
remote sensing  

Article

A Temporal Disaggregation Approach for TRMM
Monthly Precipitation Products Using AMSR2 Soil
Moisture Data

Dong Fan 1,2, Hua Wu 1,2,3 , Guotao Dong 4, Xiaoguang Jiang 1,5 and Huazhu Xue 6,*
1 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China;

fandong18@mails.ucas.ac.cn (D.F.); wuhua@igsnrr.ac.cn (H.W.); xgjiang@ucas.ac.cn (X.J.)
2 State Key Laboratory of Resources and Environmental Information System, Institute of Geographical

Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
3 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development

and Application, Nanjing 210023, China
4 Heihe Water Resources and Ecological Protection Research Center, Lanzhou 730030, China;

dongguotao@hky.yrcc.gov.cn
5 Key Laboratory of Quantitative Remote Sensing Information Technology, Academy of Opto-Electronics,

Chinese Academy of Sciences, Beijing 100094, China
6 School of Surveying and Land Information Engineering, Henan Polytechnic University,

Jiaozuo 454000, China
* Correspondence: xhz@hpu.edu.cn

Received: 14 October 2019; Accepted: 9 December 2019; Published: 11 December 2019
����������
�������

Abstract: Accurate and spatially-distributed precipitation information is vital to the study of the
regional hydrological cycle and water resources, as well as for environmental management. To provide
high spatio-temporal resolution precipitation estimates over insufficient rain-gauge areas, great efforts
have been taken in using the Normalized Difference Vegetation Index (NDVI) and other land surface
variables to improve the spatial resolution of satellite precipitation datasets. However, the strong
spatio-temporal heterogeneity of precipitation and the “hysteresis phenomenon” of the relationship
between precipitation and vegetation has limited the application of these downscaling methods to high
temporal resolutions. To overcome this limitation, a new temporal downscaling method was proposed
in this study by introducing daily soil moisture data to explore the relationship between precipitation
and the soil moisture increment index. The performance of this proposed temporal downscaling was
assessed by downscaling the Tropical Rainfall Measuring Mission (TRMM) precipitation data from a
monthly scale to a daily scale over the Hekouzhen to Tongguan of the Yellow River in 2013, and the
downscaled daily precipitation datasets were validated with in-situ measurement from 23 rainfall
observation stations. The validation results indicate that the downscaled daily precipitation agrees
with the rain gauge observations, with a correlation coefficient of 0.59, a mean error range of 1.70 mm,
and a root mean square error of 5.93 mm. In general, the monthly precipitation decomposition method
proposed in this paper has combined the advantage of both microwave remote sensing products.
It has acceptable precision and can generate precipitation on a diurnal scale. It is an important
development in the field of using auxiliary data to perform temporal downscaling. Furthermore,
this method also provides a reference example for the temporal downscaling of other low temporal
resolution datasets.
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1. Introduction

Rain, snow, and other forms of precipitation affect every part of life on Earth. As the most
important driving factor of the water cycle, the magnitude and spatio–temporal distribution of
precipitation directly affect the water exchange between the land and atmosphere and are closely
related to vegetation growth, agricultural production, and human survival and development [1–3].
Accurate and quantitative study of precipitation, especially the distribution patterns of precipitation
on spatio–temporal scales, is of great significance for regional hydrology analysis, water resource
management, drought and flood disaster monitoring, and ecological environment management [4,5].

Traditional precipitation data are usually derived from ground-based measurements, such as
rain gauges and meteorological stations, which offer the most direct and accurate way to measure
precipitation, and can be considered the “true value” of precipitation. However, there are two
disadvantages with this type of precipitation observation method. First, the quantity and location of
meteorological stations is extremely irregular. Meteorological stations are usually built in flat regions
and experience relatively dense human activities. There are few meteorological stations (in some
cases, none) in areas with high altitudes, complex terrain conditions, and scarce human activities.
Second, precipitation observed form ground-based rain gauges is usually represented by “point” scale
rainfall conditions, while precipitation data on the “area” scale is often more desirable in applications.
Generally, precipitation data from rain gauge observations need to be spatially interpolated to an
area scale. Due to the influence of geographical location, prevailing winds, terrain, and other factors,
precipitation has a strong spatial and temporal heterogeneity. It is difficult to obtain accurate area-scale
precipitation data through conventional interpolation processes.

With the development of remote sensing technology and meteorological satellite technology,
the detection, inversion, and assimilation of precipitation information by satellite remote sensing data
provide new means for studying precipitation. Satellite-based precipitation observation data contain
a wide range of observations, are not limited by terrain and weather conditions, and can intuitively
reflect the temporal and spatial distribution characteristics of precipitation. Satellites have become an
important source of precipitation data, especially in areas where rain gauges are scarce, such as oceans,
deserts, rainforests, and so on.

As a joint project of the National Aeronautics and Space Administration (NASA) and Japan
Aerospace Exploration Agency (JAXA), the Tropical Rainfall Measuring Mission (TRMM) was
successfully launched in 1997, carrying with it the first satellite-borne precipitation radar, which
could provide new insights into tropical storm structures and intensification, water vapor, cloud
water, and rainfall intensity in the atmosphere [6]. TRMM precipitation data have been widely used
in recent years and have afforded researchers a large amount of surface precipitation data [7–9],
which compensate for the current insufficiency of ground rainfall measurement stations.

In order to improve the temporal and spatial resolution of the TRMM data, significant research has
been carried out. Immerzeel, et al. [2] found that the normalized difference vegetation index (NDVI)
is a good proxy for precipitation and proposed a spatial downscaling methodology that uses coarse
scale TRMM precipitation estimates and fine scale NDVI patterns to increase the spatial resolution of
TRMM data from 25 km to 1 km. Thereafter, Lloyd et al. [10], Duan et al. [11], Park et al. [12], and
Fang et al. [13] established a linear or exponential regression model between precipitation, NDVI, and
digital elevation model (DEM) to achieve the spatial downscaling of TRMM. Later, the wavelet [14],
multifractal [15], Bayesian model [16], area-to-point kriging (ATPK) [17–21], geographic weight
regression methods (GWR) [18,22–26], random forests (RF) method [5,27,28], support vector machine
(SVM) [29], and artificial neural network method [30] were also introduced into the spatial downscaling
of TRMM data by establishing a statistical relationship between TRMM data and environmental
parameters, such as NDVI, DEM, latitude, longitude, slope, aspect, land surface temperature, and so
on [31–34]. However, these spatial downscaling methods are only available on an annual scale, because
environmental variables, such as vegetation and DEM, usually show a long-term distribution of
precipitation. Moreover, the response of vegetation to precipitation has a hysteresis phenomenon [35],
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which cannot reflect the amount of precipitation in the short term. In order to improve the temporal
resolution of satellite precipitation observation data, Wang et al. [9], Duan et al. [11], Zhang et al. [21],
and Ma et al. [28] used the monthly ratio multiplied by the corresponding spatial downscaled annual
datasets to obtain monthly downscaled data. However, because precipitation changes dramatically
over time, it is difficult to use these precipitation downscaling methods at higher temporal resolutions.

The main objective of this study is to improve the temporal resolution of satellite-observed
precipitation products through the synergetic use of precipitation and soil moisture data at regional and
basin scales. Based on this temporal downscaling method, TRMM monthly precipitation products were
downscaled to a daily scale. The final temporal downscaled result was validated based on 365 days of
observations from 23 rain-gauge stations in the middle reaches of the Yellow River. These results show
that this method is simple and feasible and could be used as a supplement for obtaining daily-scale
precipitation data, thereby providing a new reference for the study of the temporal downscaling of
satellite-based remote sensing datasets with low temporal resolutions. Moreover, this study could
intensify our understanding of precipitation temporal downscaling methodology and will be useful
for hydrology and water resource management in areas without sufficient ground rain gauges.

In Section 2 we describe the datasets used in this study and the downscaling method design,
development, and procedures used for validation. The downscaled results are presented in Section 3,
and we provide a brief synopsis of the results, implications, and methodological limitations in Section 4.
In Section 5, the conclusion is made and future work is proposed.

2. Materials and Methods

2.1. Study Area

The study area, the Hekouzhen to Tongguan area of the Yellow River, is located in central China,
with a latitude from 33◦40′N to 40◦35′N and a longitude from 103◦57′E to 112◦39′E, covering 2.5 million
square kilometers. Figure 1 shows the spatial distribution of the elevation and geographical locations
of the rain gauges in this study area. The terrain is high in the northwest and low in the southeast
(mainly hilly with plateaus), with an altitude of 207 m to 3329 m. Because the study area is located in a
transitional region from a humid to arid climate, the annual and inter-annual precipitation changes
greatly, with an average annual precipitation of 466 mm/y [24]. The vegetation type of the study area is
mainly warm temperate deciduous broad-leaved forest. Due to the obvious vertical-joint characteristics
of loess and the strong spatio–temporal heterogeneity of precipitation, the problem of wind erosion
and water erosion is prominent in this area, which is the main source of sediment in the lower reaches
of the Yellow River [36].

2.2. Data Resources

TRMM monthly precipitation data (TRMM 3B43 version 7) were acquired from the NASA
Precipitation Measurement Mission Center website (https://pmm.nasa.gov/TRMM). This is a
multi-source monthly scale precipitation product integrated with TRMM dual-channel passive
microwave radiometer (TMI) data, Special Sensor Microwave Imager (SMMI) data, Advanced
Microwave Scanning Radiometer for Earth Observing System (AMSR-E) data, Advanced Microwave
Sounding Unit (AMSU) data, and Global Precipitation Climatology Project (GPCP) and ground
rain gauge observations, which seek to produce the best estimate of precipitation and minimal
root-mean-square (RMS) precipitation-error estimates from satellite sensors and the rain gauge
network [22,37]. Because of the availability of the in-situ data, the TRMM precipitation products
used in this study cover the whole year of 2013 with a spatial resolution of 0.25◦ × 0.25◦. In addition,
as a widely used source of high temporal resolution precipitation data, the TRMM 3B42 precipitation
product is also used as auxiliary data to verify the accuracy of the downscaling results. The TRMM 3B42
provides precipitation observations every 3 hours and has the same spatial resolution as TRMM 3B43.

https://pmm.nasa.gov/TRMM
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The Advanced Microwave Scanning Radiometer 2 (AMSR2) level 3 soil moisture product
(https://suzaku.eorc.jaxa.jp/GCOM_W/index.html) (for 2013), with a spatial resolution of 0.25◦ × 0.25◦,
was adopted in this study. This product uses the Land Parameter Retrieval Model (LPRM) to establish
a functional relationship between C-band (6.9 GHz) bright temperatures and surface environmental
parameters and inverts surface soil moisture and vegetation water content simultaneously through an
energy radiation transfer model and the nonlinear circulation method [38,39].
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Figure 1. Geographical locations and distribution of the rain gauges in the Hekouzhen to Tongguan of
the Yellow River.

The land use and land cover (LULC) data, MCD12A1 of the study in 2013, were obtained from the
Moderate Resolution Imaging Spectroradiometer (MODIS). This product has a spatial resolution of
500 m and was derived from NASA’s earth data website (https://earthdata.nasa.gov/). MODIS provides
five optional LULC classification systems: International Geosphere-Biosphere Programme (IGBP)
classification, University of Maryland (UMD) classification, Leaf Area Index (LAI) classification,
BIOME-Biogeochemical Cycle (BGC) classification, and Plant Functional Type classification. In this
paper, IGBP classification was used to mark the underlying surface conditions around the rain gauges.

The DEM data were derived from NASA’s Shuttle Radar Topography Mission (SRTM,
http://srtm.csi.cgiar.org/). The spatial coverage of the SRTM DEM is 56◦S to 60◦N, covering more
than 80% of the global land surface and providing two spatial resolutions: SRTM1 (spatial resolution
is 1′, about 30 m) and SRTM3 (spatial resolution is 3′, about 90 m). Since SRTM1 only covers North
America, SRTM3 is used in this paper to obtain the slope layer of the study area, representing the
topographic fluctuation around each meteorological station.

The ground observations used in this study were provided by the National Meteorological
Information Center of China (http://data.cma.cn/). The daily precipitations of 23 rain gauges were
provided in this study area. The spatial distribution and basic attribute information for all the ground
observation stations are shown in Figure 1 and Table 1.

https://suzaku.eorc.jaxa.jp/GCOM_W/index.html
https://earthdata.nasa.gov/
http://srtm.csi.cgiar.org/
http://data.cma.cn/
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Table 1. Information on rain gauges in the Hekouzhen to Tongguan of the yellow river.

ID Name Longitude (◦) Latitude (◦) Altitude (m) Land Use and Land
Cover (IGBP)

53478 Youyu 112.445 39.997 1348 grasslands
53543 Dongsheng 109.985 39.827 1462 grasslands
53564 Hequ 111.147 39.383 862 grasslands
53646 Yulin 109.779 38.272 1156 grasslands
53663 Wuzai 111.818 38.921 1401 croplands
53664 Xingxian 111.132 38.463 1012 grasslands
53738 Wuqi 108.169 36.924 1332 grasslands
53740 Hengshan 109.237 37.920 1110 grasslands
53754 Suide 110.215 37.501 929 grasslands
53764 Lishi 111.098 37.507 951 grasslands
53821 Huanxian 107.295 36.580 1256 grasslands
53845 Yan’an 109.500 36.600 959 grasslands
53853 Xixian 110.951 36.694 1053 grasslands
53903 Xiji 105.718 35.964 1917 grasslands
53915 Pingliang 106.667 35.548 1365 croplands
53923 Xifengzhen 107.631 35.734 1420 urban and built-up lands
53929 Changwu 107.793 35.199 1196 croplands
53942 Luochuan 109.506 35.811 1159 croplands
57014 Tianshui 105.868 34.567 1085 urban and built-up lands
57025 Fengxiang 107.384 34.514 782 urban and built-up lands
57034 Wugong 108.214 34.258 448 urban and built-up lands
57037 Yaoxian 108.977 34.932 710 croplands
57046 Huashan 110.083 34.468 1830 grasslands

2.3. The Relationship between Precipitation and Soil Moisture

There have been many studies on the spatial downscaling of precipitation [18,19,40], soil
moisture [35,41–44], land surface temperature [45–48], and so on. The basic idea of these methods is to
use the spatial variation characteristics reflected by high-resolution auxiliary data to improve the spatial
resolution of these surface parameters. Based on this methodology, for the surface parameters with low
temporal resolution, auxiliary data with high temporal resolution can also be used to realize temporal
downscaling and improve temporal resolution. Therefore, the daily precipitation and corresponding
soil moisture data of each rain gauge station in August 2013 were analyzed. Due to the limitations of
the frame, only the four stations of Youyu, Suiude, Xifengzheng and Huashan are listed here. These
four stations are discretely distributed in the study area, and their annual precipitation and soil water
values vary greatly. The average annual precipitation of the four stations from 2000 to 2013 is 426 mm,
433.1 mm, 555.5 mm, and 735.4 mm, respectively. The annual precipitation is ranked 6th, 8th, 18th,
and 23rd among the 23 stations, from low to high. The relationship between precipitation and soil
moisture (SM), soil moisture differences between the day and the previous day (∆SM = SMi − SMi−1),
and the soil moisture index (∆′SM in Equation (1)), which is a proxy of daily precipitation, were
analyzed to find the most suitable parameter for the temporal downscaling of monthly precipitation.

Figure 2 shows that soil moisture is increased more noticeably on days with precipitation than on
days without precipitation. For one station, the higher the precipitation, the higher the soil moisture
will be. There is, then, a “positive correlation” between precipitation and soil moisture. Therefore, the
magnitude of soil moisture can illustrate the temporal distribution of precipitation to some extent.
However, soil moisture also showed slight fluctuations when it was not raining. Moreover, the initial
soil moisture varies from station to station, and the sensitivity of soil moisture to the response of
precipitation is also different. As a result, using soil moisture directly will not reveal the precipitation
very accurately.
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In order to reduce the impact of different initial moisture levels, a soil moisture increment
(∆SM), defined as the soil moisture of a day minus the soil moisture of the previous day, is used.
The relationship between ∆SM and precipitation is shown in Figure 3. When there is no rainfall, the
fluctuation of the ∆SM curve is gentle—almost close to zero. When precipitation occurs, ∆SM shows a
large fluctuation. This step can effectively eliminate the influence caused by different initial moisture
contents. However, soil moisture on non-precipitation days may still show some changes due to day
and night alternations or the inherent errors of soil moisture data. Therefore, ∆SM cannot be used to
represent the amount of precipitation directly.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 20 
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In order to further exclude the irregular changes of soil moisture caused by non-precipitation
factors, the following assumptions were made:

(1) The monthly ∆SM obeys t distribution.
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(2) The small fluctuation of soil moisture increments within a confidence interval of 0.8 (one-sided) is
caused by non-rainfall factors.

Due to the high spatiotemporal heterogeneity of precipitation, the above hypotheses, although not
completely consistent with reality, were allowed for exploration. Based on these assumptions, a date
with a confidence level less than 0.8 is considered as “a day without precipitation”. Conversely, marked
as “the raining day”, ∆SM retains the original value. The discrimination criterion was established
as follows:

∆′SM =

 0 ∆SM < X + S
√

n
tα(n− 1)

∆SM ∆SM ≥ X + S
√

n
tα(n− 1)

(1)

where ∆′SM is the soil moisture index, X is the mean of ∆SM, S is the standard deviation of ∆SM, n is
the total number of days in a month, and 1− α is the confidence level.

Figure 4 shows that the ∆′SM and precipitation have a strong positive correlation. The larger
∆′SM is, the greater the daily precipitation will be. Therefore, ∆′SM could describe the distribution of
precipitation very well and is suitable for the temporal downscaling of monthly precipitation data in a
long time series.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 20 
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2.4. Temporal Downscaling Method

According to the results of analysis of the daily precipitation and soil moisture data collected,
there is a relatively stable relationship between the soil moisture increment and precipitation in a long
time series and in different regions. Therefore, in this paper, the soil moisture index was calculated
by AMSR2 soil moisture products to temporally downscale the TRMM monthly precipitation data.
This downscaling process is shown in Figure 5.

(1) To address the data gaps caused by satellite orbit and scan width and to ensure that the daily soil
moisture data can completely cover the whole study area, AMSR2 ascending and descending data
was filled by the mean of the adjacent periodic data. The gap-filled ascending and descending
data were used for the maximum value composite (MVC) to obtain the daily soil moisture.

(2) The soil moisture increment (∆SM) can be obtained by subtracting the soil moisture of the
previous day.

(3) Equation (1) was used to adjust ∆SM to obtain the soil moisture index (∆′SM).
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(4) It is believed that the soil moisture index can reflect the temporal variation characteristics of
precipitation within one month. According to this index, the total precipitation of the month is
disaggregated to obtain the daily precipitation. The following equation can be used:

Pi = Pmonth × ∆′SMi /
n∑

i=1

∆′SMi (2)

where Pi is the daily precipitation, Pmonth is total precipitation of the month, ∆′SM is the soil
moisture index on day i, and n is the amount of days in that month.
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In order to evaluate the effectiveness of the proposed temporal downscaling method, the estimated
daily precipitation was verified by using the ground observation data from rain gauges in the
study area. According to the location of the rain gauges, the corresponding pixel of the downscaled
daily precipitation was extracted, and the Pearson correlation coefficient (R), mean error (ME), and
root mean square error (RMSE) were calculated.

R =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2 n∑

i=1
(yi − y)2

(3)

ME =
n∑

i=1

(xi − yi)/n (4)

RMSE =

√√ n∑
i=1

(xi − yi)
2/n (5)

where i is the date mark, n is the total number of days, xi is the daily precipitation obtained by temporal
downscaling, and yi is the ground observation; x and y are the average of the precipitation derived
from temporal downscaling and ground observations.
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3. Results

3.1. Spatial Estimation of Daily Precipitation

According to the temporal downscaling method proposed in Section 2, the TRMM monthly
precipitation is decomposed by the change of soil moisture to obtain the daily precipitation. Figure 6
presents the spatial distribution of the downscaled precipitation and the ground observed precipitation
in the Hekouzhen to Tongguan of the Yellow river on 30 October and 23 November 2013. Because there
were only a few discrete “points” of measured precipitation, this study used the inverse distance
weighted (IDW) spatial interpolation method to interpolate the ground observed precipitation to the
“regional” scale. We used the IDW interpolation tool in ArcGIS software and adopted the default
parameters. As Figure 6 shows, the downscaled precipitation effectively captures the spatial pattern
and magnitude of the rain gauge observations corresponding to precipitation. The precipitation
observed from the rain gauges and downscaling showed the same distribution, where precipitation
decreased form south to north. In addition, the precipitation obtained by the interpolation method
is relatively smooth, and the precipitation information in the pixels without rain gauges may not
be accurate enough. However, the downscaling method is performed on a per-pixel basis, so it can
provide more detail.
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Figure 6. Spatial estimation of daily precipitation in the Hekouzhen to Tongguan of the Yellow
River: the precipitation obtained by the rain gauges data interpolation on 30 October 2013 (a) and
23 November 2013 (c); the precipitation derived from downscaling method on 30 October 2013 (b) and
23 November 2013 (d).

3.2. Comparison between Downscaling Results and Ground Observations

The proposed downscaling method was used to decompose the TRMM monthly precipitation
products to a daily scale for 2013. Although the spatial distribution of the daily precipitation obtained
using the downscaling method is in good agreement with the ground observations (Figure 6), the specific
accuracy of the downscaled results at each rain gauge still needs further verification. Therefore, the
daily precipitation from downscaling was extracted by the location of the rain gauges, and the R, ME,
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and RMSE were thus calculated. Figure 7 shows the scatterplots of the daily precipitation derived from
ground observations and downscaling. As shown in Figure 7, the accuracy of the downscaling results
varies among the different stations, with the R ranging from 0.37 to 0.78, the ME between 1.11 mm
and 2.13 mm, and the RMSE between 3.60 mm and 7.33 mm. In addition, we calculated the frequency
distribution of the errors, where the error was less than 5.86 mm (1 standard deviation), accounting
for 91.7%. Overall, the daily downscaled precipitation is in reasonable agreement with the data
measured with an R of 0.59, an ME of 1.70 mm, and an RMSE of 5.93 mm.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 20 
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Taking the Wugong station as an example, we plotted the time-varying curve of the downscaled
and measured precipitation, which had the lowest correlation coefficient among all 23 sits. In Figure 8,
the dotted line represents the daily precipitation in 2013 obtained by the temporal downscaling of
TRMM 4B43, and the solid line is the measured rainfall from the ground rain gauges. It can be seen
in Figure 8 that the downscaled results are close to the ground observations, which could reflect the
temporal variation characteristics of precipitation. In most cases, the downscaling results are in a good
agreement with the rain gauge observations, though there are time lags for some days. For example,
the ground observations showed heavy rainfall on 17 July, while the downscaled results showed heavy
rainfall on 18 July. A similar situation also appeared on 10 July and 25 May.
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Figure 8. Time series of the downscaled and observed daily precipitation at the Wugong station in 2013.

Through analysis, it was found that the time mismatch of ground and satellite observations is one
of the most important reasons for the differences between the downscaled results and the measured
precipitation at some rain-gauge stations. The overpass local times of the AMSR2 satellite are 1:30
(descending) and 13:30 (ascending), respectively, while the ground measurements were observed at
8:00 each day. If the rainfall occurs from 13:30 to 1:30 (the day after), the soil moisture changes caused
by the precipitation cannot be observed until the next overpass of AMSR2. This temporal mismatch
reduces the correlation between the downscaled results and ground-based rainfall observations. In
order to reduce the impact of time mismatch, the downscaled precipitations were corrected by moving
the downscaled data to match the ground-based observations (within one day before and after). The R
and RMSE of each station after correction are shown in Figure 9. As shown in Figure 9, the R between
the measured precipitation and the time-matched downscaling results was increased, and the RMSE
was also reduced to varying degrees.
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In order to analyze the influence of confidence level (Equation 1) on the accuracy of the downscaling
results, we use different confidence levels to downscale the TRMM data, and the results of this process
are shown in Figure 10. In Figure 10, the greater the confidence level, the less sensitive the response
of soil water to precipitation. Therefore, if the confidence level is set too high, it is easy to miss the
precipitation information and increase the RMSE. On the other hand, if the confidence level is set too
low, the determination criterion will be too sensitive to random fluctuations of soil moisture, and it will
be easy to judge a day without precipitation as having a light rainfall, leading to a slightly reduction
in the correlation coefficient and a slight increase in the root mean square error. Therefore, 0.8 was
selected as the threshold for the confidence level in this study area.
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Figure 10. Validation results of the downscaling precipitation at different confidence levels.

4. Discussion

The downscaling method can obtain relatively reliable daily-scale precipitation through
monthly-scale precipitation and daily-scale soil moisture changes. At the same time, as a widely used
high temporal resolution precipitation product, the TRMM 3B42 provides the grid-based precipitation
every 3 h between 50◦S and 50◦N. In this study, the TRMM 3B42 precipitation rate was converted into
total daily precipitation, and then the corresponding pixel value was extracted from the location of
the rain gauges. Finally, the R, ME and RMSE of TRMM 3B42 and ground measured precipitation
were calculated (Table 2). It can be seen that the accuracy of downscaled precipitation obtained from
daily-scale precipitation by our proposed method was slightly lower than that of 3B42 products at some
sites and there is still space for improvement. However, as a trial method for temporal downscaling
of satellite-based precipitation data, it still has great potential in many aspects. It can be used as a
method for providing grid precipitation data with high temporal resolution when TRMM 3B42 data
are missing or with bad quality. In addition, combined with other high-spatiotemporal resolution
soil moisture products, such as SMAP 9 km soil moisture data, another possible application of this
downscaling method is to achieve a spatiotemporal downscaling simultaneously.

Land use and land cover are some of the important factors affecting the accuracy of the downscaled
precipitation. On one hand, land use and land cover influence the relationship between precipitation
and soil moisture. Land cover types are mostly cultivated land, urban areas, and construction land
around the stations of Changwu, Fengxiang, and Wugong (Table 1), where the downscaled results are
different for the ground measurements. Conversely, the land cover of Youyu, Hequ, Hengshan, Yan’an,
and other stations with relatively high accuracies are mainly grassland. The difference in land cover
affects the accuracy of AMSR2 soil moisture products [38,39], which will also affect the accuracy of the
downscaling results.
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Table 2. Verification results of the TRMM 3B42 and downscaled daily precipitation based on ground
measured data.

ID Name
TRMM 3B42 Downscaled Precipitation

R ME (mm) RMSE (mm) R ME (mm) RMSE (mm)

53478 Youyu 0.81 0.13 3.24 0.78 0.16 3.60
53543 Dongsheng 0.82 −0.05 3.31 0.60 −0.03 4.43
53564 Hequ 0.63 0.55 4.24 0.70 0.51 4.36
53646 Yulin 0.64 0.17 5.07 0.63 0.18 4.97
53663 Wuzhai 0.77 −0.27 3.80 0.50 −0.44 5.63
53664 Xingxian 0.76 −0.38 5.23 0.53 −0.56 7.19
53738 Wuqi 0.74 0.17 4.72 0.63 0.21 6.83
53740 Hengshan 0.64 0.33 3.96 0.67 0.43 4.83
53754 Shuide 0.60 −0.06 6.85 0.65 0.04 6.79
53764 Lishi 0.60 0.26 6.36 0.67 0.48 6.68
53821 Huanxian 0.62 −0.28 5.08 0.55 −0.06 5.83
53845 Yanan 0.85 −0.44 5.50 0.75 −0.57 6.88
53853 Xixian 0.75 0.26 5.72 0.65 0.14 6.65
53903 Xiji 0.24 −0.04 7.32 0.49 −0.10 5.82
53915 Pingliang 0.59 −0.11 6.45 0.65 −0.02 5.87
53923 Xifengzhen 0.48 0.00 6.98 0.63 0.09 6.20
53929 Changwu 0.78 0.18 5.34 0.50 0.63 6.12
53942 Luochuan 0.56 0.17 7.34 0.49 0.36 7.33
57014 Tianshui 0.81 −0.35 6.01 0.54 0.09 6.73
57025 Fengxiang 0.74 0.15 3.72 0.42 0.05 5.41
57034 Wugong 0.55 0.04 5.54 0.37 −0.07 6.39
57037 Yaoxian 0.54 −0.01 4.97 0.49 −0.02 5.30
57046 Huashan 0.50 −0.12 4.88 0.61 −0.09 4.52

Differences in vegetation coverage also have an impact on the accuracy of the downscaling results.
The characteristics of changes in soil moisture will show a difference between bare soil and
vegetation cover. The vegetation canopy has an “intercepting effect” on rainwater, which reduces the
amount of rainwater falling [49]. In addition, an understory, such as Bryophyta and the litter layer, will
increase the amount of water infiltration and reduce evaporation [33,50]. Due the influences of these
two aspects, the temporal variation of the soil moisture of the vegetation cover surface is less than that
of bare soil, and the soil moisture change is moderate [51].

For each pixel, due to satellite orbital parameters and AMSR2 sensor scanning width, the AMSR2
passes overhead one or two times per day. To investigate the impact of the satellite overpass on
the downscaling results, we separately calculated the downscaling results for 23 sites over 365 days
with different frequencies of satellite overpass (Figure 11). It can be seen in Figure 11 that if there
are two overpasses within a day, the accuracy of the downscaling results is better than that with
only one overpass. On the one hand, the more overpass, the more easily the soil moisture reflects
precipitation information. Moreover, compared to only one overpass, by synthesizing two scans of soil
moisture data, the random errors of the AMSR2 product can be reduced to some extent. In this way,
the true soil moisture information of the day with two observations can be expressed more accurately.

The accuracy of the original TRMM 3B43 monthly scale precipitation data is also an important
reason for the accuracy of the downscaled results. Due to the high heterogeneity of precipitation and
the uncertainty of the retrieval algorithm, the TRMM 3B43 monthly product also has certain errors,
which will be transmitted during the downscaling process. Figure 12 shows comparisons between the
TRMM 3B43 monthly-scale products with the ground observation precipitation for two stations that
have large downscaling errors, Hengshan and Xingxian. At the Hengshan station, the precipitation
obtained from TRMM 3B43 products in most months overestimates the precipitation, which also makes
the daily precipitation obtained by the downscaled method higher than that for ground observations
(Figure 7). Similarly, the monthly scale data of the TRMM at Xingxian Station in 2013 was slightly
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smaller than the measured value, resulting in an underestimation of the precipitation at a daily scale of
precipitation after downscaling.
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Figure 12. Comparison of the TRMM 3B43 monthly precipitation product with ground measurements
in Hengshan and Xingxian stations; ME is the mean error of the downscaling results for each month.

To further explore the effect of the inherent error of TRMM monthly precipitation data on the
accuracy of downscaled results, the downscaling method was directly applied to the ground-measured
monthly precipitation data and AMSR2 daily soil moisture products, and the R, ME, and RMSE were
also calculated. As can be seen in Table 3, the accuracy of the downscaled results of almost all stations
has been improved by using the ground measured monthly precipitation. The maximum increases of R,
ME, and RMSE are 0.07, 0.6 mm and 1.62 mm, respectively. This shows that the proposed downscaling
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method is more sensitive to the accuracy of the input monthly precipitation data than the selection of
the confidence level parameter (Figure 10). Similarly, comparing Table 3 and Figure 11, it can be seen
that the impact of the accuracy of input monthly scale precipitation on the downscaling method is
smaller than that of the frequency of AMSR2 satellite overpasses.

Table 3. Comparisons of downscaling results with different input monthly precipitation.

ID Name
TRMM 3B43 Downscaling Rain Gauge Data Downscaling

R ME (mm) RMSE (mm) R ME (mm) RMSE (mm)

53478 Youyu 0.78 0.16 3.60 0.81 −0.04 3.25
53543 Dongsheng 0.60 −0.03 4.43 0.62 −0.03 4.34
53564 Hequ 0.70 0.51 4.36 0.70 −0.09 2.92
53646 Yulin 0.63 0.18 4.97 0.63 −0.08 4.67
53663 Wuzhai 0.50 −0.44 5.63 0.53 −0.31 5.61
53664 Xingxian 0.53 −0.56 7.19 0.58 −0.32 6.9
53738 Wuqi 0.63 0.21 6.83 0.62 −0.04 6.43
53740 Hengshan 0.67 0.43 4.83 0.71 −0.04 3.21
53754 Shuide 0.65 0.04 6.79 0.66 0.06 6.88
53764 Lishi 0.67 0.48 6.68 0.68 0.13 5.91
53821 Huanxian 0.55 −0.06 5.83 0.55 0.06 6.11
53845 Yanan 0.75 −0.57 6.88 0.76 −0.24 7.1
53853 Xixian 0.65 0.14 6.65 0.65 −0.21 6.3
53903 Xiji 0.49 −0.10 5.82 0.56 −0.1 5.41
53915 Pingliang 0.65 −0.02 5.87 0.68 −0.08 5.68
53923 Xifengzhen 0.63 0.09 6.20 0.69 −0.02 5.68
53929 Changwu 0.50 0.63 6.12 0.49 0.31 5.86
53942 Luochuan 0.49 0.36 7.33 0.49 0.14 6.58
57014 Tianshui 0.54 0.09 6.73 0.54 0.29 7.16
57025 Fengxiang 0.42 0.05 5.41 0.41 −0.20 5.00
57034 Wugong 0.37 −0.07 6.39 0.34 −0.16 7.08
57037 Yaoxian 0.49 −0.02 5.30 0.52 −0.09 5.05
57046 Huashan 0.61 −0.09 4.52 0.63 −0.08 4.39

The initial water content of the soil can affect the response of soil moisture to precipitation. In areas
with similar soil textures, the total porosity in the soil is approximately the same and has a similar
saturated soil water content. The smaller the initial water content, the harder it is for the soil to reach
saturation, and the greater its potential to be used to reflect the influence of precipitation on soil
moisture and the sensitivity of soil moisture to precipitation. Therefore, for very dry soils and very
moist soils, the actual precipitation may vary greatly with the same soil moisture index.

The ups and downs of the terrain increase the spatial heterogeneity of land surface moisture.
Figure 13 shows the RMSE of the downscaled results and the mean slop, derived from the
SRTM DEM, within 0.25◦ × 0.25◦ (corresponding to one of TRMM and AMSR2 pixel) around the
meteorological stations. It can be seen in Figure 13 that except for the Yulin, Tianshui, and Huashan
stations, the slope and RMSEs near most stations have similar distribution characteristics: the greater
the slope around the station, the lower the accuracy of the downscaled results. As the slope increases,
the spatial and temporal heterogeneity of the precipitation and soil moisture increases, making the
response of soil water to precipitation more complex. At the same time, a larger slope also reduces the
retrieval accuracies of precipitation and soil moisture [52,53]. In addition, the soil moisture contents at
different locations on the slope of the mountain have different response characteristics for rainfall. For
example, when rainfall occurs, the soil moisture growth in the upper part of the slope is higher than
that in the middle and lower sections of the slope. After rainfall, soil moisture in the upper part of the
mountain also decreases faster than that in the lower part [54].
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Finally, the basic assumption of the proposed method in this paper is that there is a positive
correlation between soil moisture and rainfall in a time series. If the AMSR2 soil moisture product has
an abnormally high value, the curve of ∆SM will also have a strong fluctuation. Thus, the day may
be misjudged as having precipitation. Analogously, there may be some precipitation that is missed
when the precipitation is too small to cause soil moisture to rise significantly. In addition, given the
limited data available for precipitation observations, the “point scale” measured precipitation was
used to evaluate the downscaled results at a “pixel scale”. Therefore, the “scale effect”, neglected in
the evaluation process, was also a source of error.

5. Conclusions

Based on an analysis of daily precipitation and soil moisture data, a method for the temporal
downscaling of satellite-based precipitation using the soil moisture index was proposed. AMSR2 daily
soil moisture products were used to calculate the soil moisture index. The “raining day” and “the day
with no rainfall” were determined based on the discriminant criteria. As a result, the TRMM monthly
precipitation was decomposed according to the changes in soil moisture, and spatial precipitation data
at the daily scale were obtained. The temporal downscaled results were evaluated by observing the
precipitation data from ground rain gauges. The result shows that the daily rainfall derived from
downscaling method can reflect the occurrence of rainfall effectively, with an R of 0.59, an ME of
1.70 mm, and an RMSE of 5.93 mm.

Obtaining high-resolution precipitation data is of great significance in hydrology and water
resource analysis, drought and flood disaster prediction, and ecological environment management.
In this paper, the temporal downscaling of TRMM 3B43 monthly precipitation was achieved by using
the surface soil moisture variation characteristics derived from AMSR2 with a high temporal resolution.
However, this temporal downscaling method is based on the relationship between precipitation and
soil moisture to redistribute total precipitation during the month. Therefore, the accuracy of the
original precipitation and soil moisture data will greatly affect the accuracy of the downscaling results.
At the same time, this method only uses soil moisture as the auxiliary data to downscale and does
not consider other factors, such as soil texture, vegetation fraction, terrain characteristics, and so on,
which may affect the accuracy of the downscaling results. In addition, this paper uses the global
optimal soil moisture confidence level to determine the presence or absence of precipitation. However,
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the relationship between soil moisture and precipitation characteristics will change according to
different land cover types, soil texture characteristics, and topographical features. Therefore, in
future research, improvements can be made from these three perspectives: first, try to use higher
quality precipitation products to improve the accuracy of the monthly precipitation input; second,
obtain high-spatiotemporal resolution soil moisture to achieve spatiotemporal downscaling; and third,
introduce other auxiliary factors, such as soil texture and temperature differences between day and
night, to improve the robustness of the downscaling method.
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