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Abstract: Recently, the “noisy label" problem has become a hot topic in supervised classification of
hyperspectral images (HSI). Nonetheless, how to effectively remove noisy labels from a training set
with mislabeled samples is a nontrivial task for a multitude of supervised classification methods in
HSI processing. This paper is the first to propose a kernel entropy component analysis (KECA)-based
method for noisy label detection that can remove noisy labels of a training set with mislabeled
samples and improve performance of supervised classification in HSI, which consists of the following
steps. First, the kernel matrix of training samples with noisy labels for each class can be achieved by
exploiting a nonlinear mapping function to enlarge the sample separability. Then, the eigenvectors
and eigenvalues of the kernel matrix can be obtained by employing symmetric matrix decomposition.
Next, the entropy corresponding to each training sample in each class is calculated based on entropy
component analysis using the eigenvalues arranged in descending order and the corresponding
eigenvectors. Finally, the sigmoid function is applied to the entropy of each sample to obtain the
probability distribution. Meanwhile, a decision probability threshold is introduced into the above
probability distribution to cleanse the noisy labels of training samples with mislabeled samples for
each class. The effectiveness of the proposed method is evaluated by support vector machines on
several real hyperspectral data sets. The experimental results show that the proposed KECA method
is more efficient than other noisy label detection methods in terms of improving performance of the
supervised classification of HSI.

Keywords: kernel trick; entropy component analysis; noisy label; hyperspectral image (HSI);
supervised classification; support vector machines (SVMs)

1. Introduction

Hyperspectral images (HSI) are captured by hundreds of continuous and narrow spectral
bands while simultaneously reflecting interesting target areas. HSI offers the potential for the
development of classification techniques because of the nature of different materials with different
spectral information. Advancements in classification technology can bring high-level interpretations
of remotely sensed scenes and are therefore now widely used in various application domains such as
environmental monitoring [1,2], precision agriculture [3,4], and mineral exploration [5–7]. Specifically,
these application scenarios are almost always highly dependent on supervised classification algorithms
such as support vector machines (SVM) [8–12], sparse representation (SR) [13–19], naive Bayesian
method [20–22], and decision trees [23–25]. In addition, most existing supervised classifiers are
modeled based on the assumption that the labeled pixels used for training the classification model are
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highly trusted [26–29]. However, in practical applications, the acquisition of training samples usually
generate mislabeled samples (noisy labels) that result in significant degradation of performance for
the supervised classifier. Therefore, it is often necessary to denoise a training set with noisy labels,
and then use the improved training set in subsequent experiments.

Unlike the “noisy” label issue in general computer vision applications, the appearance of noisy
labels in hyperspectral remote sensing images can be summarized in three aspects: (1) Noisy labels
caused by global position system (GPS) positioning errors. To obtain training samples, field exploration
with GPS and the environment for visualizing images (ENVI) is the most convenient way to label
pixels. However, the positioning accuracy of the GPS cannot satisfy by the spatial resolution of the
pixel, and it is difficult to accurately distinguish the land cover distribution of candidate pixels. Once
the GPS has a position error, land covers may be mislabeled, and thus may generate noisy labels.
(2) Noisy labels caused by manual labeling errors. Labeling pixels with visual interpretation is the most
reliable way of acquiring training samples. However, manual labeling requires a mass of manpower
and a labeling expert who has knowledge of the environment that corresponds to the pixel to be
labeled. Specifically, some noncongeneric land cover may exist for a large regular region. However,
those noncongeneric regions are generally labeled as the same class as those of surrounding regions to
reduce human effort. (3) Noisy labels caused by complex environmental factors. For some scenes, such as
ocean and wetland, ground investigation is impossible since they may be unreachable for exploration
experts. Moreover, labeling errors may also be produced due to other environmental factors such as
adverse weather. In the above situations, the training sample acquisition process generally cannot
avoid the generation of noisy labels. Therefore, we can conclude that the “noisy label” problem is,
indeed, a major challenge in HSI classification.

For supervised classification in HSI, the noisy label problem of supervised task is increasingly
becoming a focus of attention in the field of computer vision and remote sensing. For example,
in computer vision , Xiao et al. [30] proposed a probabilistic graphical framework to train convolutional
neural networks with a few clean labels and millions of noisy labels. Lu et al. [31] proposed an L1

optimization-based sparse learning model to detect and remove noisy labels for semantic segmentation.
Yao et al. [32] introduced a generative model called latent stability analysis to discover stable patterns
among images with noisy labels. In remote sensing, Kang et al. [33] first introduced the reasons for the
formation of noisy labels in HSI supervised classification and proposed an edge-preserving filtering
(EPF) and spectral detection-based method to correct mislabeled training samples. Experiments show
that this method can effectively remove noisy labels and improve the performance of supervised
classifiers. Jiang et al. [34] proposed a random label propagation algorithm (RLPA) to cleanse the noisy
labels in the training set, the key idea of RLPA is exploiting knowledge (e.g., the superpixel-based
spectral-spatial constraints) from the observed hyperspectral images and applying it to the process
of label propagation. The fusion spectral angle and local outlier factor (SALOF) are proposed to
detect noisy labels in the HSI classification in [35]. Tu et al. [36,37] proposed a new density peak
(DP) clustering-based noisy label detection method to detect noisy labels. The experimental results
show that the DP-based detection method can effectively promote the classification performance.
Jie et al. [38] provided a noisy label detection method based on joint spectral-spatial distributed sparse
representation that exploits the intraband structure and the interband correlation in the process of joint
sparse representation and joint dictionary learning.

In recent years, various processing technologies based on entropy analysis and the kernel method
have been successfully applied in the HSI classification. For instance, He et al. [39] proposed
an HSI anomaly detection algorithm based on maximum entropy and nonparametric estimation.
According to the low probability of the target, the maximum entropy principle is used to estimate
the probability density of the target, and the generalized likelihood ratio test is simplified to test
only the background likelihood. Cheng et al. [40] proposed an image segmentation algorithm based
on 2D Renyi gray entropy and fuzzy clustering. The traditional 2D Renyi threshold is replaced by
a two-dimensional Renyi entropy thresholding to improve the global segmentation performance.
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The validating experiment shows the effectiveness of improved algorithm. Jie et al. [41] introduced
a multiple kernel learning method based on discriminative kernel clustering (DKC) to choose the
optimal bands in the HSI. The experiments were conducted on several real hyperspectral data sets
to demonstrate that the effectiveness of the DKC band selection method in terms of classification
performance and computation efficiency.

In this paper, a kernel entropy component analysis (KECA)-based noisy label detection method
is proposed to improve training set with noisy labels in HSI supervised classification. The proposed
method consists of the following steps: first, a kernel matrix of the training samples with noisy labels
for each class can be created by exploiting the RBF kernel function. Then, the eigenvectors and
eigenvalues of the kernel matrix can be obtained by employing symmetric matrix decomposition. Next,
the entropy that corresponds to each training sample for each class is calculated based on entropy
component analysis using the eigenvalues arranged in descending order and their corresponding
eigenvectors. Finally, the sigmoid function is applied to the entropy of each sample to obtain the
probability distribution. Meanwhile, a decision probability threshold is introduced into the above
probability distribution to remove the noisy labels of the training set with mislabeled samples for each
class. The major contributions of the proposed KECA method are presented as follows:

1. KECA is first introduced into HSI supervised classification to cleanse the original training set
with noisy labels. Noisy labels often have very high local entropies, which is the basic motivation
behind this paper.

2. Five commonly used kernel functions are analyzed in the proposed detection framework,
where the RBF kernel function is found to be a robust kernel trick for detecting noisy labels.

3. The effectiveness of proposed method is proved by adopting several real hyperspectral datasets
and multiple classifiers, i.e., spectral classifiers and spectral-spatial classifiers. The experimental
results show that the proposed KECA is more efficient than other noisy label detection methods
in terms of improving performance of the supervised classification in HSI.

The rest of this paper is organized as follows. Entropy component analysis and related works are
reviewed in Section 2. Section 3 describes the proposed KECA-based noise label detection method in
detail. Section 4 analyzes the experimental results, Section 5 presents the extended discussion, and
conclusions are given in Section 6.

2. Review of Related Methods

In this section, we briefly review the kernel tricks and the Renyi entropy method.

2.1. Kernel Tricks

Recently, some kernel tricks have been demonstrated that can provide optimal performance for
HSI classification. For instance, Toksöz et al. [42] proposed a nonlinear kernel version of a recently
introduced basic thresholding classifier for HSI classification that shows that the proposal and its
spatial extension yield better classification results. Li et al. [43] presented a new framework for
the development of generalized composite kernel machines for hyperspectral image classification
that proved that the proposed framework could lead to state-of-the-art classification performance
in complex analysis scenarios. Fang et al. [44] presented a novel framework to effectively utilize
the spectral-spatial information of superpixels via multiple kernels that indicated that the proposed
approach outperforms several well-known classification methods. Assume that ri and rj are pixels
that belong to a sample set C = {rτ}n

τ=1, where n represents the number of pixels. Then, the kernel
function is expressed as follows:

K(ri, rj) =
〈

ϕ(ri) · ϕ(rj)
〉

, (1)

where ϕ(·) is a mapping function that maps a spectral vector from low-dimensional to
high-dimensional. Furthermore, this section reviews several common kernel functions, radial basis
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function (RBF), linear kernel function (LKF), polynomial kernel function (PKF), wavelet kernel function
(WKF), and Laplacian kernel function (LNKF).

• Radial basis function:

KRBF(ri, rj) = exp(−
||ri − rj||2

2σ2 ), (2)

where σ refers to the weight of the Gaussian function.
• Linear kernel function:

KLKF(ri, rj) = ri
Trj + c, (3)

where c refers to the constant term.
• Polynomial kernel function:

KPKF(ri, rj) =
(
αri · rj + 1

)q, (4)

where α refers to the free parameter, and q is power term that controls the polynomial.
• Wavlet kernel function:

KWKF(ri, rj) =
n

∏
i=1

ψ

(
ri − rj

β

)
, (5)

where ψ and β are the mother wavelet function and the translation coefficients, respectively.
• Laplacian kernel function:

KLNKF(ri, rj) = exp
(
−
||ri − rj||

σ

)
. (6)

2.2. Renyi entropy

Suppose that p2(x) is a probability density function on the sample set C = {rτ}n
τ=1, the Renyi

entropy can be defined as follows:

H(C) = − log
∫

p2(r)dr. (7)

Then, the Parzen window density estimator is introduced by:

p̂(r) =
1
n
·

n

∑
u=1

K(r, ru), (8)

where K(r, ru) is a Parzen window, which is also called the kernel density.
Finally, the entropy based on the Renyi method can be obtained as follows:

Ĥ2(C) = − log
∫ +∞

−∞

[
1
n
·

n

∑
u=1

K(r, ru)

]2

dr

= − log
1
n2

∫ +∞

−∞

[
n

∑
u=1

n

∑
v=1

K(r, rv) · K(r, ru)

]
dr

= − log
1
n2

n

∑
u=1

n

∑
v=1

∫ +∞

−∞
K(r, rv) · K(r, ru)dr

= − log
1
n2

n

∑
u=1

n

∑
v=1

K(rv, ru).

(9)
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3. Proposed KECA Method for HSI Classification with Noisy Labels

Unlike kernel principal component analysis (KPCA), KECA extracts low-dimensional features
by considering both the magnitude of eigenvalues and the size of eigenvectors, which can achieve
discriminative features from training samples of each class and better reflect the cluster structure.
The KPCA only considers the ranking of the eigenvalues, and thus the latent discriminative feature
of the training samples may be lost. This paper proposes a new noisy label detection method that
extracts the features with the greatest contribution to the Renyi entropy, which is composed of the
following parts: (1) Construct the kernel matrix; (2) Acquire the entropy distribution; and (3) Cleanse
the training set with noisy labels. The proposed KECA method for noisy label detection is summarized
as Algorithm 1 (see Figure 1). Each part consists of certain steps, the details of which are presented
as follows.

Algorithm 1. KECA.

Inputs: The noisy training set X = {X1, X2, · · ·, XL}, X l = {xl
a}n

a=1.

Outputs: The improved training set R = [R1, ..., Rl , ..., RL].

1: For training sample X l do.
2: Calculate KRBF(xl

a, xl
b) ∈ Rn×n based on the kernel trick.

3: Obtain eigenvalues D = [γ1, γ2, · · ·, γn] and eigenvectors E = [e1, e2, · · · en] for KRBF(xl
a, xl

b).

4: Compute the Renyi entropy estimation of each eigenvalue by H(X l) = λa · ‖ea‖2
2 , a = 1, · · · , n.

5: Redefine the anomaly probabilities for each training sample Prob(X l) =
{

exp
(
−H(X l)

)}−1
.

6: Cleanse the original training set by the threshold and build the improved training set
R = [R1, ..., Rl , ..., RL].

7: end for
8: Perform classification by SVM trained with the improved training set R.
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Figure 1. Illustrating the framework of the proposed KECA method to detect noisy labels.

3.1. Construct the Kernel Matrix

Let X = {X1, X2, · · ·, XL} represent the original training set that contain noisy labels, in which L
refers to the number of classes, and xl

a is the ath training sample in the lth class (a = 1, 2, ..., n). n refers
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to the number of training samples for the lth class. The RBF-based kernel matrix of the lth class can be
obtained by:

KRBF(xl
a, xl

b) = exp
(
−
∥∥∥xl

a − xl
b

∥∥∥2
/

2σ2
)

. (10)

3.2. Acquire the Entropy Distribution

Using the above-obtained kernel matrix, the Renyi quadratic entropy of the each class in the
original training set is defined as follows:

H(p) = − log
∫

p2(xl)dxl , (11)

where p(x1) is the probability density function of each class in the original training set. Taking into
account the monotonic nature of the logarithmic function, the following equation is introduced:

v(p) =
∫

p2(xl)dxl . (12)

To estimate V(p), the Parzen window density function is employed that is defined as follows:

p̂(xl) =
1
n
·

n

∑
a=1

KRBF(xl xl
a), (13)

where KRBF(xl , xl
a) is the Parzen window, or kernel centered at xl

a and its width can be represented by
the kernel parameter, which must be a density function. Therefore, it is defined as follows:

v̂(p)=
1
n
·

n

∑
a=1

p̂(xl
a)

=
1
n
·

n

∑
a=1

1
n
·

n

∑
b=1

KRBF(xl
a, xl

b)

=
1
n2 · 1

TKRBF(xl
a, xl

b)1,

(14)

where 1 is a unit vector of length n. In addition, the value of Renyi entropy can be achieved by the
terms of the eigenvalues and eigenvectors of the kernel matrix, which can be calculated as follows:

KRBF(xl
a, xl

b) = EDET, (15)

where D = diag (γ1, · · · , γn) is a diagonal matrix for each class, and the columns of E are the
eigenvectors e1, e2, . . . , en with respect to γ1, · · · , γn, By substituting Equation (15) into Equation
(14), the following can be obtained:

V̂(p) =
1
n2

n

∑
a=1

(√
γaeT

a 1
)2

. (16)

Specifically, it can be seen from Equation (16) that each λa and ea have joint contribution to the entropy
estimation, thus it is easy to find those eigenvalues and the eigenvectors with the most contribution to
the entropy estimation.

Finally, the Renyi entropy H(X l) = [h(xl
1), h(xl

2), ..., h(xl
n)] of the training samples for each class

can be calculated by:

H(X l) = − log v̂(p), (17)

where h(xl
a) refers to the value of the Renyi entropy for the ath training sample in the l class.
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3.3. Cleanse the Training Set with Noisy Labels

First, the anomaly probabilities for each training sample in the original training set can be
calculated by:

Prob(X l) =
{

exp
(
−H(X l)

)}−1
. (18)

Once the anomaly probabilities of the training samples for each class have been obtained, the noisy
label of the noisy training set can be easily detected and removed as follows:

Rl =

{
X l , Prob(X l) < t,
∅, otherwise,

(19)

where t is the threshold of the anomaly probabilities for each class, which is set by the optimal results
of experiments under the SVM trained with the improved training set. Finally, the improved training
set is represented by R = [R1, ..., Rl , ..., RL].

4. Experimental Results

4.1. Datasets and Experiments Description

In this section, the proposed detection method for noisy labels is performed using the University
of Pavia, Salinas, Kennedy Space Center (KSC), and Washington DC datasets.

ROSIS University of Pavia Dataset: The University of Pavia image was acquired by the ROSIS 03
sensor over the campus at the University of Pavia, Italy. The image is of size 610×340×120, with spatial
resolution 1.3 m per pixel and a spectral coverage in the range 0.43-0.86 µm. Twelve spectral bands
were removed before classification due to high noise. Figure 2a–c show the color composite of the
University of Pavia image and the corresponding reference data, which considers nine classes of
interest. Figure 2 shows the false-color composite of the University of Pavia image, the corresponding
reference data, and the corresponding color code. Table 1 gives the experimental conditions.
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Figure 2. University of Pavia data set. (a) three-band color composite; (b) reference data; (c) color code.
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Table 1. Number of samples, i.e., training samples, test samples, and noisy labels, of nine classes in the
University of Pavia data set.

Class Name Train Test
Added noise labels

Exp. 1 Exp. 2

C1 Asphalt 50 6581 10 30
C2 Meadows 50 18599 10 30
C3 Gravel 50 2049 10 30
C4 Trees 50 3014 10 30
C5 Metal sheets 50 1295 10 30
C6 Bare soil 50 4979 10 30
C7 Bitumen 50 1280 10 30
C8 Self-Blocking Bricks 50 3632 10 30
C9 Shadows 50 897 10 30

Total 450 42326 90 270

AVIRIS Salinas Dataset: The Salinas image was collected by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) sensor over the Salinas Valley, California; it has 224 bands of size 512×217
pixels. In the experiments, 20 water absorption and noisy bands (no. 108–112, 145–167, and 224)
have been removed. Figure 3a–c show false color composite of the Salinas image, and the reference
classification map, which contain 16 different classes. Figure 3 illustrates that the false-color composite
of the Salinas image, the corresponding reference data, and the corresponding color code. Table 2
represents the experimental conditions.

Self-Blocking Bricks

Metal sheets

Bitumen

Shadows

Trees

Gravel

Bare soil

Meadows

Asphalt

0 1000 2000 Meters 0 1000 2000 Meters

Vinyard_T

Vinyard_U

Lettuce_7wk

Lettuce_5wk

Lettuce_4wk

Corn

Soil

Grapes

Stubble

Celery

Fallow smooth

Fallow plot

Weeds_2

Weeds_1

Lettuce_6wk

Fallow

0 250 500 Meters

Water

Hardwood swamp

Cabbage palm/oak
Scrub

Salt marsh

Slash pine

Willow swamp

Muld flats

Cabbage plam hammock

Oak/broadleaf hammock

Graminoid marsh
Spartina marsh Cattail marsh

0 1000 2000 Meters

0 250 500 Meters

0 1000 2000 Meters

(a) (b) (c)

Figure 3. Salinas data set. (a) three-band color composite; (b) reference data; (c) color code.
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Table 2. Number of samples, i.e., training samples, test samples, and noisy labels, of sixteen classes in
the Salinas data set.

Class Name Train Test
Added Noisy Labels

Exp. 1 Exp. 2

C1 Weeds 1 25 1984 5 15
C2 Weeds 2 25 3701 5 15
C3 Fallow 25 1951 5 15
C4 Fallow plot 25 1369 5 15
C5 Fallow smooth 25 2653 5 15
C6 Stubble 25 3934 5 15
C7 Celery 25 3554 5 15
C8 Grapes 25 11246 5 15
C9 Soil 25 6178 5 15
C10 Corn 25 3253 5 15
C11 Lettuce 4 wk 25 1043 5 15
C12 Lettuce 5 wk 25 1902 5 15
C13 Lettuce 6 wk 25 891 5 15
C14 Lettuce 7 wk 25 1045 5 15
C15 Vinyard untrained 25 7243 5 15
C16 Vinyard trelis 25 1782 5 15

Total 400 53729 80 240

AVIRIS KSC Dataset: The Kennedy Space Center (KSC) image was collected by the AVIRIS sensor
over the Kennedy Space Center in Florida. The image is 512 × 614 pixels, where 48 bands have been
removed as water absorption and low SNR bands. Figure 4a–c show the false color composite of the
Kennedy Space Center image and the reference classification map, which contains 13 different classes.
Figure 4 shows that the false-color composite of the KSC image, the corresponding reference data,
and the corresponding color code. Table 3 shows the experimental conditions.

Table 3. Number of samples, i.e., training samples, test samples, and noisy labels, of thirteen classes in
the Salinas data set.

Class Name Train Test
Added Noise Labels

Exp. 1 Exp. 2

C1 Scrub 25 736 5 15
C2 Willow swamp 25 218 5 15
C3 Cabbage palm hammock 25 231 5 15
C4 Cabbage palm/oak 25 227 5 15
C5 Slash pine 25 136 5 15
C6 Oak/broadleaf hammock 25 204 5 15
C7 Hardwood swamp 25 80 5 15
C8 Graminoid marsh 25 406 5 15
C9 Spartina marsh 25 495 5 15

C10 Cattail marsh 25 379 5 15
C11 Salt marsh 25 394 5 15
C12 Muld flats 25 478 5 15
C13 Water 25 902 5 15

Total 325 4886 65 195
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Water
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Figure 4. KSC data set. (a) three-band color composite; (b) reference data; (c) color code.

HYDICE Washington DC Dataset: The Washington DC image was collected by the Hyperspectral
Digital Image Collection Experiment (HYDICE) sensor over the Washington DC Mall. The sensor
system measured 210 bands (for our experiments, 19 bands in the spectral range 0.9–1.4×10 µm were
omitted) of the visible and infrared spectrum in 0.4–2.4 µm. The dataset contains 280 scan lines, each
of which contains 307 pixels. The false-color composite and reference map (containing six ground
reference classes) for Washington DC are as shown in Figure 5a–c. Figure 5 shows that the false-color
composite of the Washington DC image, the corresponding reference data, and the corresponding
color code. The experimental conditions are recorded in Table 4.

Roof

Grass

Tree

Shadow

Trail

Road

0 250 500 Meters 0 250 500 Meters

(a) (b) (c)

Figure 5. Washington DC data set. (a) three-band color composite; (b) reference data; (c) color code.

Table 4. Number of samples, i.e., training samples, test samples, and noisy labels, of six classes in the
Washington DC data set.

Class Name Train Test
Added Noise Labels

Exp. 1 Exp. 2

C1 Roof 25 3160 5 15
C2 Grass 25 1797 5 15
C3 Road 25 1403 5 15
C4 Trail 25 1262 5 15
C5 Tree 25 1190 5 15
C6 Shadow 25 1115 5 15

Total 150 9927 30 90

As one of the most widely used pixelwise classifiers, this paper adopts the SVM to evaluate the
performance of the proposed KECA method, which is implemented with the LIBSVM library [45]
using the radial basis function kernel. Moreover, the parameters of the SVM are determined using
fivefold cross-validation. To make the comparison fair, the represented quality indexes of the overall
accuracy (OA), average accuracy (AA), Kappa coefficient (Kappa), and class individual accuracies are
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calculated by averaging the results achieved in ten repeated Monte Carlo experiments with different
randomly selected training samples and noisy labels, and the mean and standard deviation in repeated
experiments of the accuracies are represented in experimental reports. The training sets are constructed
using samples in the ground truth. For each class, some pixels randomly selected from other classes
will be added to simulate the “noisy label" problem.

4.2. Parameter Tuning

This section starts by analyzing the influence of the parameter on the performance of the proposed
KECA method. Figure 6 gives the experimental results achieved for the University of Pavia, Salinas,
KSC, and Washington DC dataset, respectively. For the University of Pavia dataset, 50 true samples
and ten noisy labels are selected randomly for each class. For the Salinas, KSC, and Washington DC
dataset 25 true samples and five noisy labels are selected randomly for each class. The size of the
kernel parameter σ is set with intervals 0.02–0.22. As shown in Figure 6, it can be observed that the
classification accuracy rises first and then falls. The reason is that the width parameter σ controls the
radial range of the RBF kernel. Taking Figure 6a, a too large or too small radial range can lead to
performance degradation of the proposed method. When the σ is set to 0.12, the classification accuracy
achieves 81.10%. For the Salinas, KSC, and Washington DC dataset, the highest classification accuracies
will be obtained when σ is set to 0.1, 0.12, 0.18, respectively. Specifically, σ = 0.13 is suggested to be used
as the default parameters in the proposed method when the proposed KECA method is conducted on
a new dataset.

(a) (b)

(c) (d)

Figure 6. Influence of the parameters k on the proposed KECA method. (a) University of Pavia dataset
with 50 true samples and ten noisy labels for each class; (b) Salinas dataset with 25 true samples and
five noisy labels for each class; (c) KSC dataset with 25 true samples and five noisy labels for each class;
(d) Washington DC dataset with 25 true samples and five noisy labels for each class.

The second experiment sought to analyze the effectiveness of the threshold parameter t.
The experiment is conducted on the University of Pavia dataset with 50 true samples and ten noisy
labels per class, the Salinas dataset with 25 true samples and five noisy labels per class, the KSC
dataset with 25 true samples and five noisy labels per class, and the Washington DC dataset with
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25 true samples and five noisy labels per class, respectively. Moreover, the range of the parameter
t is set to 0.5–1. Based on the experimental results presented in Figure 7, it can be found that the
optimal classification accuracies can be obtained by the proposed KECA method when the t is set to
0.6. The reason is that the values of t control the number of noisy labels to be removed. If the t value
is too small, the noisy labels in the training set will not be cleaned, whereas an excessive t value will
remove true samples in the training set. Therefore, the threshold parameter t = 0.6 is set to default
parameters in the proposed method according to the highest classification accuracy of the SVM trained
using that training set that has been improved by the proposed KECA method. Similarly, if given a
new dataset, applying a default of t = 0.6 for parameter is suggested in the proposed method.

In addition, the proposed KECA method may achieve better performance when using
optimization procedure for setting [46]. However, KECA only involves two important parameters
in performing the noisy labels detection process. Using the optimal parameter setting based on the
experimental results can effectively reduce the time cost due to automatic tuning. Therefore, in order
to balance the detection accuracy and time validity, we adopted the experimental optimal parameter
setting in the subsequent experiments.

(a) (b)

(c) (d)

Figure 7. Effect of parameters k on the performance of the proposed KECA method. (a) University
of Pavia dataset with 50 true samples and ten noisy labels per class; (b) Salinas dataset with 25 true
samples and five noisy labels per class; (c) KSC dataset with 25 true samples and five noisy labels per
class; (d) Washington DC dataset with 25 true samples and five noisy labels per class.

4.3. Component Analysis

Here, an experiment is performed on the KSC dataset with 25 true training samples and five noisy
labels per class, in which the performance of the proposed method with different kernel trick such linear
kernel function (LKF), polynomial kernel function (PKF), wavlet kernel function (WKF), Laplacian kernel
function (LNKF), and radial basis function (RBF), is analyzed in Table 5. We can observe from Table 5
that the proposed RBF-based KECA method achieves the best performance in terms of classification
accuracies. Therefore, the RBF kernel trick is adopted for the proposed method and used in the following
experiments. In addition, to further demonstrate the effectiveness of the RBF kernel in the proposed method,
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the illustration of the RBF-based kernel matrix in different classes of the four hyperspectral real datasets is
given in Figure 8. Evidently, the RBF kernel-based discrimination between true samples and noisy labels
is pretty obvious (see outside the red dotted box). Focusing on Figure 8c, d, it can be observed that good
septation between true samples and noisy labels still exist when the original training set contains a larger of
mislabeled samples. Specifically, the difference is more pronounced in the Salinas, KSC, and Washington
DC datasets. This means that the RBF kernel can be an effective component of the proposed method for
noisy label detection in supervised HSI classification tasks.

Table 5. Classification performance obtained by the KECA method using different kernel tricks for
the KSC dataset with 25 true samples and five noisy labels for each class. Number in the parenthesis
represents the standard variance of the accuracies obtained in repeat experiments.

Class SVM
25 (T)

SVM
25 (T) + 5(M)

The Different Kernel Tricks Based KECA Method

LKF PKF WKF LNKF RBF

C1 94.92(2.47) 93.53(2.22) 95.03(1.59) 94.67(1.74) 95.86(1.61) 94.72(1.83) 95.10(1.45)
C2 89.05(4.36) 79.86(5.84) 84.89(5.68) 83.97(4.09) 78.45(11.0) 84.77(4.60) 87.20(5.17)
C3 87.57(6.11) 91.84(4.62) 87.71(5.43) 83.27(6.68) 82.22(6.27) 83.69(6.13) 85.96(3.79)
C4 67.59(5.56) 58.72(4.06) 66.80(5.35) 63.49(3.08) 57.27(6.78) 63.95(5.29) 64.87(6.15)
C5 65.38(7.52) 51.88(9.44) 63.74(8.07) 60.46(7.49) 57.37(9.73) 61.38(7.85) 64.95(7.23)
C6 61.91(8.81) 51.72(6.18) 58.73(5.82) 55.37(8.30) 54.88(12.0) 58.18(7.28) 60.98(7.30)
C7 71.02(5.58) 56.83(6.80) 65.13(6.16) 67.22(6.52) 63.81(5.85) 67.02(6.77) 67.44(4.60)
C8 84.20(6.37) 82.58(8.09) 83.27(5.33) 82.91(6.12) 70.84(12.0) 82.99(5.00) 83.43(6.94)
C9 90.42(2.27) 89.27(2.87) 89.03(3.87) 88.35(2.98) 83.56(6.38) 89.32(2.63) 89.22(2.29)

C10 93.02(7.52) 80.85(7.23) 94.27(5.85) 93.60(4.39) 86.01(10.8) 96.72(3.46) 93.08(6.84)
C11 90.08(5.48) 86.72(5.45) 90.29(4.46) 91.46(4.59) 93.53(7.89) 90.07(5.16) 90.09(6.90)
C12 94.77(3.61) 83.62(4.44) 92.74(3.59) 93.08(5.38) 86.73(7.43) 95.49(2.70) 95.02(3.65)
C13 100.0(0.00) 99.18(0.81) 99.06(1.39) 98.88(1.22) 99.54(0.63) 99.69(0.65) 99.69(0.46)

OA 88.75(0.96) 83.57(1.74) 87.69(1.24) 86.77(0.96) 83.14(2.47) 87.62(1.11) 88.05(1.24)
AA 83.84(1.23) 77.43(2.03) 82.36(1.68) 81.29(1.01) 77.70(2.58) 82.15(1.31) 82.85(1.47)

Kappa 87.45(1.06) 81.71(1.93) 86.27(1.38) 85.25(1.06) 81.22(2.74) 86.20(1.23) 86.67(1.38)

4.4. Detection Performance Analysis

In this section, the first experiment is performed to analyze the influence of the number of
iterations on the performance of the proposed KECA method. For the University of Pavia dataset,
the noisy original training set contains 50 true samples and different numbers of noisy labels for each
class. For the KSC, Salinas, and Washington DC scenes, the training sets each contain 25 true samples
and various noisy labels for each class. The main iteration steps in the proposed method is to repeat
Equation (10)–(19) and the main idea of iteration is that the previous output can be used as the next
input until the stop criterion has been satisfied. As shown in Table 6, it can be found that the proposed
KECA method achieves a low false detection rate (see the third column), which means that only a few
true samples were detected as false. However, the improved training set still contains some noisy labels
(fourth column), particularly, when a large number of noisy labels still exist in the original training set.
The reason is that decision threshold-based removal solution is dissatisfied with the original training
set that has a large number of noisy labels. Therefore, the iteration detection of proposed method
is introduced into the improved training set to further remove noisy labels. As shown in Figure 9,
it can be seen that the OA decreases as the number of iterations increases when the original training
set has few noise labels (see the red curve) on the different HSI datasets. However, when a training
set contains more noise labels (see the green curve), the OAs rise and then fall with the number of
iterations. Therefore, iteration detection can achieve better detection accuracy in a training set with
many noisy labels. Taking into account the balance between calculation efficiency and classification
accuracy, the number of iterations of the proposed method is set to one for HSI datasets in this paper.
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Figure 8. Illustration of the RBF-based kernel matrix in different classes for the four hyperspectral real
datasets. (a,b) University of Pavia (50 true samples and ten/thirty noisy labels); (c,d) Salinas (25 true
samples and five/fifteen noisy labels); (e,f) KSC (25 true samples and five/fifteen noisy labels); (g,h)
Washington DC (25 true samples and five/fifteen noisy labels).
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Figure 9. Classification accuracy achieved by the KECA with different numbers of iterations. (a)
The University of Pavia dataset; (b) The Salinas dataset; (c) The KSC dataset; (d) The Washington
DC dataset.

4.5. Performance Evaluation Using the SVM

In this section, the classification results of different methods, such as the SVM, SALOF, DP, and the
proposed KECA method, are evaluated by the SVM trained with different improved training sets
on the University of Pavia, KSC, Salinas, and Washington DC datasets. For the University of Pavia
dataset, experiments are conducted with 50 true samples and 1–25 noisy labels per class. For the
KSC, Salinas, and Washington DC datasets, the experiments are conducted with 25 true samples and
1–15 noisy labels per class. Figure 10 shows the classification performance of the SVM trained using
the different training sets, which represented the average values and the standard deviation of the
obtained OAs, AAs, and Kappas across ten repeated experiments. The SVM trained with the improved
training sets are higher than the original training set. Specifically, the SVM trained using the training
set improved by KECA can always achieve optimal classification results compared to the training set
improved by other detection methods in terms of OA, AA, and Kappa. Therefore, introducing kernel
trick based entropy component analysis can further improve the detection accuracy of noisy labels and
the classification performance of the SVM.

In addition, Table 7 contains the classification results for University of Pavia dataset, it shows
that the proposed KECA method can effectively improve the classification accuracies for the most
classes. For instance, when a training set contains 30 noisy labels for each class, the classification
accuracy of the SVM trained using that training set improved by the KECA training set increases
from 80.15% to 91.10% for the asphalt class and from 70.81% to 90.45% for shadows class compared
to the other improved training sets. Meanwhile, the OAs can be promoted by approximately 5%.
This demonstrates that the noisy labels in the original training set can be effectively removed by the
proposed KECA method with respect to the SALOF and DP methods.
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Table 6. Detection performance (numbers) of noisy labels for the proposed method on a different
dataset. Note that the experimental results is the average of ten repeated experiments for objective
evaluation. Here, Tl × L represents the total number of noisy labels in the training set, Tl refers to the
number of noisy labels per class, and the number in parentheses represents the standard variance of
the accuracies obtained in repeated experiments.

Datasets Total Noises
Evaluation of Detection Performance of Noise Labels

Correct Error Not Detected Correct Rate (%) Error Rate (%)

University
of Pavia

10×9 54.53(3.16) 2.60(1.24) 35.47(3.16) 60.07(3.81) 2.89(1.34)
30×9 107.27(4.04) 0.00(0.00) 162.73(4.04) 39.90(2.20) 0.00(0.00)

Salinas 5×16 54.90(3.38) 15.50(3.75) 25.10(3.38) 70.75(2.96) 19.38(3.14)
15×16 142.90(6.81) 0.10(0.32) 97.10(6.81) 61.67(2.28) 0.01(0.01)

KSC 5×13 45.10(2.81) 11.50(2.68) 19.90(2.81) 68.46(3.01) 17.69(4.98)
15×13 150.50(4.55) 9.10(2.64) 44.50(4.55) 76.87(1.72) 4.93(1.97)

Washington
DC

5×6 20.50(1.65) 5.20(2.10) 9.50(1.65) 69.67(5.76) 17.33(4.22)
15×6 58.50(2.64) 2.64(0.40) 31.50(2.64) 65.78(4.44) 2.94(0.57)

Table 7. Classification performance of the SVM, SALOF, DP, and KECA methods for the University
of Pavia dataset with 50 true samples and different number of noisy labels per class as training
set. The number in the parenthesis represents the standard variance of the accuracies obtained over
repeat experiments.

Class SVM
50 (T)

The Number of True Samples and Noisy Labels Per Class

50 (True) + 10 (Noise) 50 (True) + 30 (Noise)

SVM SALOF DP KECA SVM SALOF DP KECA

C1 94.98 90.51(3.74) 92.13(5.61) 86.54(6.60) 93.83(2.93) 80.15(11.0) 88.60(5.89) 88.84(7.29) 91.10(6.18)
C2 94.68 92.60(1.22) 93.24(1.24) 94.05(1.80) 94.66(1.25) 91.85(2.24) 90.49(2.72) 92.35(2.39) 92.81(1.51)
C3 66.61 55.22(6.42) 65.42(4.97) 58.34(6.34) 60.75(6.77) 50.80(6.57) 53.50(5.85) 52.75(6.20) 54.88(5.32)
C4 80.73 69.77(7.40) 73.01(7.33) 81.01(9.36) 73.04(10.2) 67.06(8.60) 63.18(9.77) 57.25(10.4) 64.06(8.57)
C5 95.18 85.9(11.94) 81.55(15.6) 82.64(12.3) 86.01(11.2) 76.43(19.6) 78.63(14.3) 84.25(9.59) 85.43(12.9)
C6 67.05 53.49(6.21) 53.05(5.05) 65.03(9.61) 66.78(7.79) 44.18(6.77) 42.34(7.26) 44.72(5.76) 45.16(6.36)
C7 61.71 49.24(6.74) 58.61(6.94) 47.13(5.44) 51.71(7.17) 40.42(3.27) 44.77(4.28) 42.93(5.38) 43.65(5.11)
C8 82.13 77.34(5.49) 81.03(4.23) 71.67(6.69) 75.89(5.29) 70.40(6.29) 77.58(4.53) 80.56(3.69) 76.22(6.58)
C9 99.92 90.61(9.02) 77.4(13.75) 83.8(16.93) 88.34(14.6) 70.81(19.2) 73.5(22.48) 88.16(10.4) 90.45(12.7)

OA 85.06 76.01(2.39) 78.40(3.21) 79.36(3.06) 81.11(2.53) 66.48(3.76) 67.87(5.41) 69.92(3.30) 71.00(4.07)
AA 82.56 73.85(2.07) 75.05(3.13) 74.47(2.41) 76.77(3.18) 65.79(4.85) 68.07(4.17) 70.20(2.95) 71.53(3.22)

Kappa 80.61 69.77(2.67) 72.59(3.78) 73.67(3.52) 75.77(2.96) 59.36(3.93) 60.83(5.65) 63.00(3.62) 64.28(4.34)

Table 8. Classification performance of the SVM, SALOF, DP, and KECA methods for the Salinas dataset
with 25 true samples and different numbers of noisy labels per class as a training set. The number in
the parentheses represents the standard variance of the accuracies obtained over repeated experiments.

Class SVM
25 (T)

The Number of True Samples and Noisy Labels

25 (True) + 5 (Noise) 25 (True) + 15 (Noise)

SVM SALOF DP KECA SVM SALOF DP KECA

C1 98.80 98.87(2.27) 99.41(0.75) 98.78(1.47) 94.40(7.19) 98.90(0.92) 96.32(4.00) 98.88(1.03) 96.63(3.99)
C2 99.22 99.33(0.92) 99.17(0.55) 99.33(0.24) 94.14(3.99) 94.65(1.24) 97.59(2.56) 98.29(1.34) 98.09(2.38)
C3 99.66 90.24(2.44) 90.79(2.41) 88.47(4.08) 91.86(1.99) 91.72(3.84) 88.31(2.91) 89.35(2.61) 88.31(3.43)
C4 97.57 97.38(0.96) 97.20(0.70) 97.26(0.44) 93.86(3.87) 97.03(1.77) 93.68(7.78) 95.91(2.10) 94.46(4.42)
C5 98.52 98.18(1.63) 98.54(1.02) 98.75(0.74) 99.37(1.34) 94.70(4.20) 98.15(1.39) 98.05(2.07) 98.85(4.45)
C6 100.0 99.44(2.43) 100.0(0.00) 100.0(0.00) 99.95(0.13) 99.77(2.74) 100.0(0.00) 98.17(2.13) 98.54(2.36)
C7 98.47 98.57(1.53) 98.58(0.89) 98.56(1.03) 96.82(2.82) 96.96(1.62) 96.10(5.06) 97.49(1.61) 98.25(1.05)
C8 74.03 71.15(3.13) 72.03(2.39) 72.67(2.65) 75.37(3.83) 59.59(4.24) 71.02(4.44) 70.70(3.66) 73.39(2.70)
C9 99.22 99.27(0.68) 99.22(0.35) 99.28(0.29) 98.66(1.06) 99.42(0.65) 98.98(0.74) 98.51(2.08) 99.59(3.42)

C10 80.00 77.35(6.60) 79.84(9.54) 78.32(5.34) 82.32(7.69) 84.80(4.97) 84.44(5.65) 81.33(7.25) 80.73(6.93)
C11 85.46 87.78(3.26) 85.95(5.98) 88.42(7.22) 83.89(7.68) 83.47(5.86) 88.73(4.44) 88.15(4.77) 85.47(5.14)
C12 94.81 92.28(2.02) 95.08(1.71) 95.52(1.45) 96.46(1.13) 95.07(2.92) 94.09(3.22) 94.66(1.37) 95.51(3.44)
C13 93.48 92.58(4.54) 90.42(6.95) 94.00(1.93) 94.74(3.78) 95.19(5.78) 92.03(6.53) 91.96(3.35) 91.02(5.47)
C14 90.97 91.68(6.06) 85.56(11.2) 88.18(11.3) 89.61(5.29) 53.79(10.3) 79.27(14.7) 89.20(9.30) 90.83(7.61)
C15 58.13 47.47(3.85) 54.31(3.85) 54.72(5.41) 57.05(5.50) 37.16(7.63) 50.18(5.47) 50.87(4.91) 53.49(4.08)
C16 95.79 93.52(4.95) 85.09(13.7) 91.17(9.27) 95.22(2.59) 89.21(6.64) 82.57(13.9) 93.80(7.58) 94.87(5.45)

OA 85.81 81.79(1.69) 83.94(1.12) 84.38(1.76) 85.06(1.79) 78.29(2.23) 82.07(1.98) 82.89(1.54) 83.83(1.50)
AA 90.95 89.69(0.83) 89.45(1.37) 90.21(0.87) 90.24(0.70) 85.71(1.34) 88.22(1.54) 89.71(1.01) 89.89(1.42)

Kappa 84.24 79.88(1.82) 82.18(1.21) 82.67(1.91) 83.44(1.97) 75.91(2.42) 80.14(2.14) 81.04(1.66) 82.08(1.62)
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Figure 10. Performance comparison between the SVM trained using the original training sets and
when using the improved training sets obtained by the SALOF, DP, and, KECA methods in terms of OA
(first column), AA (second column), and Kappa (third column). (a–c) experiments on the University of
Pavia data set with different numbers of mislabeled (in the range 1–25) and 50 true samples for each
class; (d–f) experiments on the KSC data set with different number of mislabeled (in the range 1–15)
and 25 true samples for each class; (g–i) experiments on the Salinas data set with different numbers of
mislabeled (in the range 1–15) and 25 true samples for each class; (j–l) experiments on the Washington
DC data set with different numbers of mislabeled (in the range 1–15) and 25 true samples for each class.

Table 8 and Figure 11 represent the classification results for the Salinas dataset. As shown in
Table 8, when the original training set contains five noisy labels for each class, the SVM trained using
training set improved by the KECA is promoted by about 4% in terms of the classification accuracy
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(i.e., OA) with respect to the SVM trained using the original training set. Similarly, the classification
accuracy of the SVM is obviously promoted using the training set improved by the KECA (by about
5%). In addition, the SVM trained using the training set improved by the KECA achieves better
classification results in terms of OA, AA, and Kappa compared to the SVM trained using the training
set improved by other method such as SALOF or DP. As shown in Figure 11, It can be observed that
the classification results of fallow smooth and vineyard trellis achieved by the SVM trained with the
noisy training set show serious misclassification. By comparison, such misclassification can obviously
be reduced in the classification results obtained by the SVM trained with a training set improved by
the KECA. Specifically, the classification results of the SVM trained with the training set improved by
the KECA show significant improvements compared to the SVM trained with training set cleansed by
other methods. Furthermore, it has been demonstrated that the proposed KECA method can effectively
cleanse the noisy training set and improve the supervised classification performance in HSI.

(a) OA = 82.33 (b) OA = 83.87 (c) OA = 84.21 (d) OA=85.49

(e) OA = 78.25 (f) OA = 82.10 (g) OA = 83.01 (h) OA = 84.35

Figure 11. Classification results (%) of the various methods with the University of Pavia dataset.
Classification maps obtained by the SVM (first column), DP (second column), SALOF methods (third
column), and the proposed KECA method (fifth column) trained with 50 true samples and different
numbers of noisy labels per class: (a–d) 10 noisy labels per class, and (e–h) 30 noisy labels per class.

Table 9 and Figure 12 present the experimental results of the KSC data set. As shown in Table 9,
when the number of the noisy labels increases, the classification performance of the proposed KECA
method becomes more obviously promoted in terms of OAs, AAs, and Kappas with respect to the other
methods. For instance, when the original training set contains 25 true samples and five noisy labels per
class, the classification accuracy can be improved approximately 3% by applying the proposed noisy
label detection method. When the rate of noisy labels becomes 50%, the amount of improvement in
classification accuracies reaches 5%. Specifically, the classification accuracy of the KECA improvement
is significantly greater than that of the comparison method (see Table 9). As shown in the local
window comparisons presented in Figure 12, the classification results achieved by the proposed
KECA method are more similar to the reference data (see Figure 4b). Besides the University of
Pavia, Salinas, and KSC datasets, the proposed method has been performed on the Washington DC
datasets to further demonstrate the effectiveness of the KECA in HSI noisy label detection. Table 10
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contains the classification results. The proposed method can improve the accuracies by 1.75–6.47%.
Therefore, the proposed KECA method has the robustness of increasing the classification accuracy in
HSI supervised tasks.

Table 9. Classification performance of the SVM, SALOF, DP, and KECA methods for the KSC dataset
with 25 true samples and different numbers of noisy labels per class as the training set. The number in
the parentheses represents the standard variance of the accuracies obtained in repeat experiments.

Class SVM
25 (T)

The Number of True Samples and Noisy Labels

25 (True) + 5 (Noise) 25 (True) + 15 (Noise)

SVM SALOF DP KECA SVM SALOF DP KECA

C1 94.92 93.53(2.22) 95.90(1.79) 95.30(1.78) 93.29(2.70) 96.11(2.93) 95.43(2.19) 95.19(2.10) 93.38(2.14)
C2 89.05 79.86(5.84) 83.34(5.33) 83.77(4.17) 85.60(4.97) 77.02(5.08) 74.58(5.21) 74.53(6.08) 79.93(6.27)
C3 87.57 91.84(4.62) 85.19(5.65) 84.55(4.21) 82.76(5.90) 86.19(6.20) 84.14(5.72) 84.34(6.03) 81.06(7.49)
C4 67.59 58.72(4.06) 64.28(6.09) 64.64(4.57) 62.60(4.92) 56.02(4.67) 55.63(7.01) 57.00(6.80) 60.02(6.45)
C5 65.38 51.88(9.44) 62.20(5.91) 61.92(6.14) 62.45(5.92) 57.14(9.85) 52.38(10.6) 57.82(9.01) 56.72(8.96)
C6 61.91 51.72(6.18) 54.59(5.55) 57.08(6.92) 55.13(11.5) 36.10(8.09) 50.07(7.70) 48.74(7.39) 57.81(7.05)
C7 71.02 56.83(6.80) 68.49(4.32) 70.00(5.23) 66.96(7.38) 53.19(6.30) 63.78(4.00) 65.48(6.97) 60.36(8.86)
C8 84.20 82.58(8.09) 79.89(5.36) 78.09(4.85) 80.34(5.60) 52.58(10.4) 66.88(5.54) 69.17(5.34) 80.82(6.67)
C9 90.42 89.27(2.87) 86.95(6.50) 84.96(4.45) 89.07(2.09) 88.55(5.69) 85.28(7.84) 82.63(5.88) 86.75(3.77)

C10 93.02 80.85(7.23) 83.85(8.77) 92.55(3.71) 94.48(5.11) 83.21(7.67) 83.16(10.3) 87.27(10.4) 94.13(6.35)
C11 90.08 86.72(5.45) 86.37(9.38) 87.33(5.23) 92.60(5.76) 97.78(4.37) 88.79(8.51) 90.71(8.60) 90.83(4.72)
C12 94.77 83.62(4.44) 86.77(6.58) 90.24(5.32) 93.48(3.59) 82.76(5.75) 86.28(8.69) 87.10(9.22) 92.81(5.17)
C13 100.0 99.18(0.81) 98.08(2.24) 96.62(2.46) 99.60(0.43) 100.0(2.18) 98.73(2.56) 98.65(2.20) 98.07(1.99)

OA 88.75 83.57(1.74) 84.88(1.94) 85.47(1.64) 86.67(1.52) 79.90(1.80) 81.51(1.76) 82.60(1.55) 85.19(1.88)
AA 83.84 77.43(2.03) 79.68(1.82) 80.54(1.83) 81.42(1.60) 74.36(1.83) 75.78(1.67) 76.86(1.58) 79.44(2.06)

Kappa 87.45 81.71(1.93) 83.16(2.16) 83.81(1.82) 85.14(1.68) 77.66(2.00) 79.42(1.95) 80.62(1.71) 83.49(2.08)

(a) OA = 83.46 (b) OA = 84.52 (c) OA = 85.47 (d) OA = 86.67

(e) OA = 80.66 (f) OA = 82.33 (g) OA = 82.61 (h) OA = 85.19

Figure 12. Classification results (%) of different methods on the KSC dataset. Classification maps
obtained by the SVM (first column), DP (second column), SALOF methods (third column), and the
proposed KECA method (fifth column) trained with 25 true samples and different numbers of noisy
labels per class: (a–d) 5 noisy labels per class, and (e–h) 15 noisy labels per class.
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Table 10. Classification performance of the SVM, SALOF, DP, and KECA methods for the Washington
DC dataset with 25 true samples and different numbers of noisy labels per class as training set.
The number in the parentheses represents the standard variance of the accuracies obtained across
repeat experiments.

Class SVM
25 (T)

The Number of True Samples and Noisy Labels

25 (Ture) + 5 (Noise) 25 (Ture) + 15 (Noise)

SVM SALOF DP KECA SVM SALOF DP KECA

C1 90.28 86.08(4.05) 84.12(4.54) 88.43(3.57) 89.28(2.57) 74.98(5.27) 84.70(4.43) 87.45(3.65) 88.89(3.66)
C2 95.97 95.78(1.26) 95.63(4.89) 93.15(3.49) 95.99(1.76) 80.04(4.63) 89.74(5.43) 89.30(5.82) 94.25(2.19)
C3 71.22 71.67(3.52) 70.40(7.23) 68.80(4.72) 71.90(4.46) 68.55(6.71) 67.30(6.41) 66.07(5.55) 69.69(7.37)
C4 81.67 77.41(7.91) 85.52(6.99) 83.48(6.80) 81.95(8.05) 79.43(7.02) 76.85(6.71) 76.95(6.75) 79.17(7.89)
C5 95.38 93.52(5.00) 93.48(4.97) 96.65(5.46) 96.77(6.80) 85.62(5.00) 87.80(6.55) 94.11(6.17) 92.98(6.68)
C6 98.94 95.67(7.73) 98.38(1.59) 98.99(2.90) 98.19(7.26) 96.73(1.80) 93.35(6.11) 97.26(2.53) 96.10(3.55)

OA 87.93 85.61(1.33) 86.22(2.12) 86.80(1.64) 87.36(2.67) 79.34(2.03) 82.11(2.15) 83.64(1.88) 85.81(2.84)
AA 88.91 86.69(1.37) 87.92(2.24) 88.25(1.48) 89.01(2.68) 80.89(1.90) 83.29(2.39) 85.19(1.75) 86.85(2.47)

Kappa 85.14 82.27(1.62) 82.93(2.51) 83.74(1.99) 84.41(3.16) 74.44(2.42) 78.10(2.58) 79.99(2.16) 82.60(3.31)

Finally, Table 11 shows the time-consumption (in seconds) for the different of methods to classify
the four real HSI datasets. All codes are conducted on a computer with an Intel(R) Core(TM) i5-7300HQ,
CPU 2.50 GHz CPU, and 8 GB of RAM, and the software platform is MATLAB R2019a (MathWorks,
Natick, Massachusetts, America). As shown in Table 11, the time-consumption improvement for the
SVM trained using a training set with the proposed method was less than the SVM trained using the
original noisy training set. In addition, the proposed KECA method has run-time advantages over the
SALOF and DP methods in most simulations. This shows that the proposed method can effectively
detect and remove noisy labels form a training set, and thus reduce the training time for the SVM.
Besides the time spent on classification, Table 11 show the detection time of the different detection
methods. The proposed KECA method typically needed less time to execute detection processing
with noisy labels compared to the competitive methods. This phenomenon can demonstrate the
effectiveness and robustness of the proposed KECA method.

Table 11. Comparison of the time-consumption (in seconds) of various methods. For the University of
Pavia dataset, the training set contains 50 true samples and 10 noisy labels per class; the Salinas, KSC,
Washington DC dataset contain 25 true samples and 15 noisy labels per class. The Detection Time is
marked as DT and the Classification Time is marked as CT.

Methods

HSI Datasets

University of Pavia Salinas KSC Washington DC

DT CT DT CT DT CT DT CT

SVM − 45.29 − 91.49 − 126.22 − 17.47
SALOF 0.42 33.30 0.16 61.87 0.11 94.71 0.07 14.79

DP 0.92 36.96 0.99 66.39 0.63 58.92 0.30 10.54
KECA 0.20 26.24 0.16 74.57 0.06 87.19 0.03 11.17

4.6. Performance Evaluation Using Other Classifiers

In this section, the performance of the proposed KECA method is evaluated by employing some
widely used spectral classifiers, such as the basic thresholding classifier (BTC) [47], the kernel basic
thresholding classifier (KBTC) [42], the sparse representation classifier (SRC) [48], and the extreme
learning machine (ELM) [49], to demonstrate the effectiveness of the proposed noisy label detection
method. In this experiment, the proposed KECA method is conducted on the Salinas dataset with 25
true training samples and different numbers of noisy labels for each class. To make the competition
more objective, the experiment was repeated ten times to obtain the average value and the standard
deviation of the classification accuracies. As shown in Table 12, the classification accuracies of different
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spectral classifiers trained with the original training set and the training set improved by different
noisy label detection methods are represented, respectively. It can be seen that the spectral classifiers
using the improved training set always obtain better classification accuracies with respect to those
trained with the original noisy training set. Specifically, the classification accuracies of the spectral
classifiers trained using the training set cleansed by the KECA often achieve higher classification
results than the spectral classifiers trained using training set cleansed by the competitive methods in
the term of OAs, AAs, and Kappas. It is demonstrated that the proposed KECA method can be widely
employed in supervised hyperspectral processing tasks to promote the accuracy of spectral classifiers.

Table 12. Classification Accuracy of the Salinas dataset. The SVM obtained the classification accuracy
of 25 true samples and the SVM, SALOF, DP, KECA methods to compare the classification accuracy
under 25 true samples and different numbers of noisy labels per class.

Training Condition Classifier
OA(%) AA(%) Kappa

SVM SALOF DP KECA SVM SALOF DP KECA SVM SALOF DP KECA

25
(t

ru
e)

+5
(n

oi
se

) BTC 76.23 77.76 78.90 80.15 76.35 80.78 82.66 83.37 72.77 75.44 76.69 78.06
(1.21) (1.53) (1.94) (1.65) (0.88) (1.45) (2.63) (1.66) (1.30) (1.70) (1.54) (1.79)

KBTC 75.80 80.70 82.78 85.11 76.46 85.16 87.82 89.67 73.39 78.65 80.93 83.53
(1.15) (2.24) (1.88) (1.95) (1.12) (2.59) (1.85) (2.05) (1.25) (2.42) (2.08) (2.14)

SRC 67.82 74.66 77.48 79.47 79.11 84.49 87.42 88.02 64.84 72.00 75.16 77.32
(1.23) (2.37) (1.15) (1.58) (1.08) (1.49) (0.63) (0.77) (1.32) (2.54) (1.23) (1.69)

ELM 69.54 76.17 79.72 80.74 68.98 78.00 83.48 83.53 66.67 73.79 77.63 78.45
(0.98) (2.17) (1.36) (1.72) (1.42) (2.39) (1.55) (2.25) (1.05) (2.34) (1.45) (1.84)

25
(t

ru
e)

+1
5(

no
is

e) BTC 49.46 51.62 49.33 58.99 48.13 50.53 47.88 57.94 45.66 47.60 45.07 55.31
(1.16) (2.19) (1.08) (2.06) (1.75) (2.21) (1.27) (2.41) (1.56) (2.30) (1.65) (2.17)

KBTC 57.33 62.01 61.39 67.22 55.96 60.99 61.01 66.93 53.74 58.73 58.13 64.18
(1.75) (1.54) (1.63) (1.01) (1.65) (1.49) (1.60) (1.70) (1.87) (1.85) (1.73) (1.03)

SRC 50.55 54.09 52.85 58.89 64.06 68.45 66.39 72.38 46.62 51.21 49.02 55.44
(1.25) (2.14) (2.19) (1.42) (1.71) (1.84) (2.48) (1.39) (1.36) (2.28) (2.38) (1.51)

ELM 54.38 58.13 57.84 60.76 52.63 56.43 56.11 59.32 50.64 54.71 54.43 57.41
(1.52) (1.54) (1.86) (1.55) (1.15) (1.52) (1.96) (1.38) (1.59) (1.65) (1.90) (1.64)

25
(t

ru
e)

+2
5(

no
is

e) BTC 38.93 40.39 39.80 43.69 38.05 39.28 37.83 42.62 34.28 35.72 35.04 39.13
(0.94) (1.18) (1.33) (1.46) (1.19) (1.09) (0.92) (1.21) (1.42) (1.29) (1.38) (1.53)

KBTC 46.60 50.12 49.06 54.74 45.72 49.18 48.03 53.91 42.34 46.16 45.07 50.90
(1.32) (1.44) (1.01) (1.56) (1.16) (1.38) (0.90) (1.28) (1.36) (1.53) (1.09) (1.66)

SRC 40.59 43.17 42.73 47.73 53.66 57.97 54.68 60.82 36.21 38.96 38.49 43.71
(0.97) (1.23) (1.36) (1.35) (1.43) (2.04) (1.19) (1.52) (1.01) (1.37) (1.43) (1.43)

ELM 45.81 46.70 46.80 49.35 44.49 45.76 45.29 48.01 31.65 42.68 42.70 45.39
(1.20) (0.79) (1.19) (0.90) (1.14) (0.87) (0.88) (0.81) (1.25) (0.90) (1.22) (0.98)

Furthermore, the proposed method is extended to some spectral-spatial classifiers,
i.e., representative spectral-spatial classification methods are adopted including extended
morphological profiles (EMP) [50], logistic regression and multilevel logistic (LMLL) [51], the joint
sparse representation classifier (JSRC) [13], and the edge-preserving filtering (EPF) [52], to prove that
the classification performance of a spectral-spatial classifier trained using the training set with different
numbers of noisy labels can be improved by exploiting the proposed KECA method. The experiment
was also performed on the Salinas dataset with 25 true training samples and different numbers of
noisy labels for each class. Similarly, the experiments are repeated ten times to obtain the results
of fair competition. Table 13 shows that the classification accuracies of a spectral-spatial classifier
trained using the original training set are much lower than those trained with the corrected training
sets. In particular, when the number of noisy labels increases, the effectiveness of the proposed KECA
method in terms of accuracy is more obvious than competitive methods such as the SALOF and DP
methods. This experiment further demonstrates that the proposed method can effectively detect and
remove noisy labels, and it is also useful for improving the performance of spectral-spatial classifiers.
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Table 13. Classification Accuracy with the Salinas dataset. The SVM obtained the classification accuracy
of 25 true samples and the SVM, SALOF, DP, KECA methods to compare the classification accuracy
with 25 true samples and different numbers of noisy labels for each class.

Training Condition Methods
OA(%) AA(%) Kappa

SVM SALOF DP KECA SVM SALOF DP KECA SVM SALOF DP KECA

25
(t

ru
e)

+
5(

no
is

e) EMP 85.92 89.46 91.30 92.28 93.10 94.46 95.54 95.74 84.45 88.30 90.35 91.40
(2.70) (1.53) (2.89) (1.02) (0.99) (0.57) (0.77) (0.36) (2.97) (1.69) (3.07) (1.11)

LMLL 88.45 92.11 92.03 94.84 94.94 95.67 95.72 96.95 87.23 91.24 91.12 94.27
(1.86) (1.82) (2.07) (1.78) (0.76) (0.64) (1.01) (0.87) (2.05) (2.02) (2.31) (1.97)

JSRC 72.64 79.09 81.31 82.61 73.85 78.04 79.53 80.44 69.98 76.97 79.33 80.73
(3.07) (2.92) (2.43) (2.92) (2.55) (2.11) (1.73) (0.95) (3.28) (3.16) (2.67) (3.11)

EPF 84.83 88.35 89.24 91.48 94.38 91.31 95.30 95.94 84.29 87.10 88.07 90.54
(3.00) (4.51) (2.99) (3.71) (0.66) (1.73) (0.67) (1.13) (3.29) (4.94) (3.28) (4.09)

25
(t

ru
e)

+
15

(n
oi

se
)

EMP 83.34 86.53 87.41 88.75 92.79 92.79 94.28 94.43 81.54 85.09 86.08 87.51
(2.45) (1.90) (2.00) (1.36) (0.81) (0.88) (0.61) (0.51) (2.69) (2.09) (2.19) (1.49)

LMLL 85.89 90.22 91.82 92.66 93.48 94.20 95.45 96.07 84.33 89.13 90.91 91.84
(2.48) (1.66) (1.95) (1.86) (1.11) (0.90) (1.22) (0.72) (2.75) (1.82) (2.17) (2.06)

JSRC 49.96 53.36 55.19 62.43 55.87 59.51 60.77 74.82 46.01 49.70 51.14 59.17
(2.11) (4.12) (2.56) (1.72) (3.30) (2.99) (2.99) (1.58) (2.28) (4.25) (2.69) (1.77)

EPF 82.00 86.15 87.05 89.20 93.12 94.33 94.04 95.09 80.13 84.68 85.50 88.03
(3.12) (4.41) (3.10) (3.82) (0.83) (1.59) (1.11) (1.03) (3.41) (4.90) (3.40) (4.18)

25
(t

ru
e)

+
25

(n
oi

se
)

EMP 79.01 84.36 86.55 87.79 91.23 92.63 93.29 93.94 76.94 82.73 85.08 86.47
(3.02) (3.44) (2.17) (1.88) (1.01) (0.86) (0.62) (0.64) (3.28) (3.71) (2.36) (2.06)

LMLL 84.80 89.15 89.94 90.57 92.96 93.95 94.61 95.23 83.19 88.00 88.85 89.54
(2.71) (2.51) (2.32) (1.98) (1.13) (1.34) (1.01) (0.72) (3.00) (2.75) (2.55) (2.19)

JSRC 39.49 42.36 40.78 49.17 45.01 50.57 48.32 62.46 34.89 38.14 36.29 45.22
(2.82) (1.89) (2.34) (1.40) (3.24) (2.26) (3.13) (1.37) (2.93) (2.01) (2.54) (1.40)

EPF 78.38 84.64 86.38 87.35 88.31 93.23 93.93 94.43 76.34 83.01 84.92 86.01
(3.45) (2.97) (3.52) (3.45) (1.81) (0.52) (1.38) (2.16) (3.72) (3.22) (3.79) (3.73)

Table 14. Classification performance of the KECA based on different feature extraction such as original
spectral features (Original), linear discriminant analysis (LDA), principal component analysis (PCA),
recursive filter (RF), and extended morphological profiles (EMPs) for the KSC dataset with 25 true
samples and five noisy labels per class as training set. The number in the parenthesis represents the
standard variance of the accuracies obtained over repeat experiments.

KSC SVM
25 (T)

25(Ture) + 5(Noise)

SVM
KECA

Original LDA PCA RF EMPs

C1 94.92(2.47) 93.53(2.22) 93.29(2.70) 94.41(1.79) 94.50(3.04) 93.89(1.65) 94.39(1.69)
C2 89.05(4.36) 79.86(5.84) 85.68(4.97) 83.33(7.08) 83.41(6.28) 78.47(9.72) 87.23(4.40)
C3 87.57(6.11) 91.84(4.62) 82.76(5.90) 81.30(7.76) 84.21(5.50) 83.49(6.67) 84.53(4.76)
C4 67.59(5.56) 58.72(4.06) 62.60(4.92) 64.58(4.95) 65.14(6.10) 63.31(9.26) 66.27(5.16)
C5 65.38(7.52) 51.88(9.44) 62.45(5.92) 61.10(9.49) 61.04(8.10) 63.76(8.78) 58.95(12.8)
C6 61.91(8.81) 51.72(6.18) 55.13(11.5) 59.70(7.65) 56.23(6.34) 58.77(9.63) 61.94(5.23)
C7 71.02(5.58) 56.83(6.80) 66.96(7.38) 64.64(7.58) 63.55(9.93) 67.79(4.13) 62.73(6.30)
C8 84.20(6.37) 82.58(8.09) 80.34(5.60) 82.17(5.69) 83.32(4.59) 83.87(3.20) 83.23(5.35)
C9 90.42(2.27) 89.27(2.87) 89.07(2.09) 89.18(3.58) 89.68(3.74) 87.68(3.40) 88.60(3.58)

C10 93.02(7.52) 80.85(7.23) 94.48(5.11) 93.85(4.51) 89.00(7.42) 94.66(7.37) 94.45(8.00)
C11 90.08(5.48) 86.72(5.45) 92.60(5.76) 89.02(4.83) 92.93(6.62) 88.15(3.01) 93.41(3.96)
C12 94.77(3.61) 83.62(4.44) 93.48(3.59) 93.70(3.52) 93.12(3.11) 93.73(4.27) 93.59(4.28)
C13 100.00(0.0) 99.18(0.81) 99.60(0.43) 98.51(0.78) 98.99(1.24) 98.61(2.08) 99.85(0.36)

OA 88.75(0.96) 83.57(1.74) 86.67(1.52) 86.68(1.88) 86.79(1.25) 86.44(3.15) 87.74(1.15)
AA 83.84(1.23) 77.43(2.03) 81.42(1.60) 81.19(2.32) 81.16(1.60) 81.24(3.33) 82.24(1.28)

Kappa 87.45(1.06) 81.71(1.93) 85.14(1.68) 85.15(2.07) 85.28(1.36) 84.89(3.49) 86.32(1.28)

5. Discussion on Feature Extraction

In this section, to further illustrate that the proposed method under different feature methods,
i.e., linear discriminant analysis (LDA), principal component analysis (PCA), recursive filter (RF),
and extended morphological profiles (EMPs), can effectively detect and remove noisy labels in the
training set, an experimental analysis of detection performance is conducted on the KSC datasets
with 25 true samples and five noisy labels per class. As shown in Table 14, it can be observed that
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the EMP-based KECA obtains better OA, AA, Kappa with respect to other features. This means that
significant features can further improve the detection performance of the proposed KECA method.
However, taking into account the versatility of the KECA method, the report presented by our paper is
the experimental result of the original spectral features.

6. Conclusions and Future Lines

This paper first proposes kernel entropy component analysis to cleanse a noisy training set in
supervised HSI classification. The key idea of this work is exploiting kernel-based entropy distribution
to detect noisy labels in the original training set. Experimental results conducted on several real
hyperspectral scenes show the effectiveness of the proposed methods in terms of classification
evaluations. However, one limitation of the proposed method is that it has not taken into account
the contextual information of the training samples in the detection process. Therefore, utilizing the
kernel-based spectral and spatial information of hyperspectral data to further promote the detection
performance will be an important research topic in our future work.
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