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Abstract: The current study started by examining the three most established snow indices, namely
the NDSI (normalized difference snow index), S3, and NDSII-1 (normalized difference snow and
ice index), based on their capabilities to differentiate snow pixels from cloud, debris, vegetation,
and water pixels. Furthermore, considering the limitations of these indices, a new spectral index
called the snow water index (SWI) is proposed. SWI uses spectral characteristics of the visible,
SWIR (shortwave infrared), and NIR (near infrared) bands to achieve significant contrast between
snow/ice pixels and other pixels including water bodies. A three-step accuracy assessment technique
established the dominance of SWI over NDSI, S3, and NDSII-1. In the first step, image thresholding
using standard value (>0), individual index theory (fixed threshold), histogram, and GCPs (ground
control points) derived threshold were used to assess the performance of the selected indices. In the
second step, comparisons of the spectral separation of features in the individual band were made
from the field spectral observations collected using a spectroradiometer. In the third step, GCPs
collected using field surveys were used to derive the user’s accuracy, producer’s accuracy, overall
accuracy, and kappa coefficient for each index. The SWI threshold varied between 0.21 to 0.25 in all
of the selected observations from both ablation and accumulation time. Spectral separability plots
justify the SWI’s capability of extraction and removal of the most critical water pixels in integration
with other impure classes from snow/ice pixels. GCP enabled accuracy assessment resulted in a
maximum overall accuracy (0.93) and kappa statistics (0.947) value for the SWI. Thus, the results of
the accuracy assessment justified the supremacy of the SWI over other indices. The study revealed
that SWI demonstrates a considerably higher correlation with actual snow/ice cover and is prominent
for spatio-temporal snow cover studies globally.
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1. Introduction

The Himalayas are known as the largest abode of snow and glaciers apart from the Arctic and
Antarctic. Snow and glacier melt from the Himalayas sustain the perennial river flow in major river
systems like the Indus, Ganga, and Brahmaputra. These river systems receive 30–50% of the annual
flow from snow and glacier melt runoff [1–4]. Thus, directly and indirectly, snow and glacier melt
occurring from the Himalayan region support irrigation and industrial water demand of a very large
population residing in the Himalayas and the Indo-Gangetic alluvial plain. Studies have shown that the
large accumulation of snow cover of the Himalayas influences the Earth’s radiation budget on regional,
local, and global scales [5–9]. According to Lu et al. [10], snow’s distinct high surface reflectance and
low thermal conductivity influence biological, chemical, and geological characteristics of earth soil
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cover. At local levels, it directly impacts different soil variables such as permeability, temperature,
moisture, microbial activity, and carbon sequestration [11,12], while at the regional scale, it strongly
influences plant composition and plant community structure [13,14]. Snow is also a sensitive index of
climate change, which gives a direct measure of the sustainability of Himalayan biodiversity and a
healthy eco-system.

Early researchers [15–21] working in the domain of snow climatology started mapping snow
cover area with different ground-based and aerial photographic survey techniques. Ground-based
monitoring methods were extremely labor-intensive, expensive, and potentially dangerous in tough
and inaccessible river basins [22]. Therefore, field surveys are not suitable for the often-quick melting
snow cover mapping in tough terrain conditions [10]. Instead of a field-based survey, aerial surveys
are an easily accessible technique that provides much more comprehensive information in the short
span of the survey time. The aerial survey has its own limitations in terms of processing time needed
for executing a number of overlapped aerial images for large river basin areas, high aircraft operating
costs, and difficulty in interpreting snow cover in forest shaded regions [23]. The launch of the TIROS-1
(Television Infrared Observation Satellite) satellite in 1960 pioneered the concept of multispectral
remote sensing for snow and glacier hydrology. Since then, the potential of snow and ice cover mapping
has been strengthened by the various advancements in high spatio-temporal frequency satellites and
sensors [24–31]. Snow cover area information collected from satellite observations has been widely
used for different studies related to climate change assessment and snowmelt runoff modeling.

The arrival of high-resolution remote sensing satellites has motivated different researchers [32–34]
to exploit and review numerous digital information techniques and datasets (with different spatial and
temporal resolution) to accurately map snow cover area on a regional and global scale. Indices are
the most frequently used automated methods for snow/ice cover mapping. NDSI, S3, and NDSII-1
are some of the indices that provide the maximum separation between snow and different features
such as ice, cloud, and vegetation [35–41] and manifest their significance in snow mapping on satellite
data. These indices utilize the reflectance and absorptive properties of snow in visible, NIR, and SWIR
bands [29,35,38–40,42–47].

Although these indices have been frequently used for snow cover mapping with various
multispectral satellite datasets and proven their significance in extracting snow cover in different
terrain conditions, water and cloud are two major impurities that pose as a challenge in extracting
snow pixels from space-borne multispectral sensors. A series of studies have been conducted for
developing a masking technique or improved indices [48–51] for removing the impact of cloud pixels,
but there are a sufficient number of studies [29,37,52–56] that have shown that water pixels are always
misunderstood as snow when extracted with these indices. Thus, there is an additional requirement of
a filtering technique for precise delineation of snow cover with available index-based techniques.

In this study, we propose a new snow cover index named the snow water index (SWI). The SWI is
developed with the spectral wavelengths of the visible, SWIR, and NIR band of Landsat-8 satellite
to achieve a significant contrast between snow/ice pixels and other pixels including water bodies.
The snow cover extraction capability of SWI was compared with NDSI, S3, and NDSII-1 by using a
detailed three step accuracy assessment technique. In the first step, the image thresholding using a
standard value (>0), individual index theory, histogram, and GCPs (ground control points) derived
threshold are used to assess the performance of the selected indices over high-resolution Landsat-8
and Sentinel-2 satellite images for both the accumulation and ablation period for 2017 and 2019.
A comparison of these thresholds helps to draw a visual perception regarding the performance of
indices in the presence of both the mixed and pure snow cover classes. In order to perform ground
validations, a field survey was conducted around the SASE (Snow and Avalanche Study Establishment),
DRDO (Defense Research & Development Organization) observatories at Bhang (2039 m), Solang
(2480 m), and Dhundi (3050 m) in the Beas River basin using spectroradiometer and DGPS (differential
global positioning system) instruments. In the second step of the accuracy assessment, comparisons of
spectral separation of features in the individual band are made from the field spectral observations
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to evaluate the performance of the individual indices qualitatively. As the SWI was developed
using the Landsat-8 spectral wavelength, the respective spectral wavelength of the selected bands
(green (0.53–0.59 µm), NIR (0.85–0.88 µm), SWIR (1.57–1.65 µm)) are extracted from the full range
of spectroradiometer observations. In the third step, GCPs collected using field surveys are used to
derive the user’s accuracy, producer’s accuracy, overall accuracy, and kappa coefficient for each index.
The results of the accuracy assessment justified the supremacy of the SWI over other indices. Overall,
this research work analyzed and reviewed the accuracy of the three most frequently used and newly
proposed snow cover indices under the presence of different features like vegetation, water, debris,
and cloud.

2. Material and Methods

The methodology of the current study includes: selection of suitable study area, data collection
(Satellite & Field data), Application of snow cover indices, image thresholding (Standard, Literature
based, histogram, Field based). Accuracy of each snow indices will be evaluated qualitatively and
quantitatively based on spectroradiometer and GCPs (Ground Control Points) validation. All the
processing was done using ArcGIS 10.3 (Environmental Systems Research Institute, California, CA,
USA), ERDAS IMAGINE 2014, Imagine Photogrammetry, Hexagon Geospatial and MATLAB R2019a
software packages.

2.1. Test Area

The Beas River basin of the Himachal Pradesh State of India was selected for the current research
study. The locational map of the study area is presented in Figure 1. The selected study area is spread
over 347 square km in between the spatial extent of 76.92E to 77.58E and 31.87N to 32.46N. Being
a part of the lower Indian Himalaya and catchment area of the River Beas, the selected study area
is characterized by high precipitation, cold temperature, and mostly glaciated and snow-covered
terrain. The relative humidity in the region remains around 80%. The temperature falls between 1.6 ◦C
and 12 ◦C. The average annual rainfall varies between 94.68 mm and 165.51 mm, and the annual
average snowfall varies between 45.75 mm to 305.00 mm. The area is covered with thick forest cover,
which constitutes mainly Chil (Pinus roxburghii), Blue pine (Pinus wallichiana), Ban oak (Quercus
leucotrichophora), and Deodar (Cerdus deodara) with a variety of broad-leaved trees along with
shrubs and grasses. The Snow and Avalanche Study Establishment (SASE) of the Defense Research
and Development Organization (DRDO), India has its own snow-meteorological observatories at
Bhang (2039 m), Solang (2480 m) and Dhundi (3050 m) in the Beas basin area for studying the varying
hydro-meteorological and climatological conditions of the basin.
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2.2. Data Used

In order to compare different existing snow cover mapping indices (NDSI, S3, and NDSII-1) with
the proposed snow cover index (SWI) and evaluate their mapping accuracy, the current study used
both the digital satellite image dataset and ground observations (spectroradiometer observations and
ground control points).

2.2.1. Digital Satellite Image Dataset

Multi-spectral satellite imagery from Landsat-8 (OLI/TIRS) and Sentinel-2 satellites were the
primary satellite datasets used for extracting snow cover in the current study. Two satellite images
for the month of March and two satellite images for the month of September were downloaded for
2017 and 2019. Intentionally, satellite images with varying cloud cover percentages were selected to
test the cloud detection and masking capability of the indices. Table 1 provides more information on
the Landsat-8 and Sentinel-2 satellite image specifications. Both datasets were downloaded from the
United States Geological Survey (USGS) Earth Explorer web portal [56].

Table 1. Specifications of Landsat-8 and Sentinel-2 satellite imagery.

Sensor Acquisition Date Spectral Band with Wavelet (µm) Cloud Cover

Landsat-8

12 March 2017 Costal (0.43–0.45)
Blue (0.45–0.51)

Green (0.53–0.59)
Red (0.63–0.67)
NIR (0.85–0.88)

SWIR-1 (1.57–1.65)
SWIR-2 (2.11–2.29)

Cirrus cloud (1.36–1.38)

13.26%
20 Sept 2017 5%

18 March 2019 2.28%

10 Sept 2019 9%

Sentinel-2

21 March 2017 Costal (0.443)
Blue (0.490)

Green (0.560)
Red (0.665)

Vegetation red edge (0.705)
Vegetation red edge (0.740)
Vegetation red edge (0.783)

NIR (0.842)
Vegetation red edge (0.865)

SWIR-Cirrus (1.375)
SWIR-1 (1.610)
SWIR-2 (2.190)

58%
10 Sept 2017 67%

26 March 2019 51.85%

17 Sept 2019 42%

2.2.2. Field Survey and Ground Observations

Major ground observations were collected from 10 March to 30 March 2017 (morning 10:00 am to
evening 4:00 pm) using spectroradiometer and differential GPS instruments around the SASE, DRDO
laboratories at Bhang (2039 m), Solang (2480 m), and Dhundi (3050 m). Some observations were also
collected near the Manali–Leh Highway while visiting the study area.

Spectro-Radiometer Observations

A complete spectroradiometer survey was carried out at various locations in the different land
cover classes’ proximity to all three observatories [57]. The spectral signatures of various ambient
features such as snow, contaminated snow, forest cover, grassland, waterbody, etc., were gathered in
the study area. Spectral reflectance was observed using a portable field spectroradiometer Field Spec
Pro FR (Analytical Spectral Devices 1999), in the wavelength range of 350–2500 nm (3 nm spectral
resolution in the VIR (visible infrared) and 10–12 nm spectral resolution range for SWIR (Analytical
Spectral Devices 1999)). In this wavelength range, it collects radiometric measures such as radiance,



Remote Sens. 2019, 11, 2774 5 of 28

reflectance, and irradiance. This experiment was conducted on a small area of 10 m × 10 m plain
ground. The obstruction-free coverage instrument was attached on a 2 m long metallic beam from the
surface. For this study, the field of view was 25◦, and the radiometer was set to nadir viewing over
the target. The duration of spectral collection for each object was set to 10–15 minutes to evade the
effect of environmental influences procured through changing the sun-sensor viewing geometry and
physical/meteorological conditions. Figure 2 shows the spectral response of different features captured
with a spectroradiometer from the selected study area.
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Figure 2. (a) Raw and (b) average values of the spectral signature of various features collected by
a spectroradiometer.

Ground Control Points (GCPs)

The aim of the ground control points (GCPs) was to quantitatively assess how effectively the
pixels were sampled into the correct land cover classes in different indices. Moreover, the key emphasis
for ground control point selection was on areas that could be clearly identified on both Landsat-8 and
Sentinel-2 high-resolution images for both seasons in both years. A total of 30 ground control points
(locations) were collected on the way to the Leh-Manali Highway and around three observatories of
SASE, DRDO using a ‘Trimble R7/5700’ dual-frequency differential GPS instrument. Aside from the
DGPS observations, an additional 194 points were marked over Google Earth ProTM based on the
field verifications and expert’s knowledge of the area. These points were categorized in the respective
class of land cover as snow, water, debris, forest, and grassland. Figure 3 presents both the actual field
observations of the DGPS survey and additionally marked GCPs for the current study area. Figure 4
presents the field photographs depicting different land cover classes from the Beas River basin. Table 2
describes the number of DGPS points and Google Earth enabled GCPs for individual land cover class.

Table 2. DGPS (Differential Global Positioning System) and Google Earth enabled GCPs (Ground
Control Points) collected for different land cover classes.

Land Cover Class No. of GCPs (DGPS Survey) No. of GCPs (Google Earth)

Snow 10 44
Water 5 41
Debris 5 26
Forest 5 25

Grassland 5 28
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2.3. Methodology

2.3.1. Normalized Difference Snow Index (NDSI)

NDSI is an automated approach that relies on the ratio of visible and short-wave infrared
wavelengths to separate snow/ice pixels from cloud cover and other unwanted feature classes.
The development of NDSI is the continuous efforts of utilizing the spectral information by different
researchers to regionally [44] and globally [29] map the snow/ice features. As the snow depicts the
highest reflectance in the green 0.545–0.565 µm (visible) band and the lowest reflectance in the SWIR
1.628–1.652 µm band [29,44,56,58–61], the NDSI utilizes the ratio between the spectral characteristics
of snow in visible and SWIR region.
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The mathematical representation of NDSI is presented in Equation (1).

NDSI =
(Green− SWIR)
(Green + SWIR)

(1)

NDSI not only divides the wavelength range between snow and non-snow, but also helps to reduce
the effect of cumulus clouds [57], atmospheric inferences, and geometric distortions [62]. Another
advantage of NDSI is that it can take care of topographic effects [61], as it can potentially delineate and
map snow under mountainous shadows [55]. Although NDSI ranges in between −1 to +1, but various
studies have suggested that a fixed threshold of 0.40 is optimum for snow cover mapping [29].

2.3.2. S3 Index

Saito and Yamazaki proposed S3 as an improved snow mapping indices in 1999 at the same
time as when NDSI was developed. In 2006, Shimamura [38] assessed the accuracy of S3 over NDSI,
specifically in the areas where snow cover and forested areas overlapped each other. The S3 index
was originally designed for the GLI (Global Imager) sensor of ADEOS-II (Advanced Earth Observing
Satellite II), launched in December 2002. Some studies have been conducted by researchers using the
ADEOS-II sensor for measuring the efficiency of S3 in snow cover mapping [63–65]. As ADEOS-II
stopped working in October 2003, various researchers have used Landsat ETM+ in different regions of
the world and found that S3 has the capability to accurately map snow cover under dense forested
areas without any reference data (NDVI). The reflectance of snow is high in the visible region, while in
the case of vegetation, the reflectance increases from the red edge to the NIR (near infrared) wavelength.
However, in the area where snow is found under vegetation cover, the reflection of snow and vegetation
becomes mixed. Therefore, avoiding the effect of pixels holding both the snow and vegetation values
on snow cover mapping, S3 uses the reflectance characteristics of snow in the red, NIR, and SWIR
wavelengths [38,57]. In the Landsat-8 satellite, near-infrared, red, and SWIR bands correspond to band
5 (0.85 to 0.89 µm), band 4 (0.63 to 0.68 µm), and band 6 (1.56 to 1.66 µm), respectively. The mathematical
formulation of S3 is represented by Equation (2):

S3 =
NIR(Red− SWIR)

(NIR + Red)(NIR + SWIR)
(2)

From various studies [38,57,61,65], it was found that the threshold value of the S3 index is greater
than 0.18. In the case of snow-covered area and for snow under vegetation, the threshold value ranges
from 0.05–0.18.

2.3.3. Normalized Difference Snow and Ice Index (NDSII-1)

NDSII-1 was specially designed by Xiao et al. in 2001 for the VGT (Vegetation) sensor of the
SPOT4 satellite, which was launched in 1998 for mapping snow and ice cover. The VGT sensor has
four spectral bands (blue, red, near-infrared, and mid-infrared) equivalent to the Landsat TM bands.
The NDSII-1 based VGT approach is a simple and automatic way of monitoring and mapping snow
and ice cover areas from landscapes to global scales. The concept behind the development of the
NDSII-1 index is to use the different aspects of snow reflectance in the red and SWIR bands of the VGT
sensor. Landsat TM has the same spectral bands as VGT, so researchers have applied the NDSII-1
using Landsat TM on different regions of the world and compared it to the NDSI, where they found
that NDSII-1 produced the same results as NDSI [29,58]. The mathematical representation of NDSII-1
is given by Equation (3):

NDSII =
(Red− SWIR)
(Red + SWIR)

(3)

The NDSII-1 index ranges from −1 to +1 and also adopts a fixed 0.4 threshold value similar to the
NDSI [39].
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2.3.4. Snow Water Index (SWI)

Snow cover mapping over rugged terrain area with highly variable physical and meteorological
conditions often suffers from the problem of snow–shadow mixing, snow–cloud mixing, snow–debris
mixing, snow–vegetation mixing, and snow–water mixing. Thus, precise extraction and mapping of
the snow-covered area in mountainous regions need proficient tools that are not affected by the other
neighboring land cover variables, particularly water. In order to achieve more accurate snow cover
mapping, in the current study, we proposed a new index named as SWI. This newly proposed index
uses the combination of green, NIR, and SWIR bands and analyzes the spectral characteristics of snow,
cloud, vegetation, and especially water in these regions. Similar to earlier indices, the SWI is capable
of eliminating the impact of prominent neighborhood classes like cloud, soil, vegetation, and water.
An extension to earlier indices, this index has a more sophisticated way of eliminating the influence of
neighboring water pixels. The water feature shows higher reflectance in the green wavelength region
and absorbs the maximum radiation in the NIR region. The absorptive property of water in the NIR
region makes it possible to easily discriminate snow from water [29,52,53,55,56]. Therefore, to create a
significant contrast between snow and other features, especially in the case of water, the SWI achieves
the maximum accuracy. The mathematical representation of the snow water index (SWI) is given by
Equation (4):

SWI =
Green(NIR− SWIR)

(Green + NIR)(NIR + SWIR)
(4)

The high reflective property of the cloud in the green as well in the SWIR bands makes it possible
to distinguish it from snow easily. SWI uses the snow and vegetation reflectance characteristics in
the green and NIR wavelength region to accurately map the snow under vegetation. The ratio of
(green/green + NIR) is used for reducing the impact of vegetation on snow. One of the major advantages
of SWI is the ratio of (NIR − SWIR/NIR + SWIR), which works as a water mask. Snow cover area
extraction and mapping from SWI alone delivered better performance and accuracy when compared
to the NDSI, S3, and NDSII-1. From the various observations, it was found that the threshold value of
the SWI index for the snow cover area was greater than 0.21.

2.4. Accuracy Assessment

One of the most critical and vital steps of a snow indices comparison study is accuracy assessment.
Even though the purpose of the indices is to produce fast and accurate water maps, an accuracy
assessment must be conducted for evaluation purposes.

2.4.1. Index Thresholding

In this first part of the accuracy assessment, the performance of snow indices for Landsat-8 and
Sentinel-2 satellites was assessed using image thresholding. Image thresholding is a process of deciding
a partitioning value that transforms a grayscale image into a binary segmented output image. There are
different ways of finding out a threshold value for an index like the standard value (>0), individual
index theory (fixed threshold), histogram, and GCPs. In the current study, all of these threshold
values were derived for each of the studied indices, and their snow cover delineation capability was
evaluated for all of the input satellite images. A comparison of these thresholds will help to draw a
visual perception regarding the performance of indices in the presence of both the mixed and pure
snow cover classes. A detailed comparison and discussion of the resultant binary (snow/non-snow)
image will be conducted to evaluate the performance of each index.

2.4.2. Spectro-Radiometer Validation

Spectral response of the ASD spectroradiometer (350–2500 nm) is one of the primary inputs of
the proposed accuracy assessment technique. This dataset is used for measuring the reflectance of
snow under the presence of different features (i.e., cloud, soil, vegetation, water) in the green, red,
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NIR, and SWIR wavelengths. Reflectance observations in satellite imagery as well as ground truth
dataset in the green (0.53–0.59 µm), red (0.63–0.67 µm), NIR (0.85–0.88 µm), and SWIR (1.57–1.65 µm)
wavelengths used for computing the selected indices for snow cover estimation. The accuracy of each
index was decided by the spectral separation plot of various features in the individual wavelengths
with respect to the snow cover indices. The performances of NDSI, S3, and NDSII-1, specifically over
water features, were spectrally studied to delineate the accuracy of snow cover estimation.

2.4.3. GCPs (Ground Control Points) Validation

Accuracy assessment is a vital step for feature identification and mapping projects. It compares
the classified image to the ground control point datasets reflecting the actual ground truth values with
reference to the selected feature class [66–69]. There are four different indicators of a ground truth
based accuracy assessment for any classification project.

User Accuracy (UA): The ratio between the number of correctly classified pixels and the classified
total pixels of the particular feature class is the user’s accuracy [66–68].

Producer’s Accuracy (PA): The ratio between the number of correctly classified pixels and the
reference total pixels for a particular feature class is called the producer’s accuracy [66–68].

Overall Accuracy (OA): Overall accuracy of a classified image represents the ratio of the total
number of accurately identified pixels and total number of pixels in the image [66–68].

Kappa Statistics: Kappa statistics are a representation of how closely the image pixels classified
by the indexing technique matched the data labelled as ground truth, controlling for the accuracy of a
random classifier as measured by the expected accuracy [68,69].

3. Results and Discussion

In this section, the performance of various snow indices for snow identification and mapping
for the selected satellite images is evaluated. First, an assessment of each index will be conducted
for the standard, literature based (fixed threshold), histogram, and GCPs thresholds, then a spectral
relationship is established between the indices and various classes’ reflectance in the green, red, NIR
and SWIR regions using spectroradiometer observations. Finally, GCPs enabled assessment of the
user’s, producer’s, overall accuracy, and kappa parameters of the different snow indices will be
conducted to evaluate the performance. A detailed comparison and discussion of the different snow
indices are vital to achieve a more accurate snow cover extraction technique.

3.1. Image Thresholding and Snow/Non-Snow Classification

Using the equations of the individual indices (Equations (1)–(4) and satellite images from 2017
and 2019 for both the accumulation and ablation time period (Figure 5), 64 index maps were derived.
For each scene, to achieve a binary classification snow/non-snow map, different image thresholds were
selected. First, a standard threshold (>0) was selected for all indices. Then, the literature review for
the individual indices was undertaken, and their theoretical threshold values were identified. Then,
a conventional approach of histogram thresholding was assessed, and the threshold was identified.
Figure 6 presents the NDSI frequency distribution-based histogram thresholding for the accumulation
and ablation time of 2017. Landsat-8 satellite images were processed with MATLAB software, and the
histogram was prepared for both images. This histogram was examined with a trial and error-based
approach for estimating the minimum, maximum, and optimal threshold value with reference to the
true image. Similar to the NDSI image, thresholding was performed for all of the selected indices.
Finally, based on the ground validation dataset (GCPs), threshold values were extracted for each index.
All of these threshold values for 2017 and 2019 are presented in Tables 3 and 4, respectively.
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Table 3. Selected standard, literature review based, histogram enabled, and GCPs computed threshold
values for different snow indices in the satellite images for 2017.

Sensor Snow
Indices

Standard
Threshold

Literature
Based Threshold

Histogram Based Threshold Field Based Threshold

Accumulation Ablation AccumulationAblation

Landsat-8
2017

NDSI >0 0.40 0.40–0.42 0.35–0.49 0.38 0.40
NDSII >0 0.40 0.38–0.42 0.34–0.43 0.40 0.39

S3 >0 0.18 0.18–0.24 0.12–0.23 0.19 0.19

SWI >0 0.18 (Took same
as S3) 0.20–0.24 0.20–0.27 0.22 0.23

Sentinel-2
2017

NDSI >0 0.40 0.37–0.56 0.35–0.55 0.45 0.42
NDSII >0 0.40 0.35–0.42 0.35–0.49 0.39 0.42

S3 >0 0.18 0.17–0.22 0.15–0.21 0.18 0.22

SWI >0 0.18 (Took same
as S3) 0.19–0.23 0.24–0.28 0.21 0.23

Table 4. Selected standard, literature review based, histogram enabled, and GCPs computed threshold
values for different snow indices in the satellite images for 2019.

Sensor Snow
Indices

Standard
Threshold

Literature
Based Threshold

Histogram Based Threshold Field Based Threshold

Accumulation Ablation AccumulationAblation

Landsat-8
2019

NDSI >0 0.40 0.39–0.41 0.31–0.47 0.41 0.43
NDSII >0 0.40 0.39–0.41 0.31–0.47 0.38 0.42

S3 >0 0.18 0.17–0.21 0.16–0.25 0.17 0.21

SWI >0 0.18 (Took same
as S3) 0.18–0.25 0.19–0.27 0.20 0.23

Sentinel-2
2019

NDSI >0 0.40 0.41–0.53 0.45–0.53 0.43 0.46
NDSII >0 0.40 0.49–0.52 0.43–0.51 0.43 0.47

S3 >0 0.18 0.16–0.26 0.21–0.30 0.20 0.20

SWI >0 0.18 (Took same
as S3) 0.22–0.29 0.22–0.29 0.24 0.22

Once the two-decimal threshold was decided for all indices for all of the selected satellite scenes,
a binary classification was performed to partition the images into two classes, namely, snow and
non-snow. Figures 7–14 present the binary snow/non-snow images for all of the selected test scenes.
In all of these figures, the first row of the figures representing NDSI maps, second row represents
NDSII-1 maps, the third row shows S3 maps, and the fourth row represents SWI (proposed index)
maps. Classes other than snow are highlighted to understand the impact of indices. Red rectangles are
used to demarcate the flowing water features like the river, pink rectangles are drawn over static water
bodies like lakes, and yellow rectangles are used to represent cloud-covered regions. The blue color in
the legend represents snow pixels, and grey pixels show non-snow pixels.
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Figure 12. Snow classification output for different snow indices with the standard, literature, histogram,
and GCPs driven thresholds for the September 2017 Sentinel-2 image.
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Figure 14. Snow classification output for different snow indices with the standard, literature, histogram,
and GCPs driven thresholds for the September 2019 Sentinel-2 image.

In the accumulation months of March 2017 and March 2019 and ablation months of September
2017 and September 2019, Landsat-8 and Sentinel-2 satellite images were processed with all of the
discussed snow indices, and the results are presented for visual assessment. Visual comparison of the
standard, literature (fixed threshold), histogram, and GCPs driven indices, specifically with reference
to clouds, flowing, and static water features, resulted in GCP driven indices being the optimal source of
partitioning the image into the snow and non-snow classes. Together, the performance of the standard
threshold (>0) was the worst in the group while the literature and histogram driven indices were also
unable to classify the image in snow and non-snow pixels accurately. Based on the visual inspection,
all indices with the selected threshold seemed to depict different patterns. In the case of the NDSI,
NDSII-1, and S3, in the red rectangles together, it can be witnessed that the flowing water features were
continuously misclassified as snow in both the Landsat-8 and Sentinel-2 images for the accumulation
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period. In the ablation month of September, the performance of NDSI, NDSII-1, and S3 became more
inaccurate because of the presence of clouds, flowing, and static water features for both the Landsat-8
and Sentinel-2 images. S3 was more accurate in discriminating the snow and non-snow pixels in
comparison to the NDSI and NDSII-1. Its performance of assessing the presence of flowing and static
water features was much better, but some misclassified cloud pixels could continuously be seen in the
ablation results. The results of the SWI was much better in comparison to the NDSI, S3, and NDSII-1.
None of the snow/non-snow maps generated with SWI misclassified static or flowing water bodies
and cloud pixels for both the accumulation and ablation period. Thus, the visual assessment of all the
resultant snow/non-snow map results showed that SWI was best at delineating the snow feature for
both the accumulation and ablation period.

In order to analyze how well these indices performed in the selected satellite images, we selected
thirteen different types of cases, each referring to a specific type of feature and satellite image,
as presented in Figure 15. Now, we discuss them one by one from the first case to last. Snow in
the ablation period for the Landsat-8 satellite is presented in the first row. The SWI was capable
of discriminating the impact of mixed features and delineating snow with a higher contrast value.
Snow in the ablation period for the Sentinel-2 satellite is presented in the second row. With the higher
resolution of Sentinel-2 in comparison to Landsat-8, the performance of SWI, together with the other
indices, was enhanced to discriminate other mixed features. Snow in the accumulation month for
Landsat-8 and the Sentinel-2 is presented in rows three and four, respectively. In the accumulation
month, the accuracy of the indices was more clearly visible where S3 and SWI were able to map the
pure snow pixels with higher accuracy in comparison to other indices. Flowing water features are
presented next for the Landsat-8 and Sentinel-2 satellites in rows five and six, respectively. The impact
of the SWI was most accurately visible in the case of flowing water, where all of the other indices
outperformed in detecting flowing water pixels in comparison to the SWI. Rows seven and eight,
present the results for static water bodies for the Landsat-8 and Sentinel-2 satellites, respectively.
In the case of the Landsat-8 static water, features were identified well with almost all of the selected
indices. The NDSI continuously mixed water pixels with ice pixels, but, in the case of Sentinel-2,
the performance of the SWI was a bit reduced for detecting standing water pixels. This is due to the
use of the mean wavelength. Thresholding could improve the result and identification of static water
bodies. Cloud features are presented next for the Landsat-8 and Sentinel-2 satellites in rows nine and
ten, respectively. None of the indices, except for the SWI, were capable of detecting cloud pixels in the
selected image. SWI performed in both the case of Landsat-8, and Sentinel-2 was best at removing the
impact of cloud pixels. Vegetation cover in Landsat-8 and for the Sentinel-2 is presented in rows eleven
and twelve, respectively. Every index performed well in identifying the vegetation pixels. Debris
cover in Landsat-8 is presented in row number thirteen. The performance of NDSII-1, S3, and SWI was
equally good and much better for the performance of the NDSI. Thus, after examining the results of all
indices in the thirteen different cases with all possible feature classes and two selected satellite images,
the performance of SWI was found to be best in comparison to all of the frequently used snow indices
(NDSI, S3, and NDSII-1).
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3.2. Validation Using Spectroradiometer Observations

The current section presents the results obtained after analysis and a comparison of the reflectance
characteristics of clean snow and contaminated snow, vegetation, and water in the green, red, NIR,
and SWIR bands along with their influence on the values of the indices using spectroradiometer
observations. The spectral separability plots of features in the green, red, NIR, and SWIR wavelengths
with respect to NDSI, S3, NDSII-1, and SWI using the spectroradiometer dataset are presented in
Figures 16–19, respectively. From the spectroradiometer observations, we found that the reflectance
for all types of snow, clean as well as mixed with soil, in the visible region extended in the range of
60–100% and the SWIR was found to be in the range of 0–15%. For other classes such as vegetation and
water reflectance, the visible range was between 0–15% and 0-20% in the SWIR wavelength. Instead,
in the NIR region, reflectance was found to be in the range of 0–10% for water, 40–50% for vegetation,
and 60–80% for clean as well soil mixed snow, as shown in Figures 18 and 19. From the reflectance
characteristics of different classes in the green, red, NIR, and SWIR regions, we can interpret that, in the
NIR region, snow, as well as other features, are highly separated from each other as compared to the
SWIR region.
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Figure 19. Reflectance of features in the green (A), SWIR (B), and NIR band using spectroradiometer
observations for SWI (C).

In the present study, we computed the index values for different classes such as snow, soil mixed
snow, vegetation, and water, and compared the separation of features in individual wavelengths with
snow with respect to their index’s values. The computed index values for all types of snow, clean
as well as snow mixed with soil, for NDSI, S3, NDSII-1, and SWI are given in Table 5 In the case of
vegetation, the measured value from all of the indices was less than zero or less when compared to the
snow values in Table 5. Therefore, there was no ambiguity between the snow and vegetation. From
the scatter plot given in Figures 16–19, we observed that water had a low reflectance in the visible and
SWIR region when compared to snow. However, the computed index values from the NDSI, NDSII-1,
and S3 were found very close or exactly the same as snow, except in the SWI exhibited in Table 5 and
Figure 19.

Table 5. Spectro-radiometer reflectance (%) for the green, red, NIR, SWIR bands and the NDSI, NDSII-1,
S3 and SWI indices for different target features.

Target Spectro-Radiometer Reflectance (%)

Green Red NIR SWIR NDSI NDSII-1 S3 SWI

Clean Snow 98.33 95.10 77.20 02.10 00.96 00.95 00.53 00.53
Snow mixed with soil 78.70 87.10 77.70 02.50 00.93 00.93 00.25 00.47
Vegetation (Shrubs) 07.12 04.50 39.80 17.40 −00.41 −00.58 −00.20 00.05
Vegetation (Taxus

baccata) 06.45 07.30 49.50 14.15 −00.36 −00.31 −00.09 00.06

Water 07.09 03.80 00.40 00.25 00.93 00.87 00.39 00.16
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3.3. Validation Using GCPs

Statistical accuracy assessment parameters (user’s accuracy (UA), producer’s accuracy (PA),
overall accuracy (OA), and kappa coefficient) were computed for all of the selected snow indices using
ground control points acquired using field survey. The results are presented in Table 6. The UA and PA
statistics of NDSI, S3, NDSII-1, and SWI represent a substantial commitment of these indices toward
snow delineation. It can be seen that the overall accuracy of SWI was the maximum in the group of
selected snow indices. The Kappa statistics show the correlation of the extracted snow pixels with
ground observations (GCPs). Kappa statics of the SWI was 0.947, which was better than the NDSII-1,
S3, and NDSI indices.

Table 6. Accuracy assessment based on the GCPs (Ground Control Points) for snow indices.

INDICES UA PA OA Kappa

NDSII-1 0.90 0.79 0.85 0.747
NDSI 0.68 0.90 0.80 0.713

S3 0.91 0.70 0.89 0.888
SWI 0.89 0.93 0.93 0.947

4. Conclusions

Some of the most frequently used snow indices like the NDSI, S3, and NDSII-1 integrating
visible, NIR, and SWIR wavelengths have significantly enhanced the ease and accuracy of snow
cover estimation. However, snow and water have similar index values in the NDSI, NDSII-1, and S3.
Therefore, a water mask is required to discriminate between water and snow pixels. The external
dependency of the water mask affects the accuracy of the automated extraction of snow cover.
To address this problem, a new snow index called the snow water index (SWI) was developed. The SWI
provides a clear contrast between snow and other feature types including water bodies. Some of the
major outcomes of the current study are as follows:

Results for the NDSI, S3, NDSII-1 show that these indices provide significant separation between
snow and non-snow features except in the presence of water (static and flowing) and cloud cover.

Analysis of spectral observations collected for different features using spectroradiometer showed
that in the NIR region, reflectance occurred in the range of 0–10% for water, 40–50% for vegetation,
and 60–80% for clean as well soil mixed snow. This implies that in the NIR band, all of the features
were clearly separated from each other, and the limitations of NDSI, S3, and NDSII-1 can be improved
by using the absorptive property of water in this band.

The SWI was developed with the combination of the NIR and SWIR bands, which acts as a water
mask and reduces the influence of water on snow.

The standard, literature, and histogram-based thresholds selected in the study for all snow indices
were able to extract most of the snow pixels (i.e., high PA), but with many misclassified non-snow pixels
(i.e., low UA). Based on visual and field observation-based assessments, these standard, literature,
and histogram-based thresholds are not useful in deriving a snow cover map in a scene with diverse
impure pixels belonging to different features.

The GCPs based threshold improved the delineation capability in most cases with a higher OA
and higher kappa coefficient. With the GCP based threshold, SWI was best at extracting snow pixels
and rejecting the other impure pixels of other features, whereas S3 was capable of identifying the
impure pixels of water and cloud cover up to some extent, but was unable to remove their impact over
pure snow pixels completely. NDSII-1 and NDSI outperformed most in the group.

An accurate estimation of the spatial extent of snow cover is vital to maintain the ecological
balance and is also useful for various hydrological applications. It is recommended that for real-life
implementation, the selection of a specific snow index requires care with caution by thoroughly
reviewing and examining the advantages and constraints of all the available snow indices and
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then integrating them for application in a selected study area with specific terrain conditions and
environmental characteristics. The performance of the NDSI, S3, and NDSII-1 in this study provides
evidence of the deleterious effect of overlapped classes, especially water in snow cover. Inaccurate
estimation of snow is also evident in the ground data and multispectral sensor. The proposed SWI
index takes advantage of the multispectral repose of unwanted features and generates artifact-free
snow cover maps. The accuracy assessment establishes SWI as a promising index for snow cover
estimation and mapping.
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