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Abstract: The analysis of the diameter distribution is important for forest management since the
knowledge of tree density and growing stock by diameter classes is essential to define management
plans and to support operational decisions. The modeling of diameter distributions from airborne
laser scanning (ALS) data has been performed through the two-parameter Weibull probability density
function (PDF), but the more flexible PDF Johnson’s SB has never been tested for this purpose until
now. This study evaluated the performance of the Johnson’s SB to predict the diameter distributions
based on ALS data from two of the most common forest plantations in the northwest of the Iberian
Peninsula (Eucalyptus globulus Labill. and Pinus radiata D. Don). The Weibull PDF was taken as
a benchmark for the diameter distributions prediction and both PDFs were fitted with ALS data.
The results show that the SB presented a comparable performance to the Weibull for both forest
types. The SB presented a slightly better performance for the E. globulus, while the Weibull PDF had a
small advantage when applied to the P. radiata data. The Johnson’s SB PDF is more flexible but also
more sensitive to possible errors arising from the higher number of stand variables needed for the
estimation of the PDF parameters.

Keywords: probability density function; LiDAR; remote sensing; forest horizontal structure

1. Introduction

Forest inventory is essential in forest management by providing information to diagnose the
stands, which supports decision-makers. The inventories are traditionally based on sampling of field
plots, in which tree measures are collected in a time consuming and laborious process. However, the
forest mensuration has faced a new paradigm with the improvement of light detection and ranging
(LiDAR) tools, especially with airborne laser scanning (ALS), which has the ability to quickly record
high-accuracy 3D-data in large areas [1].
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One of the most common approaches to performing an ALS forest inventory is the area-based
approach (ABA), where metrics are extracted from the normalized height of the LiDAR data cloud
(NHD) and used to predict the forest variables [2,3]. The growing stock assessment is the most frequent
target of the inventories, but effective forest management often requires information of the timber
volume distributed through the diameter at the breast height (dbh, 1.30 m) classes [4] (pp. 261–298).
In this case, even though the ABA does not allow detecting tree diameters directly, it enables obtaining
the forest stand structure indirectly by using the NHD metrics to estimate probability density functions
(PDF) that describe diameter distributions [5].

Earlier studies [6,7] succeeded in incorporating NHD metrics to obtain the diameter distribution
of boreal forests using the two-parameter Weibull distribution, especially when applying the
parameter recovery approach. Other similar applications of this approach were also used by other
researchers [8–10]. Non-parametric techniques, such as k-nearest neighbors [11] or percentiles [12],
have also been applied to capture the irregularities in the diameter distribution [13–18]. Despite
improving the accuracy, those methods usually do not follow biological principles and are focused on
reducing the prediction errors so the interpretation of their results is not straightforward.

As suggested by Gobakken and Næsset [6], Johnson’s SB distribution [19] could be tested to ALS
data as an alternative to the Weibull distribution. The SB is recognized by the scientific community as a
highly flexible distribution, since it allows the representation of a large region over the plane of the
β1 and β2 coefficients, being β1 the squared skewness and β2 the kurtosis [20]. This distribution has
shown remarkable results when fitted using field data [21–30]. Mateus and Tomé [31] also conducted
a large-scale study in Portugal and demonstrated through a skewness–kurtosis analysis that the SB

PDF is the most suitable to represent the diametric distribution of Eucalyptus globulus Labill. stands.
However, to the best of our knowledge, there are no records of its applications to ALS data.

In this context, this study evaluated the ability of the SB PDF to predict the diameter distribution
of forest plantations through ALS data. The hypothesis is that the Johnson’s SB, due to its flexibility,
is more efficient than the Weibull distribution. Two datasets from pure even-aged plantations of
Eucalyptus globulus Labill. and Pinus radiata D. Don. were used to support this study.

2. Materials and Methodology

2.1. Study Areas

The eucalyptus dataset was collected from a 9-km2 forest area located in northwest Portugal, close
to the city of Águeda (Figure 1, left). The area presented variability in its topography, with altitude
varying from 70 to 220 m and slope of 2.5–34.2%. Pure even-aged eucalyptus plantations felled every
10–12 years during three rotations were dominant at the landscape, where high forest and coppice
forest coexisted in the area. Many stands were multi-layered, with eucalyptus in the upper layer and
dense understory occupying the lower layer (see [32,33] for more details).Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 17 
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Figure 1. Study areas of: (left) eucalyptus stands; and (right) pine stands . 86 

2.2. Forest Inventory 87 

The inventory in eucalyptus plantations was carried out between 10 June and 3 July 2008, using 88 
45 circular plots of 400 m² that were selected based on systematic sampling, where each plot’s center 89 
was recorded using a total station and a differential Global Navigation Satellite System (GNSS). All 90 
plots covering two different stands or crossed by roads were discarded (20 plots). A total of 25 91 
eucalyptus plots were therefore used in this study (Figure 1, left). All of them were representative of 92 
the area regarding the stand composition, structure, and rotation. Field measurements followed the 93 
Portuguese National Forest Inventory Field Manual [36]. The dbh was measured for each tree higher 94 
than 2 m. In the center of each plot, a 200-m² sub-plot was used to measure the heights of all trees 95 
higher than 2 m. The missing tree heights of the 400 m² plots were then estimated using the Prodan’s 96 
model [37] fitted using the data from their respective subplots. Table 1 presents the summary statistics 97 
for the data. More information about the eucalyptus dataset can be found in [33,38,39]. 98 

The pine field dataset was obtained during the winter of 2009–2010 from two different sources. 99 
The first source comprises a network of 10 permanent rectangular plots (600–1000 m2 area, depending 100 
on stand density). The inventory design was focused on obtaining an adequate representation of the 101 
existing range of ages, stem densities, and site indices (for details, see [4039]). The second source 102 
comprises 15 rectangular plots (1000 m2 area) established for assessing the influence of thinning on 103 
crown fire potential. The inventory was designed to represent young and highly stocked stands, as 104 
these are usually fire-prone (see [4140] for details). For all 25 inventory plots (Figure 1, right), dbh 105 
and total tree heights were measured in every tree. In addition, the coordinates of the four corners of 106 
each plot were obtained from topographic surveys by using a total station and a differential GNSS.  107 

The individual tree volumes were predicted using allometric equations and summed up to 108 
obtain the ground reference value for the plot growing stocks (m³ ha-1). The equations were provided 109 
by Tomé et al. [4241] for the eucalyptus dataset and by Diéguez-Aranda et al. [432] for the pine dataset.  110 

All datasets present similar behavior regarding the β1 and β2 coefficients computed for the tree 111 
dbh within plots (Figure 2). They are mostly spread over the area of the SB domain, and not over the 112 
line of the Weibull distribution. This fact corroborates the higher expectation for SB over Weibull to 113 
obtain diameter distributions for these two species. 114 

Table 1. Biometrical descriptions of the field data with their minimum, mean, maximum, and 115 
standard deviation (s) values. 116 

Dataset Variable* Unit Minimum Mean Maximum s 

Eucalyptus 

 

 

 

 

  

dmin cm 1.0 2.7 5.0 0.9 

�̅� cm 4.8 8.8 13.0 2.3 

dmax cm 10.0 17.5 23.9 4.3 

𝑑𝑔 cm 5.5 9.6 14.0 2.5 

G m² ha-1 3.9 10.9 21.3 5.2 

N stems ha-1 875 1454 2343 361 

Pine 

 

dmin cm 3.2 8.9 22.8 5.6 

�̅� cm 13.5 22.2 38.2 7.6 

Figure 1. Study areas of: (left) eucalyptus stands; and (right) pine stands.
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The pine dataset was collected over a large area of 9.856 km2, which represents the main distribution
area of P. radiata in the province of Lugo (Figure 1, right), located in the Galicia region (northwest
Spain). The altitude of most sites ranges 400–750 m and the slopes often exceed 15%. The forests are
representative of P. radiata stands in NW of the Iberian Peninsula and are thus mainly characterized by
high planting-density, low-intensity silvicultural treatments, and the presence of moderate shrub fuel
loads (for more details see [34,35]).

2.2. Forest Inventory

The inventory in eucalyptus plantations was carried out between 10 June and 3 July 2008, using 45
circular plots of 400 m2 that were selected based on systematic sampling, where each plot’s center was
recorded using a total station and a differential Global Navigation Satellite System (GNSS). All plots
covering two different stands or crossed by roads were discarded (20 plots). A total of 25 eucalyptus
plots were therefore used in this study (Figure 1, left). All of them were representative of the area
regarding the stand composition, structure, and rotation. Field measurements followed the Portuguese
National Forest Inventory Field Manual [36]. The dbh was measured for each tree higher than 2 m.
In the center of each plot, a 200-m2 sub-plot was used to measure the heights of all trees higher than
2 m. The missing tree heights of the 400 m2 plots were estimated using the Prodan’s model [37] fitted
using the data from their respective subplots. Table 1 presents the summary statistics for the data.
More information about the eucalyptus dataset can be found in [33,38].

Table 1. Biometrical descriptions of the field data with their minimum, mean, maximum, and standard
deviation (s) values.

Dataset Variable * Unit Minimum Mean Maximum s

Eucalyptus

dmin cm 1.0 2.7 5.0 0.9
d cm 4.8 8.8 13.0 2.3

dmax cm 10.0 17.5 23.9 4.3
dg cm 5.5 9.6 14.0 2.5
G m2 ha−1 3.9 10.9 21.3 5.2
N stems ha−1 875 1454 2343 361

Pine

dmin cm 3.2 8.9 22.8 5.6
d cm 13.5 22.2 38.2 7.6

dmax cm 25.3 37.9 59.0 10.2
dg cm 14.4 23.3 39.1 7.7
G m2 ha−1 16.7 36.9 68.1 11.0
N stems ha−1 393 1009 1820 425

* dmin, minimum dbh; d, mean dbh; dmax, maximum dbh; dg, quadratic mean dbh; G, basal area; N, number of trees
per hectare.

The pine field dataset was obtained during the winter of 2009–2010 from two different sources.
The first source comprises a network of 10 permanent rectangular plots (600–1000 m2 area, depending
on stand density). The inventory design was focused on obtaining an adequate representation of
the existing range of ages, stem densities, and site indices (for details, see [39]). The second source
comprises 15 rectangular plots (1000 m2 area) established for assessing the influence of thinning on
crown fire potential. The inventory was designed to represent young and highly stocked stands, as
these are usually fire-prone (see [40] for details). For all 25 inventory plots (Figure 1, right), dbh and
total tree heights were measured in every tree. In addition, the coordinates of the four corners of each
plot were obtained from topographic surveys by using a total station and a differential GNSS.

The individual tree volumes were predicted using allometric equations and summed up to obtain
the ground reference value for the plot growing stocks (m3 ha−1). The equations were provided by
Tomé et al. [41] for the eucalyptus dataset and by Diéguez-Aranda et al. [42] for the pine dataset.
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All datasets present similar behavior regarding the β1 and β2 coefficients computed for the tree
dbh within plots (Figure 2). They are mostly spread over the area of the SB domain, and not over the
line of the Weibull distribution. This fact corroborates the higher expectation for SB over Weibull to
obtain diameter distributions for these two species.
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Figure 2. Data dispersion over the β1 and β2 coefficients computed for the tree dbh within plots.

2.3. ALS Data Acquisition and Processing

2.3.1. Eucalyptus Data

The LiDAR data covering the E. globulus plots were acquired on 14 July 2008, few days after
the forest inventory, using a LiteMapper-5600 laser system with the full-waveform hardware RIEGL
LMS-Q560. The airplane flew 600 m from the ground at 46.26 m s−1. The parameters of the laser system
were 0.5 mrad of beam divergence, ±45◦ of scan angle, and pulse rate of 150 kHz. The resulted swath
was 497 m (60% of overlap) and the point density was 9.5 points m−2. The ALS point clouds were
processed using the FUSION software [43]. The ground points were filtered [44] and used to derive a
0.5-m-pixel digital terrain model (DTM) by triangulation. Ground reference measures collected with a
differential GNNS were used to assess the vertical accuracy of the DTM (see [33]). The vertical accuracy
of the ALS data, given by the root mean squared error (RMSE), was equal to 0.25 m. The DTM was
applied to normalize the height data cloud, a process where the points are re-scaled to aboveground
elevation. The metrics were computed for each plot considering the points higher than 1 m from the
ground. The used metrics are described in Table 2.

2.3.2. Pine Data

The LiDAR data covering the P. radiata plots was acquired in a nationwide survey for the PNOA
(Plan Nacional de Ortofotografía de España) project between 5 September and 29 October 2009, under
the direction of the Spanish Ministerio de Fomento (Dirección General del Instituto Geográfico Nacional
(IGN) and Centro Nacional de Información Geográfica–CNIG), using a RIEGL LMS-Q680 sensor operated
at 1064 nm. The airplane’s average flying height was 1300 m from the ground. The parameters of
the laser system were: ±30◦ of scan angle and pulse rate of 70 kHz. A maximum of 4 returns per
pulse was registered, reaching an average point density of 0.47 points m−2. The ALS point clouds
were also processed with the FUSION software [43]. The filtered ground points were triangulated to
derive a 2 m-pixel DTM, which was used to normalize the point cloud. As reported by the provider
(https://pnoa.ign.es/), the vertical accuracy of the ALS data, given by the RMSE, is ≤0.20 m. The set of
metrics from the points laid above 1.5 m was extracted for each plot (Table 2).

https://pnoa.ign.es/
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Table 2. Description of the normalized height data cloud (NHD) metrics.

Metric
Dataset

Description
Eucal. Pine

Hmin, Hmean, Hmax 4 4 Minimum, mean, and maximum height.

Hmode, Hsd, Hvar, Hcv 4 4
Mode, standard deviation, variance height and

height’s coefficient of variation.
Hiq 4 4 Height interquartile amplitude

Hsqew, Hkurt 4 4 Height skewness and kurtosis.
Haad 4 4 Height average absolute deviation.

Hmad.med, Hmad.mode 4 4
Median of the absolute deviations from the overall
height median (Hmad.med) and mode (Hmad.mode).

HL1, HL2, HL3, HL4 4 4 Height L moments [45].

HLskew, HLkurt, HLcv 4 4
Linear combinations of height L moments (skewness,

kurtosis and coefficient of variation).
h01, h05, h10, h20, h25, h30, h40, h50,

h60, h70, h75, h80, h90, h95, h99
4 4 Height percentile at 1%, 5%, . . . , 99%

Cnp.Ratio 4 4 Canopy ratio: (Hmean − Hmin)/(Hmax − Hmin).
MeanQuad, MeanCub 4
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[

1

𝜇(1−𝜇)
− 8]  𝛿 ∗ 𝑙𝑛 (

1−𝜇

𝜇
) + (

0.5−𝜇

𝛿
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Squared and cubic mean.
PercFAT, PercAAT 4 4 Percentage of first and all return above the threshold.
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RatioAAmeanF 4 4
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SB-Moments 0 dmax 
𝜇(1−𝜇)

𝑆𝑑(𝑥)
+

𝑆𝑑(𝑥)

4
[

1

𝜇(1−𝜇)
− 8]  𝛿 ∗ 𝑙𝑛 (

1−𝜇

𝜇
) + (

0.5−𝜇

𝛿
)  dmax, ds, �̅� 

Sx is the percentage of points in x layer (e.g., S40 is
the percentage of points within 20–40% of Hmax).

2.4. Fitting of the Distributions

The Johnson’s SB PDF (Equation (1)) originally has four parameters: λ is the scale parameter,
responsible for the distribution extension; ε is the location parameter (lower limit); and γ and δ are the
shape parameters. Because we are dealing with sampling, a low value for the location parameter is
preferable [20,22,46], although the maximum likelihood estimation for this parameter is typically zero
or close to zero [28]. For this reason, we set the location parameter to zero (ε = 0).

f (x) =
δλ

√
2π(x− ε)(ε+ λ− x)

exp
{
−

1
2

[
γ+ δ ln

( x− ε
ε+ λ− x

)]2
}

(1)

ε < x< ε+ λ, δ >0, −∞ < γ< ∞, λ >0, and ε ≥ 0; f (x) = 0, otherwise.

The adaptation of three approaches were tested to fit this model: (i) the method of moments of
Scolforo et al. [47] (Table 3); (ii) the percentile method of Knoebel and Burkhart [48] (Table 3); and
(iii) the three-parameter recovery of Parresol [28], described below. These approaches are referred
hereafter respectively as “SB-Moments”, “SB-Percentile”, and “SB-3PR”. Other parameter estimation
approaches were also considered but previous tests with our dataset showed a poor correlation among
the parameters and NHD metrics for our dataset.

Table 3. Johnson’s SB fitting based on methods of moments and percentile.

Method ε λ δ γ Inputs

SB-Moments 0 dmax
µ(1−µ)
Sd(x) +

Sd(x)
4

[
1

µ(1−µ) − 8
]

δ ∗ ln
(

1−µ
µ

)
+

( 0.5−µ
δ

)
dmax, ds, d

SB-Percentile 0 dmax
Z95%

ln
(

d95%−ε
ε+λ−d95%

)
−ln

(
d50%−ε

ε+λ−d50%

)
−δ ∗ ln

(
d50%−ε

ε+λ−d50%

)
dmax, d95%, d50%

dmax, maximum dbh; d, mean dbh; µ = d−ε
λ ; ds, dbh standard deviation; Sd(x) = ds

λ ; Z95%, 95% quantile of the
standard normal distribution (1.6448); d95%, 95% percentile dbh; d50%, 50% percentile dbh (or median dbh).
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The SB-3PR was performed according to the algorithm of Parresol et al. [49] but adapted in this
work to R environment [50] using the minpack.lm package [51]. This approach estimates the parameters
by solving a system of nonlinear equation using Levenberg–Marquardt optimization. In summary,
the 3PR considers d as a particular diameter of the random variable D~SB (λ, ε, γ, δ). Starting from
Equation (2), it is possible to establish the property in Equation (3), whose generating function for the
r-th non-centered moment µ’r(y) is given by Equation (4).

y = f (d) =
d− ε
λ

(2)

z = γ+ δ ln
[

y
1− y

]
∼ N(0, 1) (3)

µ′r(y) =
1
√

2π

∫
∞

−∞

[
1 + e

γ−z
δ

]−r
e−z2/2 dz (4)

The PDF parameters are then obtained by solving the system of Equations (5)–(7), where G is
basal area (m2 ha−1), N is tree density (trees ha−1), and K = π/40,000 for the metric system.

γ = δ ln(λ/d50% − 1) (5)

d = ε+ λµ′1(y) (6)

G = KN
[
ε2 + 2 ελµ′1(y) + λ2µ′2(y)

]
(7)

The parameter ε is defined a priori; γ is calculated by Equation (5); and λ and δ are obtained
iteratively by Equations (6) and (7) from pre-defined values. The starting values for the parameters
were ε = 0, λ = dmax, and δ = 3, with 0.8 as lower bound for δ. Note that 3PR uses five inputs defined
above: G, N, d50%, d, and dmax.

The two-parameter Weibull (Equation (8)) was applied according to Bailey and Dell [52], where
b and c are the shape and scale parameters, respectively, and the fitting was performed through the
two-parameter recovered [53,54]. In this process, the inputs d and the quadratic mean diameter (dg)
are used to solve Equations (9) and (10) to recover the parameters b and c. Note that this approach uses
the two inputs defined above: dg and d.

f (x) =
( c

b

)(x
b

)c−1
exp

(
−

(x
b

)c)
(8)

d = b Γ
(
1 +

1
c

)
(9)

dg
2 =

d
2

Γ2
(
1 + 1

c

) Γ
(
1 +

2
c

)
(10)

where Γ(.) is the Gamma function.

2.5. Estimating the PDF’s Inputs

All distributions were fitted using stand variables as inputs in the estimation of the PDF’s
parameters. These stand variables had to be predicted from the NHD metrics. For each approach, a
system of nonlinear models was fitted to provide a consistent prediction of the stand variables for the
plots. The variables related to the diameter position were fitted with the following constraints: dmax ≥ d
for the SB-Moment; dmax ≥ d95% ≥ d50% for the SB-Percentile; dmax ≥ d50% and dmax ≥ d for the SB-3PR;
and dg ≥ d for the Weibull. In the SB-3PR approach, the additional constraint N = (40,000 G)/(π dg

2)
was added to the system to guarantee the consistency of N and G predictions. All systems are described
in Table 4.
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Table 4. Equation systems used in the fitting approaches.

Approach Equation System

SB-Moments
ds = exp(XB1) + ε1
dmax = exp(XB2) + ε2

d = dmax − exp(XB3) + ε3

SB-Percentile
dmax = exp(XB1) + ε1
d95% = dmax − exp(XB2) + ε2
d50% = d95% − exp(XB3) + ε3

SB-3PR

G = exp(XB1) + ε1
N = exp(XB2) + ε2
dmax = exp(XB3) + ε3

d = dmax − exp(XB4) + ε4
d50% = dmax − exp(XB5) + ε5

Weibull
dg = exp(XB1) + ε1

d = dg − exp(XB2) + ε2

XBi = βi0 + βi1xi1 + βi2xi2 + βi3xi3, where xi j and βi j are, respectively, the predictor variables and the parameters j of
model i; εi is the random error of model i.

Each model of the systems uses up to three NHD metrics as predictors, which were selected
through an exhaustive search of their respective linearized models. The searching was implemented
by fitting all possible combinations of three of the available metrics. The model was chosen following
three criteria: (i) the lowest value for the relative root mean squared error (RMSE%); (ii) all estimated
parameters significantly different from zero (t-test, α = 5%); and (iii) variance inflation factors (VIF)
lower than 10 [55]. The VIF, used to avoid collinearity among metrics, was computed with the car
package [56]. The models that include other stand variables as predictor have their best metrics also
found by the exhaustive search using the generic model in Equation (11),

ln(Yu −Yl) = β0 + β1x1 + β2x2 + β3x3 + ε (11)

where Yu and Yl are, respectively, the upper and the lower stand variable, e.g., Yu = dmax and Yl = d
for the SB-Moments; βi is the model parameter i = 0, . . . , 3; xi is the predictor variable i = 1, . . . 3; and ε
is the random error.

After finding the best metrics for the models, each one of the nonlinear systems was fitted
simultaneously by the three-stage least-squares method (3SLS, [57]) using the systemfit package [58].
The 3SLS combines two-stage least squares (2SLS) and seemingly unrelated regression taking into
account the cross-equation errors. Any fitted parameter not significantly different from zero was
removed from the model, and the system was refitted.

The system of equations corresponding to the best distribution fitting approach was assessed
through the mean deviation (Bias%, 12), the squared Pearson’s correlation (r2) between the observed
and predicted values, and the relative root mean squared error (RMSE%, 13) computed through the
leave-one-out cross-validation (LOOCV).

Bias% = 100
∑n

i=1

(yi − ŷi)

n y
(12)

RMSE% =
100

y

√∑n
i=1(yi − ŷi)

2

n
(13)

where yi and ŷi are the observed and estimated value for the plot i = 1, . . . , n; and y is the observed
mean value.
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2.6. PDF’s Accuracy Assessment

The fitted distributions were assessed using the two-sided Kolmogorov–Smirnov test (KS) under
the null hypothesis that the plot data could be a sample from the fitted distribution. However, as
the distribution parameters were empirically estimated, the theoretical distribution for each plot is
unknown, so that the KS test should be conducted through a Monte Carlo simulation [59]. Therefore,
for each plot and fitting approach, we used the fitted parameters to generate 1000 independent and
identically pseudo-random samples with a size equal to the number of trees of the corresponding plot.
For each sample, we refitted the corresponding distribution to compute the KS statistic. We used the
mean of the resultant KS statistics to check (one-sided t-test, α = 5%) if it is lower or equal to the critical
value of the KS distribution, considering α = 1% due to the small number of trees that could occur
inside plots [17,60]. We use the term acceptance hereinafter to refer to not rejecting the null hypothesis
of the KS test.

The error index (see [61]) was also applied to verify the accuracy of the fitted diameter distributions
to predict the relative frequency in each diameter class (5 cm amplitude). This index is frequently used
for this purpose (e.g., [6,10,31]). It was computed through Equation (14) and the values range from 0 to
200, where the fit is more accurate as the index is lower. The index was obtained for each plot (e) and
averaged for each one of the fitting approaches to obtain the mean index error (e) for each dataset.

e = 100
m∑

i=1

∣∣∣ fi − f̂i
∣∣∣ (14)

where e is the plot index error; and fi and f̂i are, respectively, the observed and the estimated relative
frequency of class i = 1, ..., m.

The predicted plot growing stock produced by each fitting approach was also compared to
the ground reference values using the RMSE%, Bias%, and the paired t-test. In this prediction, the
respective high-diameter equation fitted by plot (see Section 2.2) was applied to each diameter class,
and allometric equations for the individual tree volumes were applied according to the dataset. The
fitted probability density functions were used to obtain the number of trees in each class, and then the
plot growing stock. However, the tree density (N, trees ha−1) was predicted for each plot using an
equation fitted with the model N = exp(β0 + β1x1 + β2x2 + β3x3) + ε, where βi, xi, and ε are defined
above. The equation was fitted for each dataset and three metrics were used as a predictor. The metrics
were selected through the same exhaustive searching described in Section 2.5 and the model was also
assessed by the Bias%, r2, and RMSE% computed through LOOCV. Finally, a graphical analysis was
also conducted over the best PDF fitting approaches to illustrate the previous assessments.

3. Results

As a general result, the SB presented a comparable performance to the Weibull function in
modeling the diameter distributions using ALS data for both forest species. The SB presented a slightly
better performance for the E. globulus dataset, especially with the SB-Moments approach, while the
Weibull function had a small advantage when applied to the P. radiata dataset.

According to the KS test, the SB-Moments was accepted by 72% of the observed plot diameter
distributions (Table 5), one plot more than for the Weibull distribution (68%). On the other hand, the
Weibull distribution was accepted by 48% of plot distributions in the P. radiata dataset, against 36% for
the SB-Moments. The SB-3PR had the worst results, with 4% and 8% of acceptance for the E. globulus
and P. radiata datasets, respectively. Another important fact is the higher values of acceptance for the
eucalyptus when compared with pine for almost all tested approaches, which suggests that eucalyptus
plantations allow for better modeling of the diameter distributions based on ALS data.

The mean error indices (Table 5) showed the lower values for the SB-Percentile on the E. globulus
dataset (e = 26), while the SB-Moments and Weibull presented close values (e = 30 and e = 31,
respectively). In P. radiata, however, the lower error occurred for the Weibull distribution (e = 42),
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followed closely by the SB-Moments and SB-Percentile (e = 45 for both). The SB-3PR resulted in the
higher mean error indices (e = 57 and e = 96 for the E. globulus and P. radiata datasets, respectively).
Additionally, as verified for the KS analysis, the error index values were also higher for the P. radiata
dataset than for E. globulus dataset.

Table 5. Acceptances for the KS test (percentage inside the parenthesis) and mean error indices (range
inside the parenthesis).

Approach
KS Acceptance Mean Error Index (

¯
e)

E. globulus P. radiata E. globulus P. radiata

SB-Moments 18 (72%) 9 (36%) 30 (14–65) 45 (23–96)
SB-Percentiles 17 (68%) 8 (32%) 26 (2–55) 45 (13–77)

SB-3PR 1 (4%) 2 (8%) 57 (7–138) 96 (27–163)
Weibull 17 (68%) 12 (48%) 31 (12–53) 42 (12–88)

KS acceptance indicates the null hypothesis of the KS test was not rejected.

The results regarding the growing stock prediction for each distribution followed the previous
analysis for the E. globulus dataset and slightly different for the P. radiata dataset (Table 6). For the
eucalyptus, the SB-Moments was the most accurate and the least biased, with RMSE% and Bias% equal
to 21% and −0.8%, respectively. The Weibull approach was slightly less accurate and more biased,
with RMSE% equal to 22% and −2% for Bias%, respectively. Besides, the paired t-test showed that
all tested approaches were able to predict the growing stock without significant difference from the
ground reference values, including for the SB-3PR. In the P. radiata dataset, the Weibull was the most
accurate approach (RMSE% = 24%) and, differently from the previous analysis, the SB-3PR was the
second most accurate (RMSE% = 28%). However, these two approaches were the most biased (Bias%
equal to −16% and −12%, respectively), while the SB-Moments was the least biased (−7%). Likely, the
paired t-test did not show a significant difference among observed and predicted values.

Table 6. Accuracy of the growing stock (V, m3 ha−1) estimation through the fitted distributions.

Approach
E. globulus Data P. radiata Data

RMSE% Bias% t-statistic RMSE% Bias% t-statistic

SB-Moments 21% −0.8% −0.22 ns 35% −7% −0.95 ns

SB-Percentiles 24% −2.9% −0.69 ns 43% −10% −1.35 ns

SB-3PR 27% 0.9% 0.18 ns 28% −16% −1.72 ns

Weibull 22% −2.0% −0.65 ns 24% −12% −1.81 ns

Paired t-test, where ns means non-significant at α = 5%.

Those facts suggest that possible inefficiencies of an approach in estimating the diameter
distribution do not necessarily harm its accuracy for growing stock predictions. One explanation for
that is the error related to the N prediction (Table 7), which accumulates to the PDF estimation error.
Additionally, since the individual tree volume grows exponentially with its diameter, small errors in
the distribution could have a lower or higher effect in the growing stock prediction depending on
the dbh classes where they occur. For this reason, the SB-Moments could be considered as a suitable
approach for the growing stock analysis in both datasets, since it presented a relatively good accuracy
(RMSE% = 21% for E. globulus and RMSE% = 35% for P. radiata) and the lowest Bias%.

Since the SB-Moments and Weibull presented good results for most accuracy assessments, their
respective systems of equations are presented in Table 7. Both systems presented relatively good
accuracy for their equations, with RMSE% lower than 16%, high r2 (0.77–0.93) and a low Bias% (<3%,
in absolute values). Examples of the diameter distributions produced by each of those approaches are
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presented in Figures 3 and 4. The distributions over the E. globulus dataset showed that the SB-Moments
predictions are close to the observed frequencies for all exemplified plots (Figure 3). This fact is
confirmed by their respective error indices, where the lowest values are obtained for the SB-Moments,
reflecting in smaller discrepancies than for the Weibull. As shown for the P. radiata dataset (Figure 4),
the observed distributions are more complex and less smooth, with abrupt differences between the
frequencies of consecutive dbh classes (e.g., Plots 2 and 3 in Figure 4). This fact explains the lower
quality of the indicator values when assessing the distribution fittings. Nevertheless, the Weibull and
SB were able to reproduce those distributions satisfactorily, with a small advantage for the Weibull in
most cases (e.g., Plots 1, 3, and 4 in Figure 4).

Table 7. Fitted equations with their respective accuracy assessment.

Approach Variable
E. globulus Dataset P. radiata Dataset

Predictor bi RMSE% Bias% r2 Predictor bi RMSE% Bias% r2

- N

Constant 9.054 19% −3% 0.56 Constant 7.210 30% −9% 0.61
Hcv −3.149 h90 −0.030
h25 −0.076 PercAAT 0.027

PercFAMode 0.011 RatioAAmeanF −0.034

SB-Moments

ds

Constant 0.865 16% −3% 0.81 Constant 2.284 16% −2% 0.77
Hmad.mode −0.025 hmean 0.041
Cnp.Ratio −1.347 h01 −0.048
MeanCub 0.105 Cnp.Ratio −1.421

dmax

Constant 1.924 12% −1% 0.83 Constant 2.962 8% −1% 0.93
Hsd 0.137 Hmin 0.033
h10 0.048 Hmad.med 0.149
S60 0.024 HL4 0.585

d

dmax d̂max 15% −1% 0.83 dmax d̂max 18% −2% 0.82
Constant 1.731 Constant 2.530

Hmode 0.028 h05 −0.076
PercAAMode 0.021 h10 0.047

str40 −0.049 PercAAMode 0.009

Weibull

dg

Constant 1.044 10% <1% 0.89 Constant 2.483 14% −2% 0.84
Hsd 0.164 h90 0.037
h10 0.060 PercAAT −0.010
S60 0.043 RatioAAmodeF 0.013

d

dg d̂g 11% <1% 0.86 dg d̂g 16% −2% 0.82
Constant −0.304 Constant 1.624

Hsqew −0.268 h01 −0.105
h10 0.059

Cnp.Ratio −2.992

RMSE% computed through LOOCV (see Section 2.5).

4. Discussion

This work performed a novel study by evaluating the capability of Johnson’s SB to predict diameter
distributions based on ALS data from two of the most common species used for forest plantations in
the Iberian Peninsula: E. globulus and P. radiata. The results were different among the datasets, where
the distributions resulted in better indicators when fitted over the E. globulus dataset. A plausible
explanation for this difference is the distinction between the structure of the two forests and the adopted
scanning properties. The eucalyptus ALS-data collection aimed at forest inventory while the pine flight
was planned to produce high-resolution DTM for general applications in the country. Nationwide data
have been applied to many forest-oriented studies, showing promising results in, e.g., Finland [62,63],
Sweden [64], and Denmark [65]. Likewise, the Spanish survey proved to be a consistent data source for
different forest applications [34,66–70]. However, nationwide ALS surveys are planned to reduce the
flight costs so they present non-optimum scanning parameters for forest inventory, generally deriving
low-density point clouds [71]. It is known that this characteristic has a negative impact on the forest
modeling [72,73], so it is plausible that the models related to pine dataset have been influenced by the
characteristics of the point density when compared to the ones derived from eucalyptus dataset.
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The pine dataset is located in a larger and more complex terrain when compared to the eucalyptus
area (see Section 2.1). Thus, it is reasonable to consider this difference as a possible error source for
the models since the terrain slope has a well-known influence on the accuracy of the ALS-derived
DTM (e.g., [74,75]). However, the ABA has been commonly applied in steeped slopes with success
(e.g., [76,77]) so it is not clear that the terrain complexity affects the forest models. Furthermore, the
accuracy of the ALS surveys was relatively low (RMSE ≤ 0.25 m) so it is unlikely that the variation in
the terrain had caused significant impact in the forest attribute predictions.

The SB was highly sensitive to the input variables. Because of that, small deviations in the input
predictions can result in changes in the parameters of the dbh distribution since they are interdependent
in the fitting approaches (see Section 2.6). Therefore, the prediction errors can accumulate and affect
the distribution even if the fitted equations have good performance. An example of those facts can be
seen for SB-3PR, which uses five stand variables as inputs in the parameter estimation and resulted
in the worst performance for almost all assessments. On the other hand, the SB-Moments and the
SB-Percentile use three stand variables each, while the Weibull has the advantage of using just two.

Each work involving the prediction of diameter distributions from ALS data has its particularities
regarding the forest type, prediction approaches, or assessments, thus the comparative analysis among
them is not straightforward. An exception is the work of Arias-Rodil [34], which used the same P.
radiata dataset and LiDAR flight to estimate the diameter distribution through the two-parameter
Weibull fitted also through parameter recovery approach. Our results show considerable improvement
in relation to the Weibull distribution fitting; the acceptance by the KS test changes from 28% to 48%
among plots. This fact was the result of the better equations to predict the stand variables used as
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predictors to estimate the distribution’s parameters, which use not two but up to three NHD metrics.
If the SB is taken into account, it is also considered as an improvement in the distribution’s prediction
since it presented higher acceptance according to Arias-Rodil’s baseline, with 36% for the SB-Moments.

Considering the best approaches of our work (SB-Moments and Weibull), the mean error indices
found could be considered low if compared to the literature. Maltamo et al. [10] found error index
values of 50–60 for hybrid eucalyptus (E. urophilla x E. grandis) in Brazil using the two-parameter
Weibull model. Other works involving boreal forests reported average indices varying 75–95 (“error2”
of Maltamo et al. [18] [Editor1] ), 30–45 for diameter and basal area distributions [6], and 49–87 for just
basal area distributions [7]. However, it should be highlighted that our dataset consists of homogeneous
stands, thus, despite their variable structure, a lower modeling error was already expected.

According to the assessment through the growing stock prediction, the SB-Moments presented a
good indicator for the E. globulus data, where it performed slightly better than the Weibull. The Bias%
of these estimations (≤2.0%, in absolute value) were comparable to the ones found by Gobakken and
Næsset [6,7] [Editor2], with values below 4.8%, in absolute value. However, the Bias% values could be
considered high in the case of the P. radiata data, varying 7–18% (in absolute value) for all approaches,
although many of them presented reasonable RMSE% values and no significative differences between
the predicted and ground reference values according to the paired t-test.

The deviations related to the N prediction are another source of error for the growing stock
prediction assessment. The N is frequently reported as being one of the most difficult forest variables to
be modeled from ALS data. In the related literature, it is common to find coefficients of determination
(R2, adjusted or not) of 0.50–0.82 in models with up to six metrics (e.g., [2,3,78]). One of the few studies
with E. globulus plantations showed a low accuracy for the N equation (R2 = 0.49), using 4 points
m−2 ALS data [79]. Woods et al. [80] suggested that this difficulty in modeling N could be bypassed
if a high-point-density scanning is used. In our case, the E. globulus dataset has a relatively high
density (9.5 points m−2) and the equation for the N was the least accurate, although its use is no longer
discouraged. The N fitting for the P. radiata data, otherwise, presented a better accuracy even with a
low pulse density (0.47 points m−2). In the case of availability of the tree density values of the stands,
they could be applied to improve the growing stock prediction. Additionally, the modeling approaches
could benefit from multisource data, such as multispectral images or multispectral ALS, which would
contribute to improving predictions of the stand variables used as inputs in the estimation of the
PDFs’ parameters.

The model transferability (see [77]) was not evaluated in this work so our results do not allow
us to conclude about the efficiency of the models to predict attributes in stands from other regions.
However, the models were developed using heterogeneous datasets in terms of stand age, density,
and site index, and were assessed using a robust analysis. These features suggest that the developed
models could be applied to E. globulus and P. radiata stands in the Iberian Peninsula. In the case of
the absence of validation datasets to confirm such hypothesis, the replication of our methodology is
recommended when the goal is to study different areas. Finally, this work filled the knowledge gap
involving the Johnson’s SB distribution and ALS approach and demonstrated that it allows obtaining
accurate information about the forest horizontal structure to support decisions in forest management.

5. Conclusions

This work assessed the ability of the Johnson’s SB and Weibull PDFs to model the diameter
distributions of E. globulus and P. radiata plantations. In the studied areas, the SB-Moments was the best
approach to fit the SB, while the SB-3PR was the one providing the worse results. The performance
of the SB was comparable to the Weibull, presenting small advantages when applied to E. globulus
data. SB is very sensitive to the errors related to the predicted stand variables used to estimate the
distribution parameters, so very accurate equations are required for their predictions.
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