
remote sensing  

Article

Quantifying DOC and Its Controlling Factors in
Major Arctic Rivers during Ice-Free Conditions using
Sentinel-2 Data

Jue Huang 1,*, Ming Wu 1, Tingwei Cui 2 and Fanlin Yang 1

1 College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, China;
wuming1016@sdust.edu.cn (M.W.); flyang@sdust.edu.cn (F.Y.)

2 First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China;
cuitingwei@fio.org.cn

* Correspondence: huangjue@sdust.edu.cn

Received: 30 September 2019; Accepted: 3 December 2019; Published: 5 December 2019
����������
�������

Abstract: The six largest Arctic rivers (Yenisey, Lena, Ob’, Kolyma, Yukon, and Mackenzie) drain
the organic-rich Arctic watersheds and serve as important pools in the global carbon cycle. Satellite
remote sensing data are considered to be a necessary supplement to the ground-based monitoring
of riverine organic matter circulation, especially for the ice-free periods in high-latitudes. In this
study, we propose a remote sensing retrieval algorithm to obtain the chromophoric dissolved organic
matter (CDOM) levels of the six largest Arctic rivers using Sentinel-2 images from 2016 to 2018.
These CDOM results are converted to dissolved organic carbon (DOC) concentrations using the
strong relationship (R2 = 0.89) between the field measurements of these two water constituents. The
temporal-spatial distributions of the DOC in the six largest Arctic rivers during ice-free conditions
are depicted. The performance of the retrieval algorithm verifies the capacity of using Sentinel-2 data
to monitor riverine DOC variations due to its improved spatial resolution, better band placement,
and increased observation frequency. River discharge, watershed slopes, human activities, and land
use/land cover change drove much of the variation in the satellite-derived DOC. The seasonality,
geography, and scale would affect the correlation between DOC concentration and these influence
factors. Our results could improve the ability to monitor DOC fluxes in Arctic rivers and advance our
understanding of the Earth’s carbon cycle.
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1. Introduction

The Arctic Ocean (AO), containing only ~1% of the global ocean volume, could receive ~10% of
the annual global riverine discharge. A large part (~60%) of the discharge stems from the six largest
Pan-Arctic rivers, which transport significant quantities of organic matter into the AO [1,2]. Through
their direct impacts on water overland runoff, terrestrial processes may influence the biogeochemical
attributes of the Arctic Regions. Recent studies have revealed the significant changes in the Arctic
terrestrial ecosystem as a key characteristic of global climate change. Researchers have paid great
attention to the largest temperature changes at high latitudes [3], the rapid reduction in sea ice and spring
snow-cover [4], widespread permafrost degradation [5], and various alterations in biogeochemical
circles in Arctic Regions [6].

As an important pool in the Arctic carbon cycle, riverine dissolved organic carbon (DOC) tightly
links terrestrial and marine systems and also markedly modifies the biogeochemical characteristics
of the AO waters. With the progress of global warming, the permafrost in the Arctic is undergoing
remarkable thawing, which is likely to alter more than half of the soil organic carbon stock on Earth
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that is stored in the permafrost [7]. However, recent studies on DOC concentrations have revealed
contrasting responses to climate change in different Arctic rivers [1,8]. The reasons for these responses
can be attributed to the biological utilization of and photochemical interactions with DOC, but their
relative importance and influencing factors remain very uncertain [1].

The coordinated sampling efforts of the important Arctic rivers have provided the
necessary materials for studies of riverine DOC. With the help of the USGS Load Estimator
(LOADEST), a discharge-constituent flux regression model and the multiyear field datasets from
PARTNERS/Arctic-GRO [9,10] have been used to establish several discharge-DOC relationships [11–13].
Based on these field-measured data, many previous studies have examined the source and variation
of DOC, and river discharge, topography, and land cover were considered to be major influencing
factors [14–18]. Other researchers determined the source and flux variation of DOC by analyzing
spectral or absorption characteristics of chromophoric dissolved organic matter (CDOM) [16,19–22].
However, the field measurements are inevitably constrained by the limited accessibility of sampling
sites, especially throughout the ice breakup period [3]. In addition, passive optical remote sensing
could provide a relevant data source for the spatial-temporal variations in the DOC concentration that
is independent of discharge to supplement field measurements. Using a simple optical measurement,
the DOC distribution can be traced with the help of CDOM, which is the light-sensitive portion of the
dissolved organic matter (DOM) pool [11,23]. The CDOM/DOC retrieval method has been successfully
applied in DOC monitoring of rivers [24,25], lakes [19,26–28], and coastal waters [29,30].

Many efforts have been made to map CDOM/DOC using remotely sensed imagery in different
optically complex waters [31–33] with various sensors. Multiband linear or nonlinear combination
algorithms have been widely used as CDOM remote sensing retrieval algorithms in different complex
waters [3,24,28,31,34,35]. Then, DOC concentration could be obtained from the retrieved CDOM
with the help of a CDOM retrieval algorithm [25,34]. However, due to the strong dependency of
field-measured data, these algorithms usually need modification before being applied to a new study
area or new remote sensing data.

Ocean color remote sensing satellite sensors, such as SeaWiFS, MODIS, or MERIS, benefit from
high time resolutions, but their spatial resolutions are too low to evaluate CDOM/DOC variations
in rivers. By contrast, high spatial resolution sensors, such as the Landsat Thematic Mapper (TM)
and Operational Land Imager (OLI), have appropriate spatial resolutions but are too coarse in terms
of repeat orbit cycles. Launched in 2015, the Sentinel-2 mission has provided both high spatial and
temporal resolution images for water quality monitoring in waters with dynamic variations and small
areas. The successful application of Sentinel-2 images to estimate suspended sediment, chlorophyll,
turbidity, and CDOM in lakes, rivers, and coastal waters [36,37] indicated that appropriate remote
sensing methods could be developed for CDOM/DOC monitoring in Arctic rivers.

Existing studies have demonstrated that temperature, precipitation, wetland and permafrost
coverage, watershed slopes, river discharge, and seasonal thaw play major roles in regulating
the variation of DOC in high-latitude catchments [17,38,39]. Previous studies have shown that
river discharge played a crucial role in regulating riverine DOC concentration [11,24,40–43]. Other
studies indicated that watershed slopes and permafrost depth also played a role in adjusting DOC
concentration [39,44–47]. However, few studies have focused on the quantitative analysis of these
factors covering the watersheds of the six largest rivers and their sub-watersheds in Arctic regions.
In addition, Land-Use and Land-Cover Change (LUCC) also has been highlighted as a promising
indicator of DOC variations [47,48]. However, due to the limited coverage of field-measured data and
the low spatial resolution of the MODIS-based LUCC that was used in previous studies, the quantitative
relationship between the DOC and the LUCC in the Pan-Arctic region has not been reported.

This paper aimed to discuss the potential of Sentinel-2 images with high spatial-temporal resolution
for monitoring DOC concentration in Pan-Arctic regions. Here, we proposed the first remote sensing
retrieval model that obtained the CDOM concentrations in the six largest Arctic rivers using Sentinel-2
images. These CDOM results were then converted to DOC concentrations using a strong relationship
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between these two water constituents. The spatial-temporal variation of DOC between 2016 and 2018
in the six largest Arctic rivers and 35 sub-catchments were revealed. We quantitatively analyzed the
influence of river discharge, watershed slopes, human activities, and LUCC on DOC variation at a
high spatial resolution. This paper verified the applicability of Sentinel-2 remote sensing data for
monitoring DOC fluxes in Arctic rivers. The results presented here not only expanded the scope of
DOC research to important sub-catchments in the Arctic but also provided a better understanding of
the circulation of riverine DOC in Pan-Arctic regions.

2. Methods and Datasets

2.1. Field Measured Data

The field measured data of the six largest Arctic rivers from 2003 to 2018 were obtained from
the Arctic-GRO and PARTNERS projects (www.Arcticgreatrivers.org). The geographic features and
population density of each watershed were described on the website. Water samples were measured
at Dudinka (66.48◦N, 86.15◦E, Yenisey), Zhigansk (66.77◦N, 123.37◦E, Lena), Salekhard (66.63◦N,
66.60◦E, Ob’), Cherskiy (68.75◦N, 161.30◦E, Kolyma), Pilot Station (61.93◦N, 162.88◦W, Yukon), and
Tsiigehtchic (67.45◦N, 133.74◦W, Mackenzie) near the estuaries of each river (Figure 1). These six Arctic
rivers represent 67% of the AO watershed [49]. According to previous studies [43,49], the vertical
distributions of all the dissolved chemical constituents are uniform throughout the water column,
which is based on a comparison between surface samples and delamination samples.
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Figure 1. Map of the study area with delineated watershed boundaries of the six largest Arctic rivers
(black lines), watershed boundaries of sub-catchments (gray lines), and sample locations (red dots).

The DOC and CDOM water samples were filtered through a Geotech capsule filter or an Aquaprep
600 capsule filter into pre-cleaned HDPE bottles and frozen before analysis [11]. The DOC samples
from PARTNERS (2003–2006) were analyzed using Atomic Mass Spectrometry (AMS), while the DOC
samples from all three Arctic-GRO campaigns were measured using a Shimadzu TOC/TN analyzer.
The absorbance (A(λ)) was measured using a Shimadzu UV-1800 spectrophotometer in a 1 cm quartz
cell from 200 to 800 nm at a 1 nm interval. Although the frozen water samples might lead to changes in

www.Arcticgreatrivers.org
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the CDOM, previous studies found minimal effects of freezing on the dissolved organic matter [11].
The A(λ) was converted to absorption coefficient as follows:

a(λ) = 2.303A(λ)/l, (1)

where a(λ) is the absorption coefficient (m−1), and l is the cell path length (m). The a(λ) at 254,
375, or 440 nm are often used as proxies for the CDOM. Specific ultraviolet absorbance (SUVA254,
L mg C−1 m−1) is defined as the UV absorbance at 254 nm (m−1) divided by the DOC concentration
(mg L−1) [50].

Unfiltered water samples were stored chilled in HDPE bottles before measurement. These water
samples were filtered through pre-weighed GF/F filters and were weighed after drying for 24 h at
60 ◦C. The total suspended sediment (TSS) concentrations were calculated using the paired weight of
each filter and the water volume passing through each filter.

The river discharge data were collected from hydrometric stations at downstream locations on
each river, which were obtained from the ArcticRIMS website (http://rims.unh.edu/data.shtml) [51].
Detailed descriptions of the collection and measurements can be found in previous studies that used
the Arctic-GRO/PARTNERS project [43,48,49]. The statistics of the field-measured data used in this
study are listed in Table 1.

Table 1. Statistics of field measured data.

River
Discharge Temperature CDOM DOC TSS SUVA254

m3/s ◦C m−1 mg C/L mg/L L mg C−1

m−1

Yenisey
Min 5850 −1.00 0.010 2.20 0.15 1.861
Max 98,500 18.00 0.086 12.96 26.10 4.163

Mean 26,417 7.00 0.037 6.34 5.78 3.109

Lena
Min 2076 −0.50 0.017 3.20 0.59 2.187
Max 163,000 19.90 0.129 23.50 221.00 4.152

Mean 34,360 7.30 0.055 9.47 29.80 3.214

Ob’
Min 3350 −2.00 0.013 4.00 1.57 2.019
Max 36,300 20.00 0.111 16.60 134.80 4.216

Mean 17,668 6.90 0.061 9.70 31.00 3.301

Kolyma
Min 148 0.00 0.004 2.48 0.35 1.420
Max 24,300 15.90 0.103 18.40 394.59 3.444

Mean 5796 6.50 0.025 5.69 46.25 2.398

Yukon
Min 1175 −2.00 0.007 2.10 3.64 1.917
Max 33,414 19.50 0.109 15.90 863.00 3.747

Mean 9726 8.40 0.032 5.85 212.44 2.743

Mackenzie
Min 2960 −2.00 0.008 2.27 0.80 1.529
Max 28,800 19.60 0.052 8.10 461.38 4.442

Mean 10,900 8.10 0.022 4.66 91.33 2.364

2.2. Remote Sensing Image Processing

Sentinel-2 was launched by the European Space Agency (ESA) for land observation. With a high
radiation resolution of 12 bits and a high spatial resolution of 10 m, the remote sensing images captured
by Sentinel-2 can also play a significant role in water environment research, especially for inland lakes
and rivers. The coverage cycle is 10 days with one satellite and 5 days with 2 satellites. All these
improvements prompt us to validate the availability of Sentinel-2 for remote sensing measurements
in complex water environments. Furthermore, few previous studies have focused on high-range
monitoring in Arctic regions using Sentinel-2.

This study utilized Sentinel-2 optical data and in situ data that were in close proximity to achieve
synchronous measurements. We inspected the Sentinel-2 remote sensing images from September 2015
to March 2018 in the Arctic regions, and only images with 30% cloud cover or less were retained.

http://rims.unh.edu/data.shtml
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In addition, we guaranteed that the sampling sites had clear skies and were clear of ice/snow cover
via visual inspection. However, the frequent cloud and ice/snow cover in the Arctic region inevitably
reduced the availability of images in our study area. Consequently, we only obtained 15 images
during the ice-free period that were quasi-synchronized with field measurements from the ESA with a
maximum time interval of 8 days between remote sensing images and the in-situ data (Table 2). With
the help of Sen2cor, a plug-in that was released by the ESA for the production of L2A level data, we
acquired the Bottom-of-Atmosphere corrected reflectance without atmospheric influence.

Table 2. List of the available Sentinel-2 scenes for modeling the chromophoric dissolved organic matter
(CDOM) retrieval algorithm in this study.

Rivers Acquisition Date of Images Sampling Date of DOC

Yenisey 17 June 2017 14 June 2017
Lena 02 August 2016 31 July 2016
Lena 29 June 2017 03 July 2017
Lena 02 August 2017 05 August 2017
Ob’ 18 June 2017 25 June 2017

Kolyma 04 October 2016 04 October 2016
Kolyma 01 June 2017 28 May 2017
Kolyma 08 August 2017 16 August 2017
Kolyma 03 October 2017 09 October 2017
Yukon 01 September 2016 29 August 2016
Yukon 24 August 2017 18 August 2017
Yukon 18 October 2017 18 October 2017

Mackenzie 02 October 2016 05 October 2016
Mackenzie 29 June 2017 29 June 2017
Mackenzie 28 August 2017 03 September 2017

2.3. Catchment Characteristic Data

The LUCC data used in this study were downloaded from FROM-GLC (Finer Resolution
Observation and Monitoring of Global Land Cover, http://data.ess.tsinghua.edu.cn) [52]. Based on
the free accessibility of Sentinel-2 images and the powerful computing power of the Google Earth
Engine cloud platform, FROM-GLC classified the LUCC into 10 categories, including cropland, forest,
grassland, shrubland, wetland, water, tundra, impervious surface, bareland, and snow/ice. After
conducting optimization using the grid search method and large numbers of LUCC training and
validation samples from different seasons, the FROM-GLC data demonstrated strong robustness and
high precision with an overall classification accuracy of up to 72.34% [53].

The watershed of each Arctic rivers was delineated using GMTED2010 DEM data (https://
earthexplorer.usgs.gov/) [54] with a spatial resolution of 7.5 arc seconds, as shown in Figure 1 with black
lines. The calculation of the confluence cumulant, the acquisition of the flow length, the classification
of the river network, and the definition of the catchment areas were conducted using the Hydrological
Analysis tool of ArcGIS 10.5. We not only delineated the catchments of the six largest Arctic rivers but
also delineated 35 sub-catchments (grey lines in Figure 1) in order to analyze the topographic features
and water properties in different sized watersheds. The details of the methods that were used to define
the watershed boundaries can be found in [39].

The population of each watershed was calculated from ORNL’s LandScan™ 2017 datasets released
by Oak Ridge National Laboratory (https://landscan.ornl.gov/landscan-datasets) [55] in 2017. At
approximately 1 km (30” X 30”) spatial resolution, LandScan™ 2017 represented an approximation of
the spatial population distribution. With the drainage area delineated above, the population density of
each watershed could be obtained.

http://data.ess.tsinghua.edu.cn
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://landscan.ornl.gov/landscan-datasets
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2.4. CDOM Algorithm Development

According to previous studies [31], the absorption of CDOM exponentially decreases as the
wavelength increases, which exerts a more significant influence on the short wavebands, such as the
blue band. However, the sensitivity of the blue band in complex waters is easily affected by other
water constituents, especially in turbid waters with low reflectance, resulting in atmospheric correction
difficulties at the short wavebands. Therefore, longer wavebands would be a better choice for CDOM
retrieval in turbid inland waters. Due to the complex biological optical properties of inland waters,
band combinations rather than single bands could capture the subtle variations in the driving factors
of the CDOM. Previous studies successfully used combinations of the blue, green, and red bands of
Landsat and SPOT to calculate the CDOM in coastal waters, rivers, and lakes [3,11,28,56]. Compared
to the satellite data that were mentioned above, the spectral, spatial, and temporal improvements of
Sentinel-2 data are expected to play crucial roles in the remote sensing monitoring of inland waters.
Using the CDOM proxies, absorption coefficients at 254, 375, and 440 nm (a254, a375, and a440),
as dependent variables and the band combinations as the independent variables, we performed a
stepwise regression simulation using the visible wavebands of Sentinel-2. Then, we developed a
remote sensing retrieval model that obtained the CDOM concentrations in the six largest Arctic rivers
using Sentinel-2 data, as shown in Equation (2). In addition, we also evaluated the models that were
recently proposed in [3,11,28,57], as shown in Table 3. The B1, B2, B3, and B4 stood for the first four
wavebands of Sentinel-2 data.

Table 3. Remote sensing retrieval model for CDOM using Sentinel-2 data.

Model Equation Form Coefficients R2 MRE P RMSE

b0 b1 b2 b3 % Value m−1

K2005 a440 = exp(b0 + b1 × ln(B3/B4)) −4.669 −1.868 — — 0.612 27.48 <0.001 0.388
G2011 a440 = exp(b0 + b1×B4 + b2 × (B3/B2)) −4.759 −2.676 0.265 — 0.338 69.96 >0.050 0.506
H2016 a440 = b0 + b1×B3 + b2 × (B3/B4) −2.705 −5.185 −1.552 — 0.632 46.07 <0.010 0.005
G2018 a375 = b0 + b1×B2 + b2×B3 + b3 × (B2/B3) 0.084 −0.373 −0.599 −0.037 0.448 60.34 >0.050 0.007

This
study

a254 = exp(b0 + b1×B2 + b2×B2/B4 + b3 ×

ln(B3/B4)) −2.012 −7.82 0.838 −1.859 0.791 40.92 <0.001 0.477

a375 = b0 × ln(B2) − b1 −0.014 −0.01 — — 0.556 42.13 >0.010 0.085
a375 = b0 + b1×B2 + b2×B3 + b3 × ln(B3/B4) 0.016 0.098 −0.163 −0.025 0.732 63.21 >0.001 0.123

a375 = b0 + b1 × B2 + b2 × B2/B4 + b3 ×

ln(B3/B4) 0.001 −0.36 0.061 −0.121 0.825 31.33 <0.001 0.010

a440 = b0 × ln(B3/B4) + b1 −0.027 0.011 — — 0.625 53.20 <0.001 0.006

K2005 stands for model in [28], G2011 in [57], H2016 in [3], and G2018 in [11].

Due to the frequent cloud cover and longer coverage cycle in Arctic regions, we only obtained
15 sets of quasi-synchronized Sentinel-2 data for Arctic rivers during the ice-free period in this study.
To minimize the influence of random factors, we applied a reliable “leave-one-out cross-validation”
uncertainty assessment method to calibrate and validate the model. We conducted our modeling
using all the paired remote sensing reflectance and CDOM; used one pair of data to validate the
models; and calculated the R2s, MREs, P-values, and RMSEs. As shown in Table 3, some of the models
demonstrated satisfactory results, but the model that was proposed in this study yielded the optimal
performance as follows:

a375 = b0 + b1 × B2 + b2 × B2/B4 + b3 × ln(B3/B4), (2)

The model displayed both a high explanatory capability and a high predictive power with an R2 of
0.825, an MRE of 31.33%, and an RMSE of 0.01 m−1. Figure 2 demonstrates the correlations between the
predicted and measured CDOM (a375). The scatters fell evenly on both sides of the 1:1 line, and all the
predicted CDOM values were within the field measurement range. The less satisfactory performances
of the previous models with our data might be attributed to the differences in the sensor bandwidths,
water qualities, and biogeochemical conditions.
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3. Results

3.1. Correlation between CDOM and DOC in Arctic Rivers

As pointed out by previous studies [21,58], CDOM can be a common and efficient proxy for
DOC in many complex waters at high latitudes, including Arctic rivers. In situ data from many
different study areas have verified that there are no major outliers affecting the correlations between
CDOM and DOC [21,58]. In this study, we divided the field measured CDOM and DOC from the
PARTNERS/Arctic-GRO datasets into two parts. The data that were synchronized with the remote
sensing images were used as validation data (N = 15), and the remaining data were used as training
data (N = 275) for the ordinary least squares regression. According to our data, the strong correlation
between CDOM and DOC (R2 = 0.89) was shown in Figure 3A and expressed by the following formula:

DOC = 129.92 × CDOM + 1.81, (3)

where DOC is the DOC concentration (mg/L), and CDOM is the absorption coefficient at 375 nm
(a375, m−1). The DOC varies from 2.1 to 23.5 mg/L with a mean value of 6.82 mg/L, and the CDOM
ranges from 0.004 to 0.129 m−1 with a mean value of 0.039 m−1. In addition, a strong correlation
between CDOM and DOC was also reported in the Kolyma watershed by Griffin et al. [57] (R2 = 0.86,
N = 54), the Yenisey watershed by Herrault et al. [3] (R2 = 0.84, N = 69), and watersheds of the six
largest rivers in the Arctic by Griffin et al. [11] (R2 = 0.88, N = 248). The strong dependence between the
CDOM and DOC revealed in our data and previous studies of Arctic rivers provided strong support
for our CDOM-DOC remote sensing retrieval algorithm.

Then, the remote sensing retrieved CDOM from Equation (2) were further converted into DOC
concentrations (mg/L) using Equation (3). The relationship between the predicted and measured DOC
was plotted in Figure 3B to evaluate the ability of the remote sensing prediction model to estimate
the DOC in Arctic rivers. Although the error propagation would lead to higher uncertainties in the
predicted DOC than the predicted CDOM, the correlation between the predicted and measured DOC
is still very strong (R2 = 0.90, P < 0.001, RMSE = 0.842 mg/L). Our results confirmed the theory that
CDOM has a strong correlation with DOC in Arctic rivers and could be used as an efficient proxy for
estimating the DOC discharge into the AO from Arctic rivers [16,21,58].
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and (B) the relationship between the measured and predicted DOC.

3.2. Spatial-Temporal Distribution of DOC

For the results to correspond to distinct hydrologic phases, the DOC concentration of each river
was binned into three seasons: spring (May to June), summer (July to October), and winter (November
to April) following previous studies [11,49,57]. Although there have been different binning methods
for seasonal river discharges across Arctic regions [39,59], our bins captured the characteristics of the
seasonal flow transformation. On account of the atrocious weather and longstanding cryoconite cover
during winter across the Arctic, it is difficult to acquire valid Sentinel-2 images in the winter. As a
result, we could only assess the seasonal variations of the DOC concentrations of Arctic rivers in the
spring and summer, and the annual average DOC that is used in this study is the average DOC of the
spring and summer of each year.

After validation of the retrieval model for CDOM and DOC, we applied Equations (2) and (3)
to all the available Sentinel-2 images of the six largest Arctic rivers from 2016 to 2018 (n = 521).
The spatial-temporal distributions of the DOC near sampling sites for six largest Arctic rivers are
shown in Figure 4, with arrows pointing to the river mouths. The first and second columns are the
average DOCs of spring and summer, respectively, and the last column is the annual average DOC.
Each row represents the DOC variation for one of the six rivers: Yenisey, Lena, Ob’, Kolyma, Yukon,
and Mackenzie.

In general, the DOC concentration in spring is obviously greater than that in summer. High DOC
concentrations were observed in the spring for the Ob’ (Figure 4G) and Lena (Figure 4D), while low
DOC concentrations appeared in summer for the Yukon (Figure 4N) and Mackenzie (Figure 4Q). The
DOC concentration differences between spring and summer for the Kolyma and Yukon were more
obvious than those for the other rivers. In addition, the DOC concentration increases as water flows
from tributaries toward the river mouth. The increasing DOC was observed from the midstream to the
riverbanks, especially for the Yenisey (Figure 4A–C) and Kolyma (Figure 4J,K,L).
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As the temperature steadily rises from late May to early June in the Arctic, the snow cover starts to
melt and the rivers’ discharge increases, resulting in a spring freshet every year. The DOC concentration
quickly increases as the river discharge increases during the spring freshet. Meanwhile, the DOC
concentration remains stable in the following summer months without enough supplement from ice
and snow. As shown in Table 4, the DOC in spring is obviously larger than that in summer for all
six rivers. The retrieved annual average DOC concentrations decreased in the following order: Ob’,
Lena, Yenisey, Yukon, Kolyma, and Mackenzie. The Ob’ had the largest retrieved DOC (11.00 mg/L)
throughout the year, while the Kolyma and Mackenzie had the two smallest DOC concentrations in
both seasons. The largest seasonal variation in the DOC (4.08 mg/L) was observed on the Kolyma, and
the Mackenzie displayed the smallest concentration difference between spring and summer (1.21 mg/L).
The variation ranges and mean values of the remote sensing retrieved DOC for the six rivers in Table 4
are in good agreement with the results in Table 1 and Figure 4.

Table 4. Statistics of the retrieved DOC concentrations (mg/L) for six Arctic rivers.

Season Yenisey Lena Ob’ Kolyma Yukon Mackenzie

Spring
Min 6.60 9.78 6.94 7.66 7.41 5.46
Max 24.14 12.48 14.59 11.34 9.92 7.82

Mean 10.31 11.00 9.93 8.72 8.50 6.46

Summer
Min 4.44 5.99 3.91 2.52 4.97 3.52
Max 9.55 10.75 7.62 7.14 7.02 6.93

Mean 6.87 8.90 6.28 4.64 5.83 5.25

Annual Average 7.50 9.02 9.45 6.05 6.61 5.75

4. Discussion

The DOC concentration varies greatly in Arctic regions. DOC transportation from land to ocean
through river systems is mainly influenced by natural and artificial processes. Many factors, such as
the topography, hydrology, soil, land cover, eutrophication, and human activities, play critical roles in
regulating the DOC concentration in water bodies [38,47,60]. To obtain a better understanding of the
role of DOC in the ecological environment, we quantitatively analyzed the effects of different potential
drivers on the DOC concentration using field measured data and remote sensing data.

4.1. Natural Influence Factors

The Arctic rivers carry large amounts of DOC into the AO, which mainly occurs through river
discharge [11,61]. Thanks to the abundant field-measured data at river mouths from the Arctic-GRO
and PARTNERS projects, we were able to analyze the correlations between the river discharges of the
six largest Arctic rivers and the corresponding DOC concentrations from 2016 to 2018 (n = 136). As
shown in Figure 5, a positive correlation was found for all six watersheds (R2 = 0.54, P < 0.001). The
peak values of the DOC concentrations and river discharges are quasi-synchronously observed in the
spring (our data and figure can be found in the Supplementary Materials). This phenomenon was also
reported in previous studies on the dynamic variation of riverine DOC in the Arctic and other rivers in
high latitude areas [2,43,62,63]. Previous studies pointed out that the river discharge, as a primary
carrier of DOC, was a critical means of DOC transportation [13,16,24,60]. The surge of precipitation and
extensive snowmelt generate unique spring freshets across Arctic regions. The organic carbon in the
topsoil is moved by rainfall and melting water into rivers, leading to a rapid increase in river discharge
and DOC concentration. In comparison, snowmelt and precipitation decrease in summer, resulting in
the deeper infiltration of solutions into the soil [64,65]. Consequently, the humid environment caused
by warming weather and the extension of the stay time of the DOC in the soil could accelerate the
microbial mineralization process and decrease the output of terrestrial organic carbon in the river
system. The low DOC concentration would continue through summer and winter.
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Figure 5. Correlations between the DOC concentration and river discharge. The black squares and black
line represent all available data, and the red triangles and red line represent the data with discharges
less than 40,000 m3/s.

Further analysis revealed that, if the dataset was divided into two parts according to discharge,
the data with discharge less than 40,000 m3/s could display a stronger correlation (R2 = 0.66, P < 0.001,
red triangles in Figure 5). In addition, more than 70% of the data with small discharge were measured
in summer. This result indicated that the unique and drastic spring freshet might raise the uncertainty
of the correlation between the discharge and DOC. However, compared to the strong correlations that
were reported in [11,61,65], the river discharge only explained 54% of the variation in the DOC in our
study. Therefore, we should carefully consider more factors.

According to previous studies [38,39,47], the watershed slope is a promising indicator of the DOC
variation in rivers. To analyze the similarities and differences for the six rivers, we calculated the mean
slopes of 35 sub-catchments in Arctic regions, as described in Section 2.3, and quantified the correlation
between the watershed slopes and the DOC concentration. As shown in Figure 6, there is a weak
negative correlation between the DOC and the watershed slopes of all 35 sub-catchments (R2 = 0.35, P
< 0.001), indicating that gentler slopes result in high DOC concentrations and steeper slopes result in
low DOC concentrations. Since the study area in this paper (~20.5 × 106 km2) is much larger than those
in previous studies, the differences in the topographic features and geographical variations might
introduce more uncertainties to our results.
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To further analyze the characteristics of the correlation between the DOC and watershed slopes,
we divided the 35 sub-catchments into two groups according to their geographical position and
watershed area, respectively. According to first classification method, the Eurasian rivers (including the
drainage basins of the Yenisey, Lena, Ob’, and Kolyma) demonstrated a stronger negative correlation
(R2 = 0.48, N = 22) than that of the North American rivers (including the drainage basins of the Yukon
and Mackenzie, with R2 = 0.14 and N = 13). Further analysis revealed that the West Siberian Plain
(including the Yenisey and Ob’ drainage basins) and the East Siberian Mountains (the Kolyma drainage
basin) both had strong negative correlations between the watershed slope and the DOC, with R2s
reaching up to 0.78 (N = 9) and 0.89 (N = 6), respectively. In comparison, the correlation for the central
Siberian Plateau (Lena drainage basin) was relatively weak (R2 = 0.47, N = 7).

Steep slopes are usually accompanied by deeper vertical permeability and greater influence from
underground water [66,67]. For permafrost regions, however, tundra could serve as an impermeable
barrier and prevent water from penetrating deeper into the soil [68]. Due to limited vertical drainage,
melting water was detained in surface soil, and absorbed or degraded by organic matter in soil, leading
to a decrease in DOC concentration [39,60,68–70]. In comparison, gentle slopes could facilitate the near
surface flow path and augment the contact area and time between water and soil that is rich in organic
matter, which would accelerate the humification of macromolecular organic matter and increase the
DOC concentration [38,39,46,71,72]. This could explain why steep slopes are accompanied by low
DOC concentrations and vice versa for most Eurasian watersheds in the Arctic. For another, the North
American rivers in the Arctic (the Yukon and Mackenzie) are characterized by complicated terrain
with unconsolidated sediments and consolidated rocks [17]. During spring floods, the melting ice
carries large amounts of suspended sediment into rivers, thus leading to sudden rises in the TSS, as
displayed in Table 2. The potential role of the highly concentrated sediment in adsorbing the DOM in
water, as reported by Amon et al. [17], might account for the low DOC in these rivers. In addition, the
lakes and wetlands along the rivers might change the proportion of DOM that is transported along the
riverbanks [73]. As pointed out by Yi et al. [74], the Great Slave Lake contributes 55.7% of its water
composition to the main flow of the Mackenzie River. The buffering capacity of open waters could
increase the dwell time of the DOM and the uncertainty of the DOC variation.

According to the second classification method, the watershed slopes of small (<60,000 km2) and
moderate (60,000–150,000 km2) drainage basins, respectively, explained 69% (N = 9) and 34% (N = 15)
of the variability in DOC, while only 14% (N = 11) of the variability in the DOC could be attributed to
the watershed slopes of large drainage basins (>150,000 km2) in Figure 7. The small drainage basins
usually possess relatively analogical geomorphic features and hydrologic conditions, leading to a
better explanatory ability for the slope-concentration relationships of the DOC. In comparison, the
large drainage basins might be influenced by many factors, and large-amplitude variations may cause
uncertainties. However, the scale-dependent effects on the slope-concentration relationships for the
DOC that are reported here still need additional data to corroborate them. As a result, the correlation
between the DOC and watershed slopes was not only geographic-dependent but also scale-dependent.
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4.2. Artificial Influence Factors

Human activities, such as the destruction of shrubs and vegetation, infrastructure construction,
changes in cultivation modes, and rapid urbanization, would interfere with natural processes and
the output environment of organic matter in watersheds [75]. As shown by the spatial distribution of
the DOC in Arctic rivers (Figure 4), the DOC concentration was higher near riverbanks with cities or
villages than midstream, indicating a possible influence of artificial factors on the DOC variation.

The human population density (people/km2) of each sub-catchment was calculated from
LandScan™ 2017 datasets and validated by data from the Arctic-GRO and PARTNERS projects.
Then we compared the human population density with the annual average DOC concentration that
was retrieved using the remote sensing data in Figure 8. The significantly positive correlation for six
rivers (R2 = 0.70, P < 0.05) implied anthropogenic interference. The Ob’ river has the flattest terrain and
the mildest climate among the six Arctic rivers, resulting in the least permafrost. The basin is densely
populated, with about 28 million people living on both sides of the river and population density of
9.67 people/km2, which is much more than other watersheds in the Arctic [17,41]. In comparison, the
watershed of the Kolyma is characterized by an adverse climate and extensive continuous permafrost,
with a population density of 0.03 people km−2 and the second-lowest DOC concentration. According
to our data, the human population could affect the DOC concentration to a certain degree, but more
influence factors should be taken into consideration.

The main source of DOC in Arctic regions is allochthonous wetlands and forest in terrestrial
environments [31]. Previous studies utilized the field-measured forest coverage and wetland area to
study the correlation between the DOC and land cover and obtained high accuracies for small-scale
study areas [38,47]. The study of Prokushkin et al. [76] confirmed that DOC of Yenisey and its tributaries
was mainly derived from the forest of the central Siberian plateau. To sum up, the LUCC not only plays
an important role in DOC export but also influences DOC quality through various biogeochemical and
biodegradation processes [15].

The high spatial resolution of remote sensing images makes large scale investigations possible
and economical. To quantitatively analyze the influence of the land cover on the DOC concentration,
we used the Finer Resolution Observation and Monitoring of Global Land Cover datasets that had a
10 m resolution (FROM-GLC10). As described in Section 2.2, there are 10 different land cover types
in the FROM-GLC10 datasets and 35 sub-catchments in our study. We first statistically analyzed
the proportions of the land cover types in each sub-catchment, and then a correlation analysis was
conducted between the annual average DOC concentration and the land cover types.
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Figure 8. Comparison of the human population density with the annual average DOC concentration in
the six watersheds.

A stronger positive correlation was found between forest cover and DOC in Figure 9A (R2 of 0.62,
P < 0.001), thus providing proof that it is the main source of DOC in Arctic regions. Similar results
were reported by Meyer et al. [77], who found that the output of organic carbon decreased after cutting
down a forest in the Coweeta watershed. The forest cover explained 62% of the variability in the DOC
in our study, indicating that other environmental elements also influenced the organic carbon output
of watersheds, such as the topography and hydrology [46,78].
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Figure 9. Correlation between forest coverage and the DOC concentration: (A) annual average, 
(B) spring, and (C) summer. 

Due to the impermeability of the permafrost that covers most of the Arctic regions, the 
fluidity of the melting snow and precipitation were confined to the topsoil [68]. Meanwhile, 
the forest cover and leaf-litter also accumulated on the topsoil and decomposed with the help 
of microorganisms, forming lignocellulose and humic acid that permeated into the soil. As we 
discussed in Section 4.1, the spring freshet that is caused by the increased precipitation and 
snowmelt resulted in the peak DOC concentrations in Arctic rivers. To evaluate the impact of 
the spring freshet, we compared the correlation between forest cover and the DOC in the spring 
and summer. As shown in Figure 9B and C, a stronger correlation was found between the 
LUCC and DOC in the summer (R2 of 0.57 and P < 0.001) when the influence of the spring 
freshet was more diminished than in the spring (R2 of 0.48 and P < 0.001). Our findings 
indicated that the unique and drastic spring freshet might raise the uncertainty of the 
correlation between the DOC and LUCC. 

In order to further analyze the DOM characteristics, such as molecular weight, 
composition, and age, SUVA254 was calculated, as described in Section 2.1. According to 
previous studies [21,22,38,50], SUVA254 values are positively correlated with the percent 
aromaticity and molecular size of DOM. As shown in Table 1, the SUVA254 in Ob’ was the 
largest (3.301 L mg C-1 m-1), followed by that in Lena and Yenisey. In comparison, the SUVA254 
from Kolyma and Mackenzie were the smallest two. Our results indicated that SUVA254 was a 
statistically significant predictor of DOC concentration (Table 1). Considering the Ob’ contains 
the largest peat bog system on the planet [17,18] and the largest proportion of wetland among 
the six Arctic rivers, marsh swamp could be the reason for the high concentration of DOC and 
SUVA254. 

As a complex ecosystem like the Arctic, the controlling factors of the DOC flux are 
definitely more than river discharge, watershed slopes, human activities, and the LUCC factors 
that were discussed in our paper. The increasing river discharge caused by climate change 
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Due to the impermeability of the permafrost that covers most of the Arctic regions, the fluidity
of the melting snow and precipitation were confined to the topsoil [68]. Meanwhile, the forest cover
and leaf-litter also accumulated on the topsoil and decomposed with the help of microorganisms,
forming lignocellulose and humic acid that permeated into the soil. As we discussed in Section 4.1,
the spring freshet that is caused by the increased precipitation and snowmelt resulted in the peak
DOC concentrations in Arctic rivers. To evaluate the impact of the spring freshet, we compared the
correlation between forest cover and the DOC in the spring and summer. As shown in Figure 9B,C, a
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stronger correlation was found between the LUCC and DOC in the summer (R2 of 0.57 and P < 0.001)
when the influence of the spring freshet was more diminished than in the spring (R2 of 0.48 and
P < 0.001). Our findings indicated that the unique and drastic spring freshet might raise the uncertainty
of the correlation between the DOC and LUCC.

In order to further analyze the DOM characteristics, such as molecular weight, composition, and
age, SUVA254 was calculated, as described in Section 2.1. According to previous studies [21,22,38,50],
SUVA254 values are positively correlated with the percent aromaticity and molecular size of DOM.
As shown in Table 1, the SUVA254 in Ob’ was the largest (3.301 L mg C−1 m−1), followed by that
in Lena and Yenisey. In comparison, the SUVA254 from Kolyma and Mackenzie were the smallest
two. Our results indicated that SUVA254 was a statistically significant predictor of DOC concentration
(Table 1). Considering the Ob’ contains the largest peat bog system on the planet [17,18] and the largest
proportion of wetland among the six Arctic rivers, marsh swamp could be the reason for the high
concentration of DOC and SUVA254.

As a complex ecosystem like the Arctic, the controlling factors of the DOC flux are definitely more
than river discharge, watershed slopes, human activities, and the LUCC factors that were discussed
in our paper. The increasing river discharge caused by climate change might also contribute to the
DOC rise in rivers [41,43]. In addition, massive melting of permafrost, construction of dams, frequent
forest fires [42], latitude [79], and concentration and composition of suspended sediment [17] were also
considered as important potential influence factors. As a result, more studies are needed to further
explore the mechanism of DOC concentration change and the carbon cycle in the Arctic region.

5. Conclusions

It is of great importance to advance our understanding of the global carbon cycle using remote
sensing algorithms for Arctic rivers. With the help of field-measured data and Sentinel-2 remote
sensing data, we developed and validated a CDOM/DOC retrieval algorithm. Then, we obtained the
spatial distributions of the DOC in watersheds of the six largest Arctic rivers and 35 sub-catchments
between 2016 and 2018. The spatial distribution of DOC showed significant differences in spring and
summer. The spring freshet increased river discharge and DOC concentration synchronously, while
the river discharge and DOC experienced a steady decline in summer. Our analysis showed that the
river discharge, watershed slopes, human activities, and the LUCC were important influence factors of
DOC concentrations in rivers across the Pan-Arctic domain. In addition, the seasonality, geography,
and scale would affect the correlation between DOC concentration and these influence factors. The first
usage of LUCC data with high spatial resolution (10 m) made a quantitative analysis of the correlation
between LUCC and DOC concentration possible. According to our data, the forest coverage seemed to
play an important role in regulating the DOC flux in the Arctic rivers. More studies are still needed to
comprehensively describe the DOC variation in high latitudes regions.

This paper verifies the ability of the remote sensing retrieval algorithm to monitor DOC variations
in Arctic rivers during the open-water season. The proposed algorithm is the first attempt to monitor
CDOM/DOC variation in the Arctic rivers using high spatiotemporal resolution optical Sentinel-2 data.
The satisfying performance (R2 = 0.825, RMSE = 0.010 m−1) proves that Sentinel-2 offers improved
sensitivity for estimating water quality parameters with an improved spatial resolution, better band
placement, and increased observation frequency. Our results reveal the successful application of
wavelength combinations of Sentinel-2 data to retrieve the CDOM/DOC in high latitude areas. Given
that the Arctic environment is rapidly changing, the algorithm that is proposed here might not be able
to be reliably applied to future scenarios. This method does, however, provide a basis for the near-term
estimation of DOC concentrations and an opportunity for longer-term assessments of the integrated
changes in watershed biogeochemistry. Our results could provide a comprehensive evaluation method
for riverine DOC in Pan-Arctic regions with remote sensing data.
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