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Abstract: The convolutional neural network (CNN) can automatically extract hierarchical feature
representations from raw data and has recently achieved great success in the classification of
hyperspectral images (HSIs). However, most CNN based methods used in HSI classification neglect
adequately utilizing the strong complementary yet correlated information from each convolutional
layer and only employ the last convolutional layer features for classification. In this paper, we propose
a novel fully dense multiscale fusion network (FDMFN) that takes full advantage of the hierarchical
features from all the convolutional layers for HSI classification. In the proposed network, shortcut
connections are introduced between any two layers in a feed-forward manner, enabling features
learned by each layer to be accessed by all subsequent layers. This fully dense connectivity pattern
achieves comprehensive feature reuse and enforces discriminative feature learning. In addition,
various spectral-spatial features with multiple scales from all convolutional layers are fused to
extract more discriminative features for HSI classification. Experimental results on three widely
used hyperspectral scenes demonstrate that the proposed FDMFN can achieve better classification
performance in comparison with several state-of-the-art approaches.

Keywords: convolutional neural network (CNN); fully dense connectivity; multiscale fusion;
hyperspectral image (HSI) classification

1. Introduction

Hyperspectral images (HSIs) usually consist of hundreds of narrow contiguous wavelength
bands carrying rich spectral information. With such abundant spectral information, HSIs have been
widely used in many fields, such as resource management [1], scene interpretation [2], and precision
agriculture [3]. In these applications, a commonly encountered problem is HSI classification, aiming to
classify each pixel to one certain land-cover category based on its unique spectral characteristic [4].

In the last few decades, extensive efforts have been made to fully exploit the spectral information
of HSIs for classification, and many spectral classifiers have been proposed, including support vector
machines (SVMs) [5,6], random forest [7], and multinomial logistic regression [8]. However, the
classification maps obtained are still noisy, as these methods only exploit spectral characteristics and
ignore the spatial contextual information contained in HSIs. To achieve more accurate classification
results, spectral-spatial classifiers were developed, which exploit both the spatial and spectral
information embedded in HSIs [9–12]. In [11], extended morphological profiles (EMPs) were employed
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to extract spatial morphological features, which were combined with the original spectral features for
HSI classification. In [12], Kang et al. proposed an edge preserving filtering method for optimizing
the pixelwise probability maps obtained by the SVM. In addition, methods of multiple kernel
learning [13,14], sparse representation [15,16], and superpixels [17] have also been introduced for
spectral–spatial classification of HSIs. Nonetheless, the above mentioned methods rely on human
engineered features, which need prior knowledge and expert experience during the feature extraction
phase. Therefore, they cannot consistently achieve satisfactory classification performance, especially in
the face of challenging scenarios [18].

Recently, deep learning based approaches have drawn broad attention for the classification of
HSIs, due to their capability of automatically learning abstract and discriminative features from raw
data [19–23]. Chen et al. first employed the stacked auto-encoder (SAE) to learn useful high level
features for hyperspectral data classification [24]. In [25], a deep belief network (DBN) was applied
to the HSI classification task. However, owing to the requirement of 1D input data in the two
models, the spatial information of HSIs cannot be fully utilized. To solve this problem, a series
of convolutional neural network (CNN) based HSI classification methods was proposed, which
can exploit the relevant spatial information by taking image patches as input. In [26], Zhang et al.
proposed a dual channel CNN model that combines 1D CNN with 2D CNN to extract spectral-spatial
features for HSI classification. In [27], Zhao et al. employed the CNN and the balanced local
discriminative embedding algorithm to extract spatial and spectral features from HSIs separately.
In [28], Devaram et al. proposed a dilated convolution based CNN model for HSI classification and
applied an oversampling strategy to deal with the class imbalance problem. In [29], a 2D spectrum
based CNN framework was introduced for pixelwise HSI classification, which converts the spectral
vector into 2D spectrum image to exploit the spectral and spatial information. In [30], Guo et al.
proposed an artificial neural network (ANN) based spectral-spatial HSI classification framework,
which combines the softmax loss and the center loss for network training. To exploit multiscale spatial
information for the classification, image patches with different sizes were considered simultaneously
in their model. In addition, 3D CNN models have also been proposed for classifying HSIs, which take
original HSI cubes as input and utilize 3D convolution kernels to extract spectral and spatial features
simultaneously, achieving good classification performance [31–33].

In a CNN model, shallower convolutional layers are sensitive to local texture (low level)
features, whereas deeper convolutional layers tend to capture global coarse and semantic (high
level) features [34]. In the above mentioned CNN models, only the last layer output, i.e., global coarse
features, is utilized for HSI classification. However, in addition to global features, local texture features
are also important for the pixel level HSI classification task, especially when distinguishing objects
occupying much smaller areas [22,35]. To obtain features with finer local representation, methods
that aggregate features from different layers in the CNN were proposed for HSI classification [36–38].
In [36], a multiscale CNN (MSCNN) model was developed, which combines features created by each
pooling layer to classify HSIs. In [37], a deep feature fusion network (DFFN) was proposed, which fuses
different levels of features produced at three stages in the network for HSI classification. Although
feature fusing mechanisms were utilized in the MSCNN and the DFFN, only three layers were fused
for HSI classification. In [38], Zhao et al. proposed a fully convolutional layer fusion network (FCLFN),
which concatenates features extracted by all convolutional layers to classify HSIs. Nonetheless, FCLFN
employs a plain CNN model for feature extraction, which suffers from the vanishing gradient and
declining accuracy problems when learning deeper discriminative features [39]. In [40], a densely
connected CNN (DenseNet) was introduced for HSI classification, which divides the network into
dense blocks and creates shortcut connections between layers within each block. This connectivity
pattern alleviates the vanishing gradient problem and allows the utilization of various features from
different layers for HSI classification. However, only layers within each block are densely connected
in the network, which presents local dense connectivity pattern and focuses more on the high level
features generated by the last block for HSI classification. These methods have demonstrated that
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taking advantage of features from different layers in the CNN can achieve good HSI classification
performance, but not all of them fully exploit the hierarchical features.

In this paper, inspired by [41], we propose a novel fully dense multiscale fusion network
(FDMFN) to achieve full use of the features generated by each convolutional layer for HSI classification.
Different from the DenseNet that only introduces dense connections within each block, the proposed
method connects any two layers throughout the whole network in a feed-forward fashion, leading
to fully dense connectivity. In this way, features from preceding layers are combined as the input
of the current layer, and its own output is fed into the subsequent layers, achieving the maximum
information flow and feature reuse between layers. In addition, all hierarchical features containing
multiscale information are fused to extract more discriminative features for HSI classification.
Experimental results conducted on three publicly available hyperspectral scenes demonstrate that the
proposed FDMFN can outperform several state-of-the-art approaches, especially under the condition
of limited training samples.

In the rest of this paper, Section 2 briefly reviews the CNN based HSI classification procedure.
In Section 3, the proposed FDMFN method is described. In Section 4, the experimental results
conducted on three real HSIs are reported. In Section 5, we give a discussion on the proposed method
and experimental results. Finally, some concluding remarks and possible future works are presented
in Section 6.

2. HSI Classification Based on CNN

Deep neural networks can automatically learn hierarchical feature representations from raw HSI
data [42–44]. Compared with other deep networks, such as SAE [24], DBN [25], and the long short-term
memory network (LSTM) [45], CNN can directly take 2D data as input, which provides a natural way
to exploit the spatial information of HSIs. Different from natural image classification that uses a whole
image input for CNNs, HSI classification, as a pixel level task, generally takes image patches as the
input, utilizing the spectral-spatial information contained in each patch to determine the category of
its center pixel.

Convolutional (Conv) layers are the fundamental structural elements of CNN models, which use
convolution kernels to convolve the input image patches or feature maps to generate various feature
maps. Supposing the lth Conv layer takes xl−1 as input, its output xl can be expressed as:

xl = xl−1 ∗ Wl + Bl , (1)

where ∗ represents the convolution operator. Wl and Bl are the weights and biases of the convolution
kernels in the lth Conv layer, respectively.

Behind each Conv layer, a batch normalization (BN) [46] layer is generally attached to accelerate
the convergence speed of the CNN model. The procedure of BN can be formulated as:

BNγ,β(xl) = γ · xl − Mean[xl ]√
Var[xl ] + ε

+ β, (2)

where the learnable parameter vectors γ and β are used to scale and shift the normalized feature maps.
To enhance the nonlinearity of the network, the rectified linear unit (ReLU) function [20] is placed

behind the BN layer as the activation layer, which is defined as:

ReLU(x) = max(x, 0). (3)

In addition, a pooling layer (e.g., average pooling or max pooling) is periodically inserted after
several Conv layers to reduce the spatial size of feature maps, which not only reduces the computational
cost, but also makes the learned features more invariant with respect to small transformations and
distortions of the input data [47].
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Finally, the size reduced feature maps are transformed into a feature vector through several fully
connected (FC) layers. By feeding the vector into a softmax function, the conditional probability of
each class can be obtained, and the predicted class is determined based on the maximum probability.

3. Methodology

3.1. Local Dense Connectivity in DenseNet

It has been demonstrated that introducing shortcut connections in the network alleviates the
vanishing gradient problem and enables feature reuse, which can effectively enhance the classification
performance [39]. He et al. proposed the residual network (ResNet), which introduces identity shortcut
connections to improve the information flow in the network and pushes the depth of the network up to
thousands of layers [39]. Deep ResNets can be constructed by stacking residual blocks, in which input
features can be passed directly to deeper layers through an additive shortcut connection, as shown in
Figure 1.
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Figure 1. Typical residual block architecture.

To further enhance the information flow throughout the network, Huang et al. proposed a
different network, called the densely connected convolutional network (DenseNet), in which shortcut
connections are employed to concatenate the input features with the output features instead of
adding [48]. However, pooling layers, which increase the robustness of the learned features, will change
the spatial size of feature maps, resulting in the concatenation operation being unfeasible. To address
this problem, Huang et al. divided the network into multiple dense blocks, which do the dense
connections in each block and add a pooling layer behind each block, as shown in Figure 2.

Local Dense Connectivity 
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Dense Block 3 Pooling
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Pooling
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Pooling
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Dense Block 1
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Figure 2. Flowchart of image classification based on DenseNet [48]. Note that only layers within each
block are densely connected, presenting a local dense connectivity pattern.

Figure 3 shows the architecture of a dense block. Let x0 be the input of the block. For the lth layer
in the block, it receives x0 and features produced by all preceding layers, i.e., x1, x2, · · · , and xl−1,
as input and its output can be formulated as:

xl = Hl [x0, x1, · · · , xl−1] (4)

where [·] denotes the concatenation operator and Hl(·) is a composite Conv layer with the
pre-activation structure of BN-ReLU-Conv [49]. Finally, input features and those generated by each
Conv layer are concatenated as the output of the dense block, as shown in Figure 3.

In DenseNet, only layers within each block are densely connected, leading to a local dense
connectivity pattern (see Figure 2). In addition, behind the first and second dense blocks, Conv layers
are employed to make the extracted features more compact, but the non-dense connections between
each block make the network focus more on the high level features (i.e., global coarse and semantic
features) extracted by the last dense block for image classification.
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Figure 3. Architecture of a dense block. BN, batch normalization.

3.2. Fully Dense Connectivity

To exploit the hierarchical features from all the Conv layers fully, here, we propose a fully
dense connectivity pattern in which shortcut connections are introduced between any two layers in a
feed-forward manner, enabling features learned by any layer to be accessed by all subsequent layers.
Specifically, the features produced by preceding layers are concatenated as the input of the current layer,
and its output features are fed into all the subsequent layers, achieving the maximum information flow.
Figure 4 shows the layout of the proposed connectivity pattern schematically. To address the issue that
different layers may have different feature map sizes, pooling layers are employed to down-sample
feature maps with higher resolutions when they are inputted into lower resolution layers. The average
pooling is adopted in this work. Let x1

0 be the initial features extracted from the original HSIs and xs
l

the output of layer l at the sth scale. Each layer (i.e., Hs
l ) shown in Figure 4 has the composite structure

of BN-ReLU-Conv. For each layer, it receives x1
0 and feature maps produced by all preceding layers.

Table 1 summarizes the output of each layer. For instance, H1
2 , Layer 2 at the first scale, receives x1

0
and x1

1 as input, and its output can be computed by x1
2 = H1

2([x
1
0, x1

1]). Note that here, we illustrate the
fully dense connectivity with only two Conv layers in each scale, and one can easily deduce situations
with more layers by extending Figure 4 and Table 1.
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Figure 4. Fully dense connectivity pattern. For simplicity, each scale has two Conv layers. In addition,
multiscale feature maps extracted from an HSI patch are illustrated.

Table 1. The output xs
l of layer l at the sth scale. Herein, [·] represents the concatenation operator.

P and P2 refer to the 2 × 2 and 4 × 4 pooling layers, respectively.
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The proposed fully dense connectivity pattern has the following advantages for the classification
of HSIs. First, it enhances feature reuse and discriminative feature extraction. As shown in Figure 4,
features produced by each Conv layer can be accessed by all subsequent Conv layers, which achieves
more comprehensive feature reuse than DenseNet. The reuse of abundant learned features in the
subsequent layers is effective for new feature exploration and improves efficiency [48]. In addition,
this connectivity pattern further enhances the information flow and alleviates the problem of gradient
disappearance. Furthermore, when a classifier is attached behind the output, each intermediate layer
will receive an implicit supervision signal through a shorter connection, enforcing them to learn more
discriminative and robust features, especially in early layers [50].

Second, the complementary and correlated features from all Conv layers can be exploited for
HSI classification. In a CNN model, the receptive field size of Conv layers increases as the number of
Conv layers increases [34]. The shallower layers with a narrow receptive field tend to capture local
features (e.g., shapes, textures, and lines) of the input objects, whereas the deeper layers with a larger
receptive field tend to extract global coarse and semantic features (see Figure 4). Due to the complex
spatial environment of HSIs, in which different objects tend to have different scales, only using the
global coarse features cannot effectively recognize objects with multiple scales, particularly for those
occupying much smaller areas [22]. Through fully dense connectivity, features containing structural
information of different scales can be combined for classification, which is beneficial for more accurate
recognition of various objects in HSIs.

3.3. Fully Dense Multiscale Fusion Network for HSI Classification

The complete HSI classification framework based on the proposed FDMFN is shown in Figure 5.
As an example, consider the Indian Pines (IP) scene: image patches of size 23 × 23 × 200 from raw
image are taken as inputs of FDMFN, fully exploiting the spectral and spatial information. At the
beginning, a Conv layer with a 1 × 1 kernel size is utilized to reduce the dimensionality of input
spectral-spatial data and extract features, and therefore, the size of the input is condensed from
23 × 23 × 200 to 23 × 23 × 2k, where k is a constant integer referred to as the growth rate, e.g., k = 20.
Next, the obtained features are further processed by a series of 3 × 3 Conv layers and pooling layers
to extract hierarchical feature representations. Note that the number of output features doubles
whenever their spatial size shrinks (see Figure 5), because extracting diversified high level features
with the increased feature dimension is very effective for classification tasks [51]. After global average
pooling (GAP), multiscale hierarchical features from all Conv layers are fused by concatenation to
generate more discriminative feature. Finally, the fused feature is fed to a fully connected (FC) layer
for classification.

Let vm be the feature vector learned by the FC layer, where m = 1, 2, . . . , M and M is the total
number of training samples. For each sample, the probability distribution of each class is obtained by
the softmax function, which can be expressed as:

pm
i =

evm
i

∑T
j=1 evm

j
, i = 1, 2, . . . , T, (5)

where T denotes the total number of classes, vm
i represents the ith value of vm, and pm

i refers to the
probability of the mth training sample belonging to the ith class. The loss function of FDMFN is
defined as:

Loss = − 1
M

M

∑
m=1

T

∑
i=1

tm
i log pm

i , (6)

where tm
i denotes the ith value of the truth label vector tm. Note that the truth label of each sample

is encoded by a vector of length T, in which the position of the correct label is value “1” and all the
other positions are value “0”, that is one-hot encoding. The network is trained by minimizing the
loss function using the Adam [52] optimization algorithm with 100 epochs. After the optimization
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is completed, for each test sample, the probability distribution of each class can be obtained by the
trained FDMFN, and the predicted label is determined by the maximal probability.
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Figure 5. Framework of the proposed fully dense multiscale fusion network (FDMFN) for HSI
classification. For convenience, the BN, ReLU layers that precede the global average pooling (GAP)
layer are not given.

Table 2 summarizes the details of the layers of FDMFN for the IP dataset. The stride of convolution
is one. Note that for the 3 × 3 Conv layers, their inputs are zero padded with one pixel on each side to
keep the spatial size of feature maps fixed during convolution.

Table 2. FDMFN architecture for the Indian Pines (IP) dataset.

Scale Conv Layers Kernel Size Number of Kernels Feature Map Size

1 1 1 × 1 40 23 × 23

1 1–5 3 × 3 20 23 × 23

2 × 2 Average Pooling, Stride 2 11 × 11

2 1–5 3 × 3 40 11 × 11

2 × 2 Average Pooling, Stride 2 5 × 5

3 1–5 3 × 3 80 5 × 5

Global Average Pooling 1 × 1

16-Dimension Fully Connected Layer, Softmax -

4. Experiments

4.1. Description of Datasets

Three publicly available hyperspectral datasets were utilized to verify the effectiveness of our
FDMFN method, i.e., Indian Pines (IP), University of Houston (UH), and Kennedy Space Center (KSC)
datasets [53,54].

The IP dataset was gathered in 1992 by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) instrument [55] from Northwest Indiana. This dataset mainly covers a mixed
agricultural/forest area, consisting of 145 × 145 pixels and 224 spectral bands in the spectral range
from 400 to 2500 nm. The geometric resolution is 20 m by pixel, and the ground reference map has 16
classes. After discarding four null bands and another 20 water absorption bands, 200 channels were
utilized for the experiments.

The UH dataset was gathered in 2012 by the Compact Airborne Spectrographic Imager (CASI)
sensor [56] over the campus of the University of Houston and its neighboring region. It was first
presented in the 2013 Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest [57].
This scene is composed of 349 × 1905 pixels, and its ground reference map contains 15 classes.
The geometric resolution is 2.5 m by pixel. It has 144 spectral bands in the spectral range from 380 to
1050 nm.
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The KSC dataset was acquired in 1996 by the AVIRIS instrument [55] in Florida with a geometric
resolution of 18 m by pixel. This scene consists of 512 × 614 pixels and mainly includes 13 classes.
After discarding noisy bands, the considered scene had 176 spectral bands for the classification.

In our experiments, the labeled samples of each dataset were divided into training, validation, and
testing sets, and the split ratio was 5%:5%:90%. Tables 3–5 summarize the number of samples of the
three datasets. Note that the network parameters were only tuned using the training set. During the
training phase, the interim trained model that achieved the highest classification performance on
the validation set was saved. Finally, the testing set was used to evaluate the preserved model’s
classification performance. Three widely used quantitative metrics, overall accuracy (OA), average
accuracy (AA), and the Kappa coefficient [58], were adopted to assess the classification performance.
To avoid biased estimation, all experiments were repeated five times with randomly selected training
samples, and the average values were reported for all the performance metrics.

Table 3. Number of samples of the IP dataset.

Class Color Land-Cover Type Training Validation Testing

1 Alfalfa 3 3 40
2 Corn-notill 72 72 1284
3 Corn-mintill 42 42 746
4 Corn 12 12 213
5 Grass-pasture 25 25 433
6 Grass-trees 37 37 656
7 Grass-pasture-mowed 2 2 24
8 Hay-windrowed 24 24 430
9 Oats 1 1 18

10 Soybean-notill 49 49 874
11 Soybean-mintill 123 123 2209
12 Soybean-clean 30 30 533
13 Wheat 11 11 183
14 Woods 64 64 1137
15 Buildings-Grass-Trees 20 20 346
16 Stone-Steel-Towers 5 5 83

Total Number 520 520 9209

Table 4. Number of samples of the University of Houston (UH) dataset.

Class Color Land-Cover Type Training Validation Testing

1 Healthy grass 63 63 1125
2 Stressed grass 63 63 1128
3 Synthetic grass 35 35 627
4 Trees 63 63 1118
5 Soil 63 63 1116
6 Water 17 17 291
7 Residential 64 64 1140
8 Commercial 63 63 1118
9 Road 63 63 1126

10 Highway 62 62 1103
11 Railway 62 62 1111
12 Parking Lot1 62 62 1109
13 Parking Lot2 24 24 421
14 Tennis court 22 22 384
15 Running track 33 33 594

Total Number 759 759 13,511
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Table 5. Number of samples of the Kennedy Space Center (KSC) dataset.

Class Color Land-Cover Type Training Validation Testing

1 Scrub 39 39 683
2 Willow swamp 13 13 217
3 CP hammock 13 13 230
4 Slash pine 13 13 226
5 Oak/Broadleaf 9 9 143
6 Hardwood 12 12 205
7 Swamp 6 6 93
8 Graminoid marsh 22 22 387
9 Spartina marsh 26 26 468

10 Cattail marsh 21 21 362
11 Salt marsh 21 21 377
12 Mud flats 26 26 451
13 Water 47 47 833

Total Number 268 268 4675

4.2. Experimental Setup

We trained the proposed network for 100 epochs using the Adam [52] optimizer with batch size of
100 as done in [40]. The network parameters were initialized by using the He initialization method [59].
We used an L2 weight decay penalty of 0.0001 and a cosine shape learning rate, which began from
0.001 and gradually decreased to zero [60]. The proposed network was implemented by using the
Pytorch framework [61]. All the experiments were conducted on a PC with a single NVIDIA GeForce
RTX 2080 GPU and an AMD Ryzen 7 2700X CPU.

4.3. Analysis of Parameters

In the proposed FDMFN method, except the weights and biases of the network, which could be
tuned automatically during the training phase, the number of Conv layers, the growth rate k, and the
size of input image patches were also important to the final classification performance.

Figure 6a shows the impact of the number of Conv layers on the average accuracy (AA) of the
proposed FDMFN. The number of Conv layers determines the network depth, which is an important
parameter that can affect the classification performance. Although a deeper network can learn more
abstract features for classification, it will increase the possibility of overfitting. From Figure 6a, one can
see that the best AA value was achieved when the number of Conv layers was 16 for the IP dataset.
For the UH and KSC datasets, the AA values could reach the highest when the number of Conv layers
was 13. Therefore, in the following experiments, the number of Conv layers was set to 16, 13, and 13
for the IP, UH, and KSC datasets, respectively.

Figure 6b illustrates the influence of the growth rate k on the AA of the proposed method.
The parameter k also determines the representation capacity of the proposed FDMFN. We assessed
different k values from 8 to 24 with a step of 4 for each dataset. As shown in Figure 6b, when k was 20,
the model obtained the best performance on the IP dataset. For the UH and KSC datasets, when k was
12, the models achieved the highest classification accuracy. Therefore, k was set to 20, 12, and 12 for the
IP, UH, and KSC datasets, respectively.

Figure 6c shows the tendencies of AA of the proposed FDMFN over different sizes of input image
patches. As can be seen, with the increase of the patch size, the AA values tended to increase first and
then decrease on the three datasets. Generally speaking, a larger size of image patch would bring more
spatial information, which would help to increase the classification accuracy. However, a large image
patch may contain pixels belonging to multiple classes, misleading the classification of the target pixel.
From Figure 6c, one can see that when the patch size was 23× 23, the proposed FDMFN could produce
the best classification results for all three datasets. Therefore, we chose 23 × 23 as the default size of
input image patches.
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Figure 6. Influences of (a) the number of Conv layers, (b) the growth rate k, and (c) the size of image
patches on the classification performance (average accuracy (AA) in %) of the proposed FDMFN.

4.4. Compared Methods

We compared our FDMFN method with several well known classification approaches, including
SVM with radial basis function (RBF) kernel [5], 3D CNN [32], the deep feature fusion network
(DFFN) [37], the fully convolutional layer fusion network (FCLFN) [38], and DenseNet [40].

Specifically, SVM only exploits the spectral information embedded in HSIs for classification.
The remaining are spectral-spatial based classification methods. 3D CNN directly extracts
spectral-spatial features from original HSIs using 3D convolutional kernels. DFFN fuses spectral-spatial
features generated at different stages in a deep residual network for the classification of HSIs. FCLFN
fuses spectral-spatial features produced by all Conv layers for HSI classification. For DenseNet, due to
the local dense connectivity pattern, only spectral-spatial features from layers in the last block were
fully combined for HSI classification. In addition, for SVM, the penalty parameter C and the RBF
kernel parameter γ were determined through five-fold cross-validation (C = 2−8, 2−7, . . . , 28, γ =

2−8, 2−7, . . . , 28). For other methods, we used the default parameter setting in the corresponding
references [32,37,38,40]. Take the Indian Pines dataset as an example: for the DFFN, FCLFN, and
DenseNet methods, the default size of input image patches was 25 × 25, 23 × 23, and 11 × 11,
respectively.

4.5. Classification Results

Figure 7 shows the classification maps obtained by various approaches on the IP dataset (all the
classification maps were the result of the first experiment of the five experiments). One can see that
the SVM classifier generated rather poor estimations in its classification map (see Figure 7c), as it only
exploited the spectral information of HSI. In contrast, by utilizing spatial and spectral information,
the other methods showed better visual performances in their classification maps (see Figure 7d–h).
Table 6 presents the quantitative results of different methods. One can see that the proposed FDMFN
outperformed the contrastive approaches in terms of three overall metrics (i.e., OA, AA, and Kappa),
demonstrating the effectiveness of our method. Note that the class distribution of this dataset was
quite unbalanced. The largest class, soybean-mintill (Category 11), contained 2455 samples, while the
smallest class, oats (Category 9), had only 20 samples. When facing a dataset with an uneven class
distribution, the minority classes may be heavily underrepresented, leading to poor classification
performance. From Table 6, one can see that SVM, DFFN, FCLFN, and DenseNet achieved rather
poor results on the oats class (Category 9). However, the proposed FDMFN avoided this problem
and achieved the highest classification accuracy on the oats class, again verifying the effectiveness of
our method.
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(a) False color image (b) Ground reference map (c) SVM (74.73%) (d) 3D CNN (93.43%)

(e) DFFN (92.97%) (f) FCLFN (95.05%) (g) DenseNet (95.84%) (h) FDMFN (96.72%)

Figure 7. Classification maps and overall classification accuracies for the IP dataset. DFFN, deep
feature fusion network; FCLFN, fully convolutional layer fusion network.

Table 6. Classification accuracies (in %) of different methods for the IP dataset using 5% of labeled
samples for training. The best results are highlighted in bold font.

Class Color SVM [5] 3D CNN [32] DFFN [37] FCLFN [38] DenseNet [40] FDMFN

1 38.14 86.50 61.50 54.00 79.50 97.00
2 72.48 94.67 94.47 96.15 97.38 97.21
3 61.22 90.75 93.62 95.71 96.22 96.81
4 45.51 92.39 92.49 95.49 98.40 98.40
5 84.72 91.09 82.96 92.79 92.75 94.23
6 94.08 97.96 94.66 97.01 98.84 97.10
7 59.23 81.67 45.00 20.83 82.50 91.67
8 95.73 99.21 99.77 99.86 99.95 99.91
9 12.63 77.78 3.33 0.00 63.33 81.11

10 64.27 88.49 92.59 92.61 95.40 95.65
11 74.41 93.55 95.38 97.02 94.73 97.22
12 56.09 89.68 87.05 90.43 90.47 92.05
13 96.08 96.17 93.44 94.64 99.02 98.47
14 93.34 97.55 96.55 98.17 99.05 98.14
15 46.39 87.92 92.02 96.71 89.13 95.90
16 82.73 91.08 48.67 57.83 97.59 90.12

OA 74.73 93.43 92.97 95.05 95.84 96.72
AA 67.32 91.03 79.59 79.95 92.14 95.06

Kappa 71.13 92.51 91.98 94.35 95.26 96.26

Tables 7 and 8 report the quantitative classification results (obtained by averaging of five runs) on
the UH and KSC datasets, respectively. Figures 8 and 9 separately show the corresponding classification
maps. Compared with DenseNet, FDMFN improved the OA from 95.78% to 97.41% for the UH dataset.
Moreover, FDMFN achieved significant performance gains over DenseNet with 2.41% in terms of AA
for the KSC dataset. Overall, FDMFN outperformed all other compared methods in terms of the three
overall metrics on the two datasets, which validated the effectiveness of our method.
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To demonstrate whether the accuracy improvement of the proposed FDMFN over the compared
methods was statistically significant, we performed the standardized McNemar’s test [62], which is
defined as:

Z =
f12 − f21√

f12 − f21
, (7)

where fij denotes the number of samples that are correctly classified by classifier i and incorrectly
classified by classifier j. When Z is larger than 2.58, it means that the performance improvement of
Classifier 1 over Classifier 2 is statistically significant at the 99% confidence level. As shown in Table 9,
all the Z values were much higher than 2.58, which confirmed that our FDMFN method significantly
outperformed the contrastive approaches.

(a) False color image (b) Ground reference map

(c) SVM (89.66%) (d) 3D CNN (94.49%)

(e) DFFN (95.41%) (f) FCLFN (95.24%)

(g) DenseNet (95.78%) (h) FDMFN (97.41%)

Figure 8. Classification maps and overall classification accuracies for the UH dataset.

(a) False color image (b) Ground reference map (c) SVM (88.12%) (d) 3D CNN (95.60%)

(e) DFFN (98.37%) (f) FCLFN (99.05%) (g) DenseNet (98.22%) (h) FDMFN (99.66%)

Figure 9. Classification maps and overall classification accuracies for the KSC dataset.
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Table 7. Classification accuracies (in %) of different methods for the UH dataset using 5% of labeled
samples for training. The best results are highlighted in bold font.

Class Color SVM [5] 3D CNN [32] DFFN [37] FCLFN [38] DenseNet [40] FDMFN

1 96.13 98.12 97.26 91.95 98.68 97.24
2 95.75 98.00 96.21 97.22 98.69 98.39
3 99.37 98.76 99.01 98.66 99.55 98.69
4 96.09 95.33 91.11 90.21 92.83 96.51
5 98.34 99.71 99.39 99.80 99.98 100
6 89.87 92.16 89.07 87.49 87.15 90.72
7 89.55 92.93 94.58 92.89 93.49 95.77
8 84.35 83.38 88.89 90.21 89.02 93.70
9 79.43 89.22 94.60 93.84 90.73 96.38

10 91.54 96.08 98.98 99.96 96.46 100
11 85.88 92.91 97.01 97.32 97.98 98.18
12 83.77 94.30 94.52 97.44 97.94 98.30
13 43.46 90.40 91.73 92.21 91.83 94.01
14 97.64 99.90 100 100 100 100
15 98.92 99.80 97.41 97.68 99.97 99.56

OA 89.66 94.49 95.41 95.24 95.78 97.41
AA 88.67 94.73 95.32 95.13 95.62 97.16

Kappa 88.82 94.04 95.04 94.85 95.44 97.20

Table 8. Classification accuracies (in %) of different methods for the KSC dataset using 5% of labeled
samples for training. The best results are highlighted in bold font.

Class Color SVM [5] 3D CNN [32] DFFN [37] FCLFN [38] DenseNet [40] FDMFN

1 92.27 98.68 98.92 98.89 99.88 100
2 84.17 86.54 92.81 90.88 95.48 98.99
3 80.08 94.17 99.04 99.83 96.35 99.83
4 61.51 78.41 95.93 95.93 84.78 95.84
5 50.66 66.71 91.05 96.50 92.87 98.18
6 53.64 92.00 97.07 99.32 96.59 99.71
7 75.56 96.77 100 100 97.42 100
8 89.34 97.67 98.14 99.84 99.74 100
9 94.82 98.42 97.78 100 100 100

10 93.00 99.78 99.56 99.89 99.61 100
11 94.42 99.95 100 100 99.79 99.84
12 92.37 95.34 99.20 100 98.45 99.96
13 100 100 100 100 100 100

OA 88.12 95.60 98.37 99.05 98.22 99.66
AA 81.68 92.65 97.65 98.54 97.00 99.41

Kappa 86.77 95.10 98.19 98.94 98.02 99.62

Finally, the computing times of the proposed FDMFN and other deep neural networks on the
three datasets are reported in Table 10. One can see that FCLFN consumed the lowest time, while the
proposed FDMFN was the most time consuming on the three datasets, because of there being more
parameters in FDMFN than other compared models on the IP dataset (see Table 11). For the UH and
KSC datasets, although FDMFN had fewer parameters than DenseNet, it took a larger size of image
patch as input (23 × 23 for FDMFN and 11 × 11 for DenseNet [40]) and thus also spent more time
than DenseNet. Although time consuming, FDMFN could achieve better classification performance in
comparison with other deep networks.
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Table 9. Statistical significance of the improvement of FDMFN over other methods.

IP UH KSC

Z/Significant? Z/Significant? Z/Significant?

FDMFN vs. SVM

44.98/yes 32.35/yes 23.14/yes

FDMFN vs. 3D CNN

17.20/yes 19.61/yes 13.70/yes

FDMFN vs. DFFN

18.03/yes 16.41/yes 7.52/yes

FDMFN vs. FCLFN

12.24/yes 16.88/yes 4.85/yes

FDMFN vs. DenseNet

8.63/yes 13.98/yes 8.14/yes

Table 10. Training and test times (in seconds) on the three datasets using different deep neural networks.

IP UH KSC

3D CNN Training 33.88 36.92 15.35
Test 1.88 2.11 0.87

DFFN Training 14.92 20.79 7.92
Test 0.61 0.92 0.32

FCLFN Training 13.28 18.07 7.14
Test 0.59 0.90 0.30

DenseNet Training 33.13 42.47 16.40
Test 1.56 1.97 0.73

FDMFN Training 55.19 50.31 23.75
Test 4.00 3.86 1.85

Table 11. Numbers of trainable parameters in different deep neural networks.

3D CNN DFFN FCLFN DenseNet FDMFN

IP 0.10M 0.40M 0.17M 1.67M 2.30M
UH 0.07M 0.40M 0.17M 1.66M 0.54M
KSC 0.08M 0.40M 0.16M 1.66M 0.54M

4.6. Effect of Different Ratios of Training Samples

In this section, the effectiveness and robustness of the proposed method are investigated when
different ratios of training samples were considered. For each dataset, the ratio of training samples
ranged from 2% to 10% with an interval of 2%. The OA values obtained by different methods
on the three datasets are illustrated in Figure 10. It can be observed that FDMFN provided better
classification accuracies in comparison with other methods under all different ratios of training samples.
Furthermore, with less training samples (e.g., using only 2% of training samples), the proposed FDMFN
had significant advantage over other compared approaches on the IP and KSC datasets.
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Figure 10. Overall accuracy (OA) of different methods when using different ratios of labeled data for
training on the (a) IP, (b) UH, and (c) KSC datasets.

4.7. Input Patch Size Analysis

In general, larger input HSI patches with more spatial information tend to have an advantage
over the ones with less spatial information. However, larger input patches may contain pixels
from multiple classes, which confuse the recognition of the target pixel. In addition, it reduces
the inter-sample diversity and increases the possibility of overfitting. In this experiment, we further
compared the proposed method with other deep neural networks when they shared the same size of
input HSI patches. The experiment was implemented on the KSC dataset, and the spatial size varied
in the set {11 × 11, 15 × 15, 19 × 19, 23 × 23, and 27 × 27}. For the small spatial size (e.g., 11 × 11),
we removed the pooling layers due to the rapid down-sampling of the input image patch. The
overall accuracies obtained from different methods are shown in Table 12. As can be seen, the
proposed FDMFN outperformed other methods regardless of the spatial sizes of the input HSI
patches, which demonstrated the effectiveness of the proposed FDMFN method. In addition, all
the overall accuracies obtained by the proposed method with different patch sizes were higher than
98%, which suggests that our FDMFN method is robust to the spatial size of input patches.

Table 12. Overall accuracy (in %) obtained by different approaches on the KSC dataset when
considering different spatial sizes of input patches. The best results are highlighted in bold font.

Spatial Size 3D CNN DFFN FCLFN DenseNet FDMFN

11 × 11 95.91 81.83 94.98 97.60 98.47
15 × 15 97.01 88.56 97.97 99.01 99.17
19 × 19 97.67 94.22 98.24 99.26 99.44
23 × 23 98.08 97.82 98.74 99.35 99.66
27 × 27 98.08 98.18 98.98 99.28 99.43

4.8. Comparison with Other State-of-the-Art Approaches

In this section, we further compared the proposed FDMFN method with another three
state-of-the-art deep learning based HSI classification approaches: the dilated convolution based
CNN model (Dilated-CNN) [28], the 2D spectrum based CNN model [29], and the artificial neuron
network with center-loss and adaptive spatial-spectral center classifier (ANNC-ASSCC) [30].

Specifically, we first compared the proposed method with the Dilated-CNN on the IP and
Salinas datasets. The detailed information of the Salinas dataset can be also found in [53]. Following
Dilated-CNN [28], for each dataset, 60% of the labeled samples per class were randomly selected for
training. Next, the proposed FDMFN was compared with the 2D spectrum based CNN model [29]
on the IP, KSC, and Salinas datasets. For a fair comparison, we utilized the same number of samples,
as in [29], for model training. Finally, the proposed method was compared with the ANNC-ASSCC
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method [30] on the Salinas dataset. Following [30], we randomly chose 200 labeled samples from each
class for training.

The corresponding classification results are shown in Tables 13–15. As can be observed, the
proposed method achieved improved performance in comparison with the other three deep learning
models. By making full use of the hierarchical features, our method could exploit multiscale
information for the classification of HSIs. In addition, the comprehensive feature reuse in the proposed
network also facilitated discriminative feature learning. The results shown in Tables 13–15 further
demonstrate the superiority of our FDMFN model for HSI classification.

Table 13. Comparison between the proposed FDMFN and the Dilated-CNN [28] method on the IP and
Salinas datasets. Note that the best results reported in [28] were used for comparison here. In addition,
the best results are highlighted in bold font.

IP Salinas

Dilated-CNN [28] FDMFN Dilated-CNN [28] FDMFN

OA (%) 99.81 99.95 99.99 100
AA (%) 99.83 99.93 99.98 100

Kappa (%) 98.68 99.95 99.99 100

Table 14. Comparison between the proposed FDMFN and the 2D spectrum based CNN model [29]
on the IP, KSC, and Salinas datasets. Note that the best results reported in [29] were used for
comparison here. In addition, the best results are highlighted in bold font.

IP KSC Salinas

[29] FDMFN [29] FDMFN [29] FDMFN

OA(%) 98.26 99.98 96.22 99.83 97.28 99.78
Kappa 0.978 0.9998 0.956 0.9981 0.962 0.9974

Table 15. Comparison between the proposed FDMFN and the artificial neuron network with center-loss
and adaptive spatial-spectral center classifier (ANNC-ASSCC) [30] on the Salinas dataset. Note that the
best results reported in [30] were used for comparison here. In addition, the best results are highlighted
in bold font.

ANNC-ASSCC [30] FDMFN

OA(%) 96.98 99.94
AA(%) 98.81 99.95

Kappa(%) 96.62 99.93

5. Discussion

There are mainly two reasons why FDMFN achieved a superior classification performance. First,
the proposed method achieved comprehensive reuse of abundant information from different layers
and provided additional supervision for each intermediate layer, enforcing discriminant feature
learning. Second, the multiscale hierarchical features learned by all Conv layers were combined
for HSI classification, which allowed finer recognition of various objects and hence enhancing the
classification performance.

From the comparison of the execution time of different deep neural networks, we can find
that the proposed model was not computationally efficient. However, our method could achieve
better classification performance in comparison with other methods on the three real hyperspectral
datasets. Furthermore, when limited training samples were utilized, the proposed method significantly
outperformed other approaches on the IP and KSC datasets, further demonstrating its effectiveness
for HSI classification. In our future work, to reduce the computational load, a memory efficient
implementation of the proposed network will be investigated.



Remote Sens. 2019, 11, 2718 17 of 20

6. Conclusions

In this work, we proposed a novel FDMFN to fully exploit the hierarchical features from all Conv
layers for spectral-spatial HSI classification. The proposed FDMFN was characterized by introducing
shortcut connections between any two layers in the network. Through fully dense connectivity,
the spectral-spatial features learned by each layer could be accessed by all subsequent layers, achieving
comprehensive feature reuse. In addition, the proposed method enforced discriminative feature
learning by providing additional supervision. Furthermore, multiscale features extracted by all Conv
layers were fused to extract more discriminative features for HSI classification. Experimental results
on three widely used hyperspectral scenes demonstrated that the proposed FDMFN outperformed
other state-of-the-art methods.

Note that although the combination of all hierarchical features provided a good classification
performance, the contribution from features with different scales varied for different objects.
In our future work, attention mechanisms [63] will be considered to adaptively emphasize
representative features and suppress less useful ones for each sample, to enhance the classification
performance further.
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