value for polluted and control segments were nine
(n = 130) and 28 (n = 80), respectively.

The weighted average (WA) value of soil TPH (mg/kg) weighted by species abundance on
segments was computed while using the labdsv package in R-studio to identify the most tolerant
and most vulnerable species. The results in Table 5 shows the five most susceptible and five most
tolerant species along with the WA scores. Interestingly, the most tolerant species were herbs, mainly
Perotis indica (Perindh), which can tolerate over 67,000 mg/kg of TPH in the soil. The last letter in
species code name indicates the life form of the species, s = shrub, h = herb, c = climber/creeper,
t = tree). Other tolerant species include Albizia adiantifolia (Albadit), Kyllinga erecta (Kylereh), Sida
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cordifolia (Sidcorh) and Andropogon tectorum (Andtech). The most susceptible species were Terminalia
catappa (Tercatt), Synedrella nodiflora (Synnodh), Oldenlandia corymbosa (Oldcorh), Albizia zygia (Albzygt),
and Psychotria nigerica (Psynigs).

Table 5. Weighted average scores of soil TPH concentration in investigated transects showing species
most susceptible and most tolerant to oil pollution. The last letter in species code name indicates the
life form of the species, s = shrub, h = herb, c = climber/creeper, t = tree).

Most Susceptible Most Tolerant

Species Code WA Scores of TPH (mg/kg) Species Code WA Scores of TPH (mg/kg)

Tercatt 16.5 Perindh 67,940.25
Synnodh 19.2 Albadit 61,232.8
Oldcorh 25.9 Kylereh 22,048.08
Albzygt 26.26 Sidcorh 16,728.76
Psynigs 26.53 Andtech 14,470.86

Many indices were used to calculate the vascular plants species diversity of both the polluted
and non-polluted transects across the entire study area. These included those for estimating species
diversity, such as Shannon’s (H) and Simpson’s (D), those for estimating species richness, such as
Menhinick’s index (M) and Chao-1 (CH) indices. The analysis was performed while using PAST
software using the abundance data of all inventoried species. Figure 3 shows the distribution of
diversity indices values on polluted and control transects. From the plots, it is apparent that diversity
values were higher on control transects than on polluted transect. Index values on polluted transects
exhibited more variability than control transects, except in Chao-1, which showed a reverse with more
variability in values that were obtained from control transects.
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Generally, for all of the indices computed, the non-polluted transects exhibited higher richness
and diversity values than polluted transects at all locations. Among the polluted transects, Menhinick’s
richness index ranged from 2.33 to 3.33, while the Shannon diversity values ranged from 0 to 2.93
computed for Rumuekpe. Among the non-polluted transects, species richness (Menhinick’s Index)
ranged from 3.26 to 5.42, and Shannon’s index ranged from 1.87 to 3.6. Zero index values were
mostly obtained on spill epicenters in Kporghor and Alimini, where fire incidence wholly removed
the vegetation. The vegetation abundance on polluted transects appeared to be lower than on control
transects. Median values were 1.27 plants per occurrence on control transects and 1.19 on polluted
transects. The difference was significant when subjected to the Kruskal–Wallis test (H = 76.06, p < 0.05).

3.3. Relationship between Spectral Diversity Metrics and Species Richness/Diversity Indices

The median values of band-based spectral metrics from polluted transects were higher than those
of the control transects. The exception were SH metrics and all of the metrics computed from band 8
(NIR) reflectance with higher median values in control transects (Table 6); however, the differences
were not significant. The larger median values of polluted metrics were expected due to the increased
RGB reflectance observed on polluted transects (supplementary material Figure S1). Similarly, the
decreased NIR reflectance of polluted transects might have contributed to the reduced median values
of polluted metrics in comparison to control metrics.

Table 6. Median values of some spectral metrics computed from Sentinel 2A bands showed higher
values on polluted transects. The spectral heterogeneity (SH) metrics and all metrics computed from
band 8 (NIR) reflectance (in bold) showed higher median values in control than in polluted transects
although the differences were not significant.

Bands Mean Spectral Heterogeneity 1st Principal Component

Control Polluted Control Polluted Control Polluted

2 1662.5 1678.5 0.03 −0.78 −0.21 −0.04

3 1516 1529 −0.17 −0.54 0.37 0.42

4 1357.5 1402.5 −0.11 −1.52 −0.27 0.19

5 1543.5 1618 −0.39 −2.22 −0.13 0.28

6 2217.5 2229.5 −0.32 −2.11 0.33 0.36

7 2455.5 2462 0.31 −0.43 0.36 0.38

8 2205 2199 −0.18 −3.58 0.38 0.37

8A 2595 2598 −1.58 −2.76 443 445

Correlation analysis showed linear relationships between band-based spectral diversity metrics
and field measured vascular plant species diversity on both polluted transects and non-polluted
transects. However, while strong and negative relationship prevailed on polluted transects; on control
transects, they were mostly positive. This contradicted the expected strong and positive relationship
on the control transects. The results of the Spearman’s Rank Correlation analysis are illustrated in
Figure 4. The plots were charted based on the metric derivation method, so as to identify the best
performing metric. Each dot represents the r-value of a band metric versus the indicated species index
on the X-axis. Dots in green are from control transects and those in red are from polluted transects.
Labels on X-axis are a combination of index (Sm = Simpson, Sh = Shannon, Me = Menhinick’s and
Ch = Chao-1) and transect group (Con = Control, Pol = Polluted). The plots show that most of the
spectral metrics correlated positively with indices on control transects and negatively with indices on
polluted transects. The strongest positive relationships (r > 0.3) on control transects were from metrics
based on the mean, median, and PC1 of bands, whereas the strongest inverse relationships (r < −0.4)
that were observed on polluted transects were from metrics based on the spectral heterogeneity of
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bands. Furthermore, the plots reveal that the best metrics were those computed from M, SD, PC1,
and SH.

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 22 

 

inverse relationships (r < -0.4) that were observed on polluted transects were from metrics based on 
the spectral heterogeneity of bands. Furthermore, the plots reveal that the best metrics were those 
computed from M, SD, PC1, and SH. 

 

Figure 4. Dot plot of correlation coefficient (r) values of band-based spectral metrics and species 
diversity indices. The plot titles indicate the method of metric derivation (A). Mean, (B). median, (C). 
Standard Deviation, (D). Quartile-based Coefficient of Variation, (E). Simpson’s index, (F). Shannon’s 
index, (G). Spectral Heterogeneity, (H). First Principal Component and (I). Second Principal 
Component. Each dot represents the r-value of a band metric versus the indicated species index on 
the X-axis. Dots in green are from control transects while those in red are from polluted transects. 
The plots show that most spectral metrics correlated positively with indices on control transects and 
negatively with indices on polluted transects. Labels on X-axis are a combination of index (Sm = 
Simpson, Sh = Shannon, Me = Menhinick’s and Ch = Chao-1) and transect group (Con = Control, Pol = 
Polluted). 

The results of the NPM regression analysis using derivatives of bands and indices reveal strong 
relationships with the field measured diversity indices (R2 values ranged from 0.19 to 0.98). The most 
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area when analysed with data from polluted and control transects. This suggests the sensitivity of 
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Figure 4. Dot plot of correlation coefficient (r) values of band-based spectral metrics and species
diversity indices. The plot titles indicate the method of metric derivation (A). Mean, (B). median, (C).
Standard Deviation, (D). Quartile-based Coefficient of Variation, (E). Simpson’s index, (F). Shannon’s
index, (G). Spectral Heterogeneity, (H). First Principal Component and (I). Second Principal Component.
Each dot represents the r-value of a band metric versus the indicated species index on the X-axis. Dots
in green are from control transects while those in red are from polluted transects. The plots show that
most spectral metrics correlated positively with indices on control transects and negatively with indices
on polluted transects. Labels on X-axis are a combination of index (Sm = Simpson, Sh = Shannon, Me
= Menhinick’s and Ch = Chao-1) and transect group (Con = Control, Pol = Polluted).

The results of the NPM regression analysis using derivatives of bands and indices reveal strong
relationships with the field measured diversity indices (R2 values ranged from 0.19 to 0.98). The most
robust relationships were found on control transects and involved metrics from both Sentinel 2A
bands and vegetation indices. However this strong relationship is seen to depreciate across the study
area when analysed with data from polluted and control transects. This suggests the sensitivity of
the spectral metrics to the presence of soil TPH. Overall, the Simpson’s index was the most sensitive
variable with R2 values that were greater than 0.5 for both metrics sets, except those derived from SIPI
(R2 = 0.3). The weakest relationships were between Chao-1 index and other spectral metrics (Figure 5).
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Figure 5. Boxplots of R-square values from regressing species diversity indices with spectral diversity
metrics computed from Sentinel 2A bands and vegetation indices (A). Simpson’s index, (B). Shannon’s
index, (C). Menhinick’s index and (D). Chao-1 index. Band-based metrics are coloured blue and
Index-based metrics are in orange. R-square values are compared for band and index-based metrics as
well as among the study area, polluted transects and control transects. The plots show that stronger
relationships were present on control transects than on polluted transects which in turn influenced a
general weakening of this relationship across the study area. Overall, the Simpson’s index was the
most sensitive variable with R-square values greater than 0.5 for both metrics sets except those derived
from SIPI (R-square = 0.3).

The most robust relationships occurred between Simpson’s diversity index and metrics that were
derived from the PC of bands (R2 = 0.91) across the study area, Blue band (R2 = 0.89) on polluted
transects, and SIPI (R2 = 0.98) on control transects. In contrast, the weakest relationships were observed
between the Chao-1 richness index and spectral metrics from NDVI (R2 = 0.05) across the study area,
REP2 (R2 = 0.07) on polluted transects, and CCI (R2 = 0.07) on control transects. Spectral metrics
that were derived from the PC of bands consistently exhibited a strong relationship with all of the
field diversity indices with R2 values well over 0.5, except for the Chao-1 index. Shannon’s and
Menhinick’s indices both associated strongly with the transformed band metrics (PC of bands) and
chlorophyll-based index (CCI) whereas Chao-1 richness index did not.

In terms of metrics performance, it appears that the band-based metrics were more sensitive
to diversity indices than the index-based metrics across the study area. However, when separately
analysed, the index-based metrics performed better on control transects, whereas band-based metrics
were better on polluted transects. The boxplots in Figure 6 show that that the various spectral metrics
performed better on control transects than on polluted transects. It appears that the metrics that were
derived from stress indicating VIs (ARI and SIPI) were the most sensitive to the presence of soil TPH.
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Figure 6. Boxplots of R2 values illustrating the performance of metrics from individual bands and
vegetation indices on polluted and control transects and across the entire study area. The plots show
that the metrics were sensitive to the presence of TPH in the soil as strong relationships observed on
control transects were weakened across the study area. The x-axis band labels are B = Blue, G = Green,
R = Red, RE1 = Red Edge 1; RE2 = Red Edge 2; RE3 = Red Edge 3; NIR = Near Infrared; RE4 = Red
Edge 4; PCB = Principal Components of Bands.

3.4. Estimating Species Diversity Using Spectral Diversity Metrics

The SVH was tested while using the spectral metrics that strongly correlated with the diversity
measures (r > ±0.2) and a VIF < 10. The results in Table 7 show the R2 values of training data and
adjusted R2 values test data, RMSE, and PSE of validation data sets for both models.

The results demonstrate that both sets of metrics performed well during model calibration
with training data, but underperformed at model validation. For instance, among the diversity
indices, Simpson’s index is the most predictable with higher R2 values (0.82) being obtained from
calibrating models with band-based metrics and R2 = 0.63 obtained from model calibration with index
metrics. However, at validation, the adjusted R-square values were less than 0.5 for both sets of metrics,
band-based metrics (Adj.R2 = 0.49), and index-based metrics (Adj.R2 = 0.32). For this index, band-based
metrics were better estimators. Similar patterns were observed for Shannon’s and Menhinick’s indices
with reduced Adj.R2 values, although, index-based metrics outperformed band-based metrics as
estimators of these indices. The least performing models were those that estimated the Chao-1 index.
Despite high R2 values at calibration, the models did not perform well at validation (results show no
relationship among the variables). Graphical plots of residuals from model validation using test data
are shown in the supplementary materials Figure S2. Model parameters are from the regression of
spectral diversity metrics (A = band metrics and B = index metrics) on species diversity indices while
using test data (n = 60).
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Table 7. Performance summary of models estimating species richness and diversity using spectral
diversity metrics computed from Sentinel 2A bands and vegetation indices. The combined dataset from
polluted and control transects (N = 210) were employed in this analysis. The dataset was subdivided
into training (n = 150) and test (n = 60) data. Explanatory variables (EV) for each model was a
combination of all band-based or index-based metrics that showed a strong correlation (r > ±0.2) with
the response variables.

Response Variable Parameter Band Metrics Index Metrics

Simpson’s

No of EV 9 11

R2 (Train) 0.82 0.63

Adj. R2 (Test) 0.49 0.32

F 54.84 * 28.35 *

RMSE 0.05 0.25

PSE 0.002 0.06

Shannon’s

No of EV 8 6

R2 (Train) 0.36 0.41

R2 (Test) 0.18 0.29

F 12.81 * 22.82 *

RMSE 0.68 0.63

PSE 0.47 0.4

Menhinick’s

No of EV 7 6

R2 (Train) 0.29 0.57

R2 (Test) 0.19 0.31

F 14.26 * 27.12 *

RMSE 1.11 1.03

PSE 1.23 1.07

Log10Chao-1

No of EV 5 10

R2 (Train) 0.41 0.32

R2 (Test) 0.02 0.07

F 1.04ns 4.13 *

RMSE 0.45 0.42

PSE 0.2 0.18

*: significant; ns: not significant; bold: best performing model; shadow: unstable/least performing mode.

4. Discussion

The concept of the spectral variability hypothesis, as proposed by Palmer [1], provides ecologists
with an essential tool for biodiversity monitoring and conservation in the Niger Delta region, without
the need for labour intensive and time-consuming field work [20]. Understanding and modelling
the relationship between spectral diversity metrics and local species richness or diversity measures
provide decision makers with preliminary information regarding conservation priorities, particularly
in cases were indicator species co-occur with rare or threatened species (cross-taxon surrogacy, [57]).
Spectral variability hypothesis has been used several times to estimate species diversity and distribution
in different landscapes and ecosystems. Hall et al. [21] reported that the area of the site might influence
spectral variation of large sites; however, this phenomenon is not expected to occur within similar
sized sample sites, as is the case in this study. The relationship between spectral variables and species
diversity are usually weak, with R2 values ranging from 0.2 to 0.6 [21]; however, the present study
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reveals that a combination of various derivatives of spectral bands strongly associate with field data.
Rocchini, Hernández-Stefanoni and He [57] stated that R2 values of up to 0.5 could be considered to be
valid to estimate species diversity from spectral variation, thus providing an integrated and efficient
method for monitoring vascular plant species diversity at a regional and global scale.

4.1. Spectral Diversity Metrics for Estimating Species Richness and Diversity

Spectral diversity metrics correlated inversely with field measured vascular plant species diversity
on polluted transects and positively on control transects. The coefficient of variation (CV) for metrics
of polluted transects were larger than CV of metrics of control transects, and suggest that the polluted
pixels were more diverse than control pixels. However, in the case of polluted transects, the spectral
metrics do not necessarily depict vascular plant species diversity, but rather the heterogeneity of
investigated transects. The reason for this is not far-fetched, since oil pollution accentuated habitat
heterogeneity by creating patches of TPH-tolerant plants where TPH-susceptible species used to
grow, thereby decreasing vegetation abundance and species diversity. Additionally, the weak positive
correlation between the individual spectral metrics and species diversity indices of control transects
might be ascribed to the greater homogeneity of segments on these transects in terms of species
composition and distribution patterns. As the SVH relies on habitat heterogeneity, it follows that its
application is limited in densely vegetated forests with little or no disturbance.

A combination of spectral diversity metrics successfully estimated the species richness and
diversity of investigated locations with high R2 values being obtained between the observed and
predicted index values, despite the observed aberrations. The result was consistent with previous
studies testing the SVH, such as Warren et al. [44]; Hall et al. [21]; Rocchini, Hernández-Stefanoni and
He [57]; and, Schmidtlein and Fassnacht [58]. Index-based metrics outperformed band-based metrics
in estimating Shannon’s and Menhinick’s indices, whereas band-based metrics did better at estimating
the Simpson’s diversity of investigated transects during validation. The Chao-1 richness index
proved to be difficult estimating while using the computed metrics despite the model improvement
measures undertaken.

4.2. Analysis of Multispectral (MS) Data for Detecting the Effects of Oil Pollution on Vegetation

Integrating remote sensing tools with field measurements yielded exciting results and highlighted
its potential for biodiversity monitoring. Analyses of multispectral Sentinel 2A imagery using
open-source software revealed the intricate connection between vegetation biochemical parameters
and their spectral signatures. The study demonstrated the validity and applicability of the SVH in
oil-polluted areas. On control transects, a positive linear relationship was expected because of the
high species diversity, whereas, on polluted transects, an inverse relationship was expected due to low
species diversity, but the results showed that the spectral diversity was equally high on polluted and
control transects with the coefficient of variations (a measure of the dispersion of data points around
the mean) for spectral metrics larger on polluted transects. This interesting result was attributed to the
increased habitat heterogeneity following vegetation removal, waterlogging, and even burning of spill
locations (habitat disturbance). Previous studies [5,6,59] show that these factors, measurable via remote
sensing, influence species diversity. On control transects, the variations in the internal structures of
different species, such as pigments and tissues that produce unique spectral signatures [20], controlled
the relationship between spectral metrics and species diversity [20]. Similarly, the results also revealed
that the SVH is sensitive to oil pollution effects on vegetation, given the change in the relationship
that was observed between spectral diversity metrics and species diversity indices on polluted and
control transects and across the study area. The regression results revealed that the strong relationship
between variables on the control transects were weakened across the study area following the inclusion
of metrics from polluted transects. Additionally, the results revealed an intricate relationship between
metrics that were derived from stress indicating VIs (ARI and SIPI) and species diversity indices.
As expected, the relationship was overwhelmingly negative on the control transects and mostly positive
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on the polluted transects. Generally, stress indicating pigments, such as anthocyanin and carotenoid
concentration in plants, increase when photosynthesis is impaired (a condition that can occur due to
toxicity from oil pollution inhibiting chlorophyll production, Landi, Tattini, and Gould [60]). Hence the
nature of the relationship between metrics derived from these VIs and diversity indices on polluted
and control transects may be more of an indicator of oil pollution impact on vegetation health than on
vascular plant species diversity. Previous studies testing the SVH achieved success with one set of
metrics [21,44,57,58]. However, this study demonstrated that a combination of metrics derived from
different statistical computations significantly strengthened the spectral diversity-species diversity
relationship enough to estimate the Simpson’s and Shannon’s indices for the study area successfully.

4.3. Implications for Biodiversity Monitoring in the Niger Delta Region

Oil pollution in the Niger Delta region of Nigeria poses an existential threat to the people as
well as the vast and diverse species of flora and fauna that inhabit the region. The results of the
present study demonstrated the relevance of incorporating remote sensing technology in tackling
critical environmental issues that are caused by oil pollution. The strength of relationships between
spectral diversity metrics and field measured species diversity data can be exploited to develop
solutions to environmental problems, such as halting species extinction through efficient monitoring
and conservation policies. The peculiar condition of the Niger Delta region also demands alternative
methods to traditional field survey practices that endanger lives. The SVH lends itself to several
applications, including regular inspection of ecosystem services and biodiversity. Warren et al. [44]
noted that plant species diversity is an essential indicator of ecosystem health, which can be monitored
via the SVH.

The combination of spectral metrics showing strong relationships with species richness and
diversity measures might be useful for mapping the species distribution of a given ecosystem.
Schmidtlein and Fassnacht successfully implemented a similar project [58] in mapping species
occurrences in southern Germany while using multispectral data. Species distribution maps enhance
conservation decisions, such as site prioritisation based on the structure and composition of plant
communities revealed in the spectral variability of the maps [61].

Most importantly, the SVH is applicable in oil spill monitoring programmes to detect occurrences.
The result of this study showed a clear distinction in the species composition of polluted and
non-polluted transects, and this difference was apparent in the vegetation reflectance. Such definitive
characterisation will enhance the monitoring of changes in polluted vegetation over time and space.
Warren et al. [44] detected changes in species composition of a habitat subjected to different levels
of disturbances.

5. Conclusions

Spectral metrics from Sentinel 2A validated the SVH and revealed the limitations to its application
on polluted transects and on homogenous transects. Models that were based on these metrics
successfully estimated vegetation parameters. However, the species-spectral diversity relationship
was influenced by the presence of TPH in the soil, which challenged the SVH, as originally proposed
in the literature. The results of the present study imply that vascular plants species diversity can be
remotely estimated without going to the field to conduct vegetation surveys. This potential is very
crucial in the Niger Delta region of Nigeria, where insecurity is a significant consideration in any field
activity, thereby enhancing biodiversity monitoring over time and space.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/22/2662/s1,
Figure S1: Spectral profile of vegetation on polluted (red curves) and control (green curves) transects sampled
from A. Rumuekpe, B. Umukpoku, C. Omoigwor and D. Alimini locations in Rivers State of Nigeria. Figure S2:
Graphical plots of residuals from model validation using test data. Research Data available at https://github.com/
nneticious/Research-Data.
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