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Abstract: Remote sensing image dehazing is an extremely complex issue due to the irregular and
non-uniform distribution of haze. In this paper, a prior-based dense attentive dehazing network
(DADN) is proposed for single remote sensing image haze removal. The proposed network, which is
constructed based on dense blocks and attention blocks, contains an encoder-decoder architecture,
which enables it to directly learn the mapping between the input images and the corresponding
haze-free image, without being dependent on the traditional atmospheric scattering model (ASM). To
better handle non-uniform hazy remote sensing images, we propose to combine a haze density prior
with deep learning, where an initial haze density map (HDM) is firstly extracted from the original
hazy image, and is subsequently utilized as the input of the network, together with the original hazy
image. Meanwhile, a large-scale hazy remote sensing dataset is created for training and testing of the
proposed method, which contains both uniform and non-uniform, synthetic and real hazy remote
sensing images. Experimental results on the created dataset illustrate that the developed dehazing
method obtains significant progresses over the state-of-the-art methods.
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1. Introduction

Remote sensing imageries are being increasingly utilized in the fields of numerous applications
with the advances of remote sensing technology, such as agriculture and weather studies [1], land
cover monitoring [2–4], and so on. However, remote sensing images are always impacted by various
atmospheric conditions like cloud, fog, and haze, which leads to a low image quality and thus inefficient
downstream analysis for many applications. Therefore, remote sensing image haze removal is a crucial
and indispensable pre-processing task.

For the image dehazing problem, earlier works utilized multiple images of the same scenery [5–8].
Despite some success, these methods are not practical in real life since the acquisition of several
images from the same scenery under different conditions is rather difficult. Subsequently, numerous
single-image dehazing methods have been developed. Some of the earlier methods make use of
image enhancement techniques, including histogram-based and contrast-based methods. In [9], Xu
et al. presented a solution based on contrast limited adaptive histogram equalization to remove
haze from single-color images. Narasimhan et al. [10] proposed a physical-based model to describe
the appearances of scenery under uniform bad weather conditions and utilizes a quick algorithm to
recover the scene contrast. However, these enhancement methods do not take the reasons for the
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image degradation into account, leading to common over-estimation, under-estimation, and color
shift problems.

With the physics-grounded atmospheric scattering model (ASM) developed in [11], many methods
have followed this physical model and attempted to recover clear scenes. To tackle the ill-posed
essence of single image haze removal problem, different priors and assumptions have been made. He
et al. [12] presented an empirical statistics-based dark channel prior (DCP) that for haze-free non-sky
image patches, at least one color-channel has some pixels with a quite low intensity. With the DCP,
transition matrix can be estimated from the original hazy image, and thus a clear image is restored.
However, this method leads to halos and color distortion when it comes to sky regions, since the dark
channel of sky regions has bright values, leading to underestimation of the transmission and thus
unsatisfactory dehazing results. In addition to the DCP, many other prior-based methods have been
developed. Meng et al. [13] proposed a boundary constraint and contextual regularization (BCCR)
based dehazing method to obtain a shaper restoration. In [14], Zhu et al. developed a color attenuation
prior to recovering the depth information of original hazy images through a linear model and estimate
the transmission maps. According to the prior that in a haze-free image every color cluster becomes a
line in the RGB space, Berman et al. [15] developed a non-local single-image haze removal solution to
recover the distance map and a clear image.

In consideration of the success of convolutional neural networks (CNNs) in computer vision tasks,
various haze removal techniques leverage CNNs to learn a transmission map just from the data. Cai
et al. [16] developed a CNN-based system to learn the mapping from the original hazy image to the
medium transmission matrix based on the training data, and leveraged empirical methods to estimate
the global atmospheric light. The clear image was subsequently recovered with the ASM. In [17], a
multi-scale deep CNN is presented by Ren et al. for single-image haze removal, which contains a
coarse net to predict an initial transmission matrix and a fine net to refine the results locally. Since
these data-based methods leverage CNNs only for the transmission estimation, they cannot perform
directly end-to-end haze removal. To handle this issue, Li et al. [18] developed a light network through
deforming the traditional ASM and minimizing the reconstruction error between the input hazy
image and corresponding clear image. More recently, Zhang et al. [19] developed a densely connected
pyramid dehazing network (DCPDN) to estimate the transmission matrices, atmospheric light, and
dehazed results at the same time through implanting the traditional ASM into the proposed network.

Although much success has been achieved, these prevailing dehazing methods easily fail when it
comes to remote sensing images since hazy remote sensing images are largely different from regular
natural hazy images, in many aspects. For instance, natural images often contain sky regions, which
can be used for the estimation of atmospheric light, while remote sensing images contain no sky
regions. At the same time, for natural close-range images, the haze distribution changes with the
depth of field, and thus estimation of the depth of field is the focus of dehazing. However, as to
remote sensing images, the depth of field can be regarded as a constant since the distance between the
sensor and the scene is always very large. As a result, the haze intensity distribution is mostly affected
by the atmospheric conditions and is thus rather changeable and irregular. From this perspective,
haze removal for single remote sensing image is much more complicated since there is no rule in
the distribution of haze. To handle the issue of single remote sensing image dehazing, Fu et al. [20]
presented an enhancement solution which combines the regularized-histogram equalization with
discrete cosine transform. Makarau et al. [21] constructed a haze thickness map (HTM) through locally
search of the dark objects, and subtracted the HTM to restore the haze-free image. Some haze removal
methods pay attention to the visible bands, since haze tends to pollute more visible bands. According
to the DCP, Long et al. [22] leveraged the DCP and a low-pass Gaussian filter for the estimation of the
transmission matrix and subsequently removed the haze from a single remote sensing image. Shen et
al. [23] utilized the classic homomorphic filter, removed the thin cloud (also regarded as haze) and
restored the ground information in the frequency domain. Haze optimized transformation (HOT)
was presented in [24] for the dehazing of Landsat scenes. Jiang et al. [25] further developed HOT to
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make it more robust and suitable for visible remote sensing images. Based on the HTM, Liu et al. [26]
presented a ground radiance suppressed HTM to get a more accurate haze distribution estimation,
and thus removed the haze component existing in every band. Xie et al. [27] modified the DCP for
remote sensing images and developed a novel dark channel-saturation prior. Despite being physically
grounded, these methods are mostly sensitive to a non-uniform haze distribution, which however, is
the most common state of haze in remote sensing images.

To handle these issues, we propose a prior-based dense attentive dehazing network (DADN)
for single remote sensing image dehazing. Firstly, taking the non-uniform haze distribution of hazy
remote sensing images into account, we propose to extract a haze density map (HDM) from the original
hazy image at the first step, which can be regarded as a haze density prior, and we subsequently
use the HDM together with the original hazy image as input of the network. The proposed network
contains an encoder-decoder structure and directly learns the mapping from the original input images
to the corresponding haze-free images, without any intermediate parameter estimation steps, enabling
the network to measure the distortion of the clear image directly, rather than that of intermediate
parameters. Dense blocks are carefully constructed to effectively mine the haze-relevant information,
considering the advantages of dense networks. Meanwhile, both spatial and channel attention
blocks are leveraged to recalibrate the extracted feature maps, thus allowing for more adaptive and
efficient training.

Our main contributions are listed as follows:

(1) A single hazy remote sensing image dehazing solution, which combines both physical prior and
deep learning technology, is presented to better describe the haze distribution in remote sensing
images, and thus deal with non-uniform haze removal. In this solution, we first extract an HDM
from the original hazy image, and subsequently leverage the HDM prior as input of the network
together with the original hazy image.

(2) An encoder-decoder structured dehazing framework is proposed to directly learn clear images
from input images, without estimation of any intermediate parameters. The proposed network
is constructed based on dense blocks and attention blocks for accurate clear image estimation.
Furthermore, we leverage a discriminator at the end of net to fine-tune the output and ensure
that the estimated dehazed result is undifferentiated from the corresponding clear image.

(3) A large-scale hazy remote sensing dataset is created as a benchmark which contains both uniform
and non-uniform, high-resolution and low-resolution, synthetic and real hazy remote sensing
images. Experimental results on the proposed dataset demonstrate the outstanding performance
of the proposed method.

The remainder of the paper is organized as follows. Section 2 describes the degradation procedure
caused by haze, as well as the details of the proposed dense attentive dehazing network (DADN).
The experimental settings, results, and analysis are presented in Section 3 and a further discussion is
presented in Section 4. Finally, our conclusions are given in Section 5.

2. Methodology

2.1. Atmospheric Scattering Model (ASM)

The image degradation caused by the presence of fog and haze is formulated mathematically by
the ASM [11,28,29] as:

I(x) = J(x)t(x) + A(1− t(x)) (1)

In this equation, J(x) and I(x) respectively denote the true scene radiance and the observed
hazy image; A denotes the global atmospheric light, indicating the ambient light intensity; t(x) is the
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transmission matrix, which indicates the proportion of light which successfully arrives the sensor; and
x is the pixel location. When A is uniform, the transmission matrix t(x) can be expressed as:

t(x) = e−βd(x) (2)

where d(x) and β denote the depth of field and the extinction coefficient of the atmosphere, respectively.
To obtain a clear image J(x) as output, we rewrite the model in Equation (1) as:

J(x) =
1

t(x)
I(x) −A

1
t(x)

+ A (3)

According to the classical ASM, a similar three-step methodology is adopted in most of the existing
single-image dehazing solutions as follows: (1) estimate the transmission map t(x) from the original
hazy image I(x); (2) estimate the atmospheric light A using some other method (often empirical); (3)
compute the clean image J(x) via Equation (3). Despite being intuitive and physically grounded, this
three-step methodology transforms the problem of clear image lossy reconstruction directly into an
estimation problem for parameters t(x) and A, giving rise to a suboptimal image restoration quality.
To deal with this problem, we develop an encoder-decoder dehazing framework which directly learns
the clear haze-free image from the original hazy image, enabling the network to measure the distortion
of the clear image directly.

2.2. Network Architecture

Figure 1 presents the overall structure of the proposed DADN. Inspired by the successes of
numerous computer vision tasks using dense networks [30,31] and attention mechanisms [32,33], we
carefully designed the network in an encoder-decoder structure with dense blocks and attention blocks.
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Specialized designed for single remote sensing image dehazing, where non-uniform haze is the
most common state of haze, we came up with a solution to combine a haze density prior with deep
learning to better describe haze distribution. In this solution, we first extract an initial HDM from
the original hazy image, which can be regarded as a haze density prior, and subsequently use it as
the input of the network, as well as the original hazy image. Furthermore, our network contains a
discriminator at the end to fine-tune the dehazed output and ensure the estimated dehazed result is
undifferentiated from the corresponding clear haze-free image.

2.2.1. Haze Density Map (HDM)

For remote sensing images, the depth of field d(x) in Equation (2) can be regarded as a constant
since the distance between sensor and scene is always very large, and thus the haze intensity is mostly
affected by the extinction coefficient β, which depends on the atmospheric conditions, and is rather
unpredictable. Meanwhile, for a single regular close-range image, the extinction coefficient β can be
regarded as a constant since the distance is limited, and thus the haze intensity is mostly affected by
the depth of field, which is much easier to represent. We can see the comparison on close-range hazy
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images and remote sensing hazy images in the first two rows of Figure 2 where haze on the remote
sensing images are much more irregularly distributed. Therefore, the haze intensity in remote sensing
images is much more difficult to describe. To deal with this issue, we came up with a solution, i.e.,
combine a haze density prior with deep learning. Firstly, we extract a raw HDM from the original
input hazy image. According to the assumption developed by Pan et al. in [34] that for hazy regions in
a given image, the minimal intensity value is higher than the intensity value in haze-free regions, we
extract the minimal intensity among the R, G, B channels to roughly describe the distribution of haze
in the original hazy image. Thus, the raw HDM is defined as:

Hraw(x) = min
c∈(r,g,b)

Ic
n(x) (4)

where we normalize the hazy image I to [0, 1], represented as In. The saturation S(x), which indicates
the purity of the color, is further utilized to make the HDM more precise since in a haze-free region
the saturation will be higher than the saturation in a hazy region. Therefore, the modified HDM is
expressed as:

Hmodi(x) = max(Hraw(x) − αS(x), 0) (5)

S(x) = 1−
3min(R(x), G(x), B(x))

R(x) + G(x) + B(x)
(6)

where α acts as an adjusted factor which controls how dark the haze-free regions will be and is
empirically set as 2 in this paper to ensure that the haze-free region is gloomy enough; R, G, B,
respectively represent the three color channels. Meanwhile, morphological opening [35] and a guided
filter [36] are applied to lighten the impact of the scene texture, since the extracted HDM might remain
some scene texture which needs to be reduced. Finally, the HDMs are extracted as shown in the third
row of Figure 2.
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Figure 2. Close-range hazy images (first row), remote sensing hazy images (second row), and their
corresponding haze density maps (HDMs) (third row).

The extracted HDM, which is regarded as the haze density prior, is then fed into the developed
network, together with the original hazy image, to help the network better extract the haze-relevant
features that describe the haze distribution.
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2.2.2. Encoder

The encoder which maps the original inputs to an intermediate feature map, is carefully constructed
with dense blocks and attention blocks.

(1) Dense Block

To tackle the issue of vanishing gradients, Huang et al. [37] developed a densely connected
network, according to the observation that if CNNs contain shorter connections between the front
layers and back layers, they can be satisfactorily deeper and achieve much more effective training. The
structure of a 6-layer dense block is presented in Figure 3. Every layer is connected with the other
layers in the forward way in a dense block, to solve the issue of vanishing gradient and at the same
time strengthen the feature propagation. Taking the advantages of dense blocks into account, we
utilize dense blocks with different layers to construct our network.
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(2) Attention Block

Enlightened by the success of the attention mechanism in various computer vision
problems [32,33,38], our network contains a residual channel-spatial attention block (RCSAB) to
recalibrate the extracted feature maps, making the whole network focus more on important features,
and thus better describing the non-uniform haze distribution. The proposed RCSAB takes advantage
of both channel attention bocks and spatial attention blocks, and carefully operates them in a parallel
way. A residual block is further combined for better feature mining. The architecture of the RCSAB is
presented in Figure 4.
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The channel attention block leveraged in this network can be found in Figure 5. Channel attention
focuses on finding out the most meaningful features among the input feature maps, since every channel
of the feature maps can be regarded as a feature detector. For effective computation of the channel
attention map, the input feature maps are squeezed on the spatial dimension utilizing average-pooling
as well as max-pooling. Convolutions with a kernel size of 1 × 1 are performed after the pooling, and
an element-wise addition is applied to combine the feature maps from the different pooling operations.
Finally, we obtain the output feature maps by multiplying the channel attention maps with original
input feature maps.
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Differing from channel attention, spatial attention is utilized to find out which part of the given
input is an informative part. The most informative part, which usually contains lots of vital information
about the haze distribution, is then the focus in the further learning. For computing, max-pooling
and average-pooling are performed along the channel axis. Features after the pooling operations
are then concatenated to create a spatial attention map (see in Figure 6). Similarly, multiplication is
implemented between the computed spatial attention map and the original input feature maps, to
obtain the final output.
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To better exploit the benefits of both blocks, we combine these output features by performing
element-wise addition. Meanwhile, we further integrate the spatial attention and channel attention
blocks with a residual block, only focusing on the residual part between the input and output for more
effective feature extraction.

As presented in Figure 1, the encoder contains three dense blocks, the corresponding transition
blocks for down-sampling, and the RCSAB. The three dense blocks have respectively 6, 12, and 24
layers. Details of each layer are provided in Table 1. The feature size after the transition blocks is 1/32
of the input size, and the RCSAB does not change the feature size.

Table 1. Details of the encoder.

Layer Operation Output Size Output Channels

Input 512 × 512 6
Convolution 7 × 7 convolution, stride = 2 256 × 256 64

Pooling 3 × 3 max pooling, stride = 2 128 × 128 64
Dense block 1 (1× 1 convolution, 3× 3 convolution) × 6 128 × 128 256

Transition block 1
1 × 1 convolution, stride = 1 128 × 128

1282 × 2 average pooling, stride = 2 64 × 64

Dense block 2 (1× 1 convolution, 3× 3 convolution) × 12 64 × 64 512

Transition block 2
1 × 1 convolution, stride = 2 64 × 64

2562 × 2 average pooling, stride = 2 32 × 32

Dense block 3 (1× 1 convolution, 3× 3 convolution) × 24 32 × 32 1024

Transition block 3
1 × 1 convolution, stride = 2 32 × 32

5122 × 2 average pooling, stride = 2 16 × 16

RCSAB
Convolution (3× 3 convolution) × 2

16 × 16 512Channel attention 16 × 16 average pooling, 16 × 16 max pooling
Spatial attention channel average pooling, channel max pooling

2.2.3. Decoder

Similarly, the decoder is made up of five dense blocks and the corresponding transition blocks for
up-sampling (Figure 1). To better integrate features at different sizes, a pyramid pooling block [39] is
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added at the end of decoder, where four pooling operations with different kernel sizes (1/32, 1/16, 1/8,
1/4) are utilized. The features after the pooling operation are unsampled to the original size and then
combined with the input feature to generate the result. Details of these layers are provided in Table 2.

Table 2. Details of the decoder.

Layer Operation Output Size Output Channels

Dense block 4 1 × 1 convolution, 3 × 3 convolution 16 × 16 768

Transition block 4
1 × 1 convolution 16 × 16

384nearest upsample, scale = 2 32 × 32

Dense block 5 1 × 1 convolution, 3 × 3 convolution 32 × 32 640

Transition block 5
1 × 1 convolution 32 × 32

256nearest upsample, scale = 2 64 × 64

Dense block 6 1 × 1 convolution, 3 × 3 convolution 64 × 64 384

Transition block 6
1 × 1 convolution 64 × 64

64nearest upsample, scale = 2 128 × 128

Dense block 7 1 × 1 convolution, 3 × 3 convolution 128 × 128 128

Transition block 7
1 × 1 convolution 128 × 128

32nearest upsample, scale = 2 256 × 256

Dense block 8 1 × 1 convolution, 3 × 3 convolution 256 × 256 64

Transition block 8
1 × 1 convolution 256 × 256

16nearest upsample, scale = 2 512 × 512

Convolution 3 × 3 convolution 512 × 512 20

Pyramid pooling block

32 × 32 average pooling, 1 × 1 convolution, nearest upsample 512 × 512 1
16 × 16 average pooling, 1 × 1 convolution, nearest upsample 512 × 512 1
8 × 8 average pooling, 1 × 1 convolution, nearest upsample 512 × 512 1
4 × 4 average pooling, 1 × 1 convolution, nearest upsample 512 × 512 1

Convolution 3 × 3 convolution 512 × 512 3
Dehazed output 512 × 512 3

2.2.4. Discriminator

To make sure that the estimated dehazed result is almost undifferentiated from the corresponding
clear image, a discriminator block is applied at the end of the net, where the above-mentioned
encoder-decoder architecture can be regarded as a generator network. In our discriminator, several
convolutions with kernel size 4 × 4 are performed. Given a 512 × 512 size input image, the output
image size is 62 × 62. The discriminator structure is shown in Figure 7 and details are provided in
Table 3.
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Figure 7. Architecture of the discriminator.

Table 3. Details of the discriminator.

Layer Operation Output Size Output Channels

input 512 × 512 3
Convolution 4 × 4 convolution, stride = 2 256 × 256 64
Convolution 4 × 4 convolution, stride = 2 128 × 128 128

Batch normalization batch normalization 128 × 128 128
Convolution 4 × 4 convolution, stride = 2 64 × 64 256

Batch normalization batch normalization 64 × 64 256
Convolution 4 × 4 convolution, stride = 1 63 × 63 512

Batch normalization batch normalization 63 × 63 512
Convolution 4 × 4 convolution, stride = 1 62 × 62 1
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2.3. Loss Function

For the discriminator, we train it to maximize the probability to assign the correct label (0 or 1) for
the training dataset. The loss function for the proposed discriminator can be defined as [40]:

LD = Ex_real(−log(D(x_real))) + Ex_ f ake(−log(1−D(G(x_ f ake)))) (7)

where D(x) denotes the discriminator’s estimation of the probability that real data instance x_real is
real, Ex_real is the expected value over all real data instances, G(x_ f ake) is the generator’s output when
given noise x_ f ake, D(G(x_ f ake)) denotes the discriminator’s estimation of the probability that a fake
instance is real, and Ex_ f ake is the expected value over all generated fake instances G(x_ f ake). For the
front encoder-decoder generator architecture, the loss function is composed of the edge-preserving
loss function and generator loss:

L = LE + λGLG (8)

where the generator loss is expressed as:

LG = log(1−D(G(I)) (9)

The edge-preserving loss function was developed by Zhang et al. [19] to tackle the common
problem of halo artifacts existing in the L2 loss function, and contains three components: L2 loss,
gradient loss (both horizontal and vertical), and feature edge loss, which can be defined as:

LE = λ1L2 + λ2Lgra + λ3L f ea (10)

where LE is the edge-preserving loss, Lgra denotes the gradient loss, and L f ea indicates the feature edge
loss. The two-directional gradient loss Lgra is defined as:

Lgra =
∑
‖ Gx(F(I)) −Gx(J) ‖2 + ‖ Gy(F(I)) −Gy(J) ‖2 (11)

where G is the encoder-decoder network structure, I denotes the input hazy image, and J indicates the
target clear image. Gx and Gy represent the gradient computing horizontally and vertically, respectively.
The L f ea is expressed as:

L f ea =
∑
‖ N1(F(I)) −N1(J) ‖2 + ‖ N2(F(I)) −N2(J) ‖2 (12)

where Ni represents a CNN architecture. In this paper, the layers before relu1-1 and relu2-2 of
VGG-16 [41] are utilized as N1 and N2, respectively.

In summary, the proposed network adopts an encoder-decoder structure and is comprised of
dense blocks and attention blocks. Considering the non-uniform haze distribution in remote sensing
imagery, we came up with a solution to first extract an initial HDM from the original hazy image,
which can be regard as the haze density prior, and use it as the input of the network, as well as the
original hazy image. Furthermore, our network contains a discriminator at the end to fine-tune the
dehazed result and guarantee that the final estimated result is undifferentiated from the corresponding
clear image. For the loss function, we combine edge-preserving loss and generator loss. The network
parameters are then achieved through minimizing the utilized loss function.
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3. Experiments and Discussion

3.1. Experimental Settings

3.1.1. Datasets

A large-scale hazy remote sensing image dataset is created for this experiment. Since it is
impractical to obtain paired haze-free and hazy remote sensing images of the same view and the same
scene at the same time, synthetic hazy images were used for the network training. We synthesized both
uniform and non-uniform hazy remote sensing image pairs as the training dataset, which contained a
total of 13,980 images (12,000 for training and 1980 for validation) derived from the Aerial Image Dataset
(AID) developed by Xia et al. [42], which was originally developed for aerial scene classification.

For generation of uniform hazy images, we set the atmospheric light A for a single image uniformly
between [0.5, 1], and selected t ∈ {0.4, 0.6}. The uniform hazy image was then generated through
Equation (1), using clear images from the AID dataset. In this experiment, 720 uniform hazy remote
sensing images were developed with a size of 512 × 512. For the non-uniform hazy images, we
extracted 19 different transmission maps from real non-uniform remote sensing images using the
method proposed by Pan et al. [34] and added them to the clear images from the AID dataset, thus
generating, in total, 8940 non-uniform hazy images with a size of 512 × 512. Moreover, we added
the generated uniform transmission maps and non-uniform transmission maps together to imitate
more complex environments, so that another 4320 hazy images with size of 512 × 512 were developed.
Therefore, a hazy remote sensing image dataset with a total of 13,980 image pairs (hazy image and
corresponding clear image) was developed, containing both uniform and non-uniform hazy remote
sensing images.

As for the test datasets, we constructed four kinds of dataset, containing both uniform and
non-uniform, high-resolution and low-resolution, synthetic and real hazy remote sensing images, as
listed below:

• Test Dataset 1: Test dataset 1 consisted of 1650 synthetic uniform hazy remote sensing images. We
simulated the images through the classical ASM Equation (1), with the rest of the AID dataset
(1650 in total) as the clear images and t ∈ {0.4, 0.5, 0.6, 0.7} (see examples in the first two rows of
Figure 8).

• Test Dataset 2: Test dataset 2 contained 1650 synthetic non-uniform hazy remote sensing images.
With the non-uniform transition maps extracted from the real hazy images, we added these
non-uniform transition maps to the clear images and created 1650 non-uniform hazy remote
sensing images (see examples in the second two rows of Figure 8).

• Test Dataset 3: Test dataset 3 was made up of real unmanned aerial vehicle (UAV) images obtained
in August 2017 in Daye, China, under hazy weather conditions (see examples in the third two
rows of Figure 8).

• Test Dataset 4: Test dataset 4 consisted of real hazy remote sensing images from the Landsat 8
Operational Land Imager making use of the bands (2), (3), and (4) as BGR true color, (see examples
in the last two rows of Figure 8).
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3.1.2. Training Details

We used the PyTorch [43] framework for the training and testing. The model was trained with an
NVIDIA RTX 2080 Ti GPU. ADAM [44] was leveraged as the optimization algorithm, with a batch size
of 1. Meanwhile, we chose λ1 = 1, λ2 = 0.5, λ3 = 0.8, for the edge-preserving loss and λG = 0.25 for
the generator loss.
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3.1.3. Evaluation Criteria

We utilize the full-reference criteria of the peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) to evaluate the dehazing results. For a single dehazed image, a higher PSNR
value denotes higher similarity in pixel-wise values between the reference image and the result, and a
higher SSIM value denotes that in terms of structural properties the dehazed result is much closer to
the reference image.

3.2. Experimental Results

In this section, the experimental results obtained with both synthetic hazy remote sensing images
and real-world hazy remote sensing images are presented. We compare the proposed solution with five
prevailing methods of DCP [12], BCCR [13], Fast visibility restoration (FVR) [45], All-in-one Dehazing
Network (AOD-Net) [18], and DCPDN [19].

3.2.1. Results on Test Dataset 1

The results obtained with the synthetic uniform dataset are shown in Figure 9. The first column
presents the synthetic hazy remote sensing images, the last column presents the ground truth images,
and the other columns are the dehazed results of the different methods. DCP successfully removes
most of the haze but tends to over-enhance the images, especially for the large white areas, since the
DCP prior fails when color of the object is close to the atmospheric light. BCCR reveals the same
problem of over-enhancement and leads to some color distortion (see the first two images), which is
mainly due to the underestimation of the transmission matrices. The results of DCP and BCCR indicate
the disadvantages of the prior-based methods, in that they can only obtain an accurate estimation when
their assumptions fit perfectly. Since these priors are statistically achieved based on natural images,
when it comes to remote sensing images, they may not fit and can lead to unsatisfactory dehazing
results. FVR retains much of the haze and leads to obvious color distortions and artifacts, at the cost of
saving time. The results of AOD-Net are not clear enough and tend to become dimmer than the ground
truth. DCPDN achieves much more pleasing results for this uniform hazy dataset. However, unlike
AOD-Net, DCPDN tends to lighten the dehazed results (see the last image), mainly caused by the
inaccurate estimation of the atmospheric light. In contrast, the developed method, which avoids the
estimation of intermediate parameters (transmission and atmospheric light) and directly measures the
distortion of the clear image rather than that of the intermediate parameters, obtains the most pleasing
results, with color and structural details that are the closest to the true haze-free images, verifying the
advantage of the proposed network structure.

The PSNR and SSIM results are listed in Table 4. In accordance with the visual results, the
developed method exceeds the other five methods, which demonstrates the outstanding performance
of the proposed solution on uniform hazy remote sensing images.
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Table 4. Quantitative results obtained with the synthetic uniform hazy remote sensing images (average
of 1650 images).

DCP BCCR FVR AOD-Net DCPDN Proposed

PSNR 22.4270 20.1578 16.0833 22.7267 23.8002 31.5095
SSIM 0.8853 0.78460 0.8109 0.9137 0.9397 0.9888

3.2.2. Results on Test Dataset 2

The results obtained with the synthetic non-uniform hazy remote sensing images using the
developed method and the other prevailing methods are presented in Figure 10. Similarly, BBCR and
DCP tend to over-enhance the results. Meanwhile, when dealing with large-scale non-uniform haze
(see the last four hazy images), both DCP and BCCR fail to detect and handle the haze of different
intensities, achieving rather unsatisfactory results, which indicates that these prior-based methods are
limited when faced with non-uniform remote sensing images. FVR introduces serious color distortions
and artifacts and cannot remove all the haze, but it appears to be not that sensitive to non-uniform
haze, and thus achieves a better performance when dealing with this non-uniform dataset. The deep
learning based AOD-Net and DCPDN are clearly sensitive to the non-uniform haze distribution,
and retain obvious vestiges of non-uniform haze in their dehazed results (see the last five images),
indicating that detecting and removing non-uniform haze from a single remote sensing image may
be a rather difficult task for these deep learning-based methods, if there is not any additional prior
information. By contrast, the developed method, benefiting from the HDM prior, successfully removes
all the non-uniform haze and achieves results that are the closest to the truth clear images.
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Similarly, we utilize PSNR and SSIM to evaluate the dehazing results (see Table 5). The table
illustrates that the developed method obtains the highest PSNR and SSIM values, outperforming
the other five methods and achieving the best dehazing results, which is in accordance with the
quantitative analysis.

Table 5. Quantitative results obtained with the synthetic non-uniform hazy remote sensing images
(average of 1650 images).

DCP BCCR FVR AOD-Net DCPDN Proposed

PSNR 19.9344 17.7576 16.1356 19.5275 28.0737 34.9841
SSIM 0.8132 0.7399 0.4773 0.82133 0.8886 0.8990

Overall, the proposed method deals with both uniform and non-uniform hazy images successfully
and achieves the most visually pleasing dehazed results, without color distortions or artifacts.

3.2.3. Results on Test Dataset 3

The dehazing results obtained with the real hazy UAV images are shown in Figure 11. DCP and
BCCR successfully remove most of the haze, but tend to over-enhance the image and lead to some
color shift. FVR retains much of the haze in the result images, and introduces obvious color distortions
and artifacts. AOD-Net and DCPDN again fail to remove all the haze, while the developed solution,
with high contrast, vivid color, clear structure, and plausible results, obtains the most pleasing visual
results, which demonstrate the effectiveness of the proposed method.
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3.2.4. Results on Test Dataset 4

The results obtained with the second real hazy dataset of Landsat 8 OLI images are shown in
Figure 12. As can be found, DCP and BCCR are sensitive to the non-uniform haze, and obvious traces
of the non-uniform haze can still be seen. BCCR leads to obvious color distortion (especially the
fourth image) and tends to over-enhance the image. The results of FVR do not retain many traces
of non-uniform haze, indicating that FVR is not that sensitive to non-uniform haze, but it cannot
remove all the haze, and introduces serious artifacts and color distortions. AOD-Net and DCPDN fail
to remove all the haze, with much non-uniform haze remaining. In contrast, the proposed method
removes most of the haze successfully, and there are very few traces of haze remaining in the results.
Overall, the proposed method, which avoids estimating the transmission matrices and atmospheric
light, with the help of the HDM prior, performs better than the other five methods when handling
non-uniform haze in remote sensing images.
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4. Discussion

In this study, we proposed a dense attentive dehazing network (DADN) which combines physical
prior and deep learning technology to learn the mapping between the original input images and
the corresponding haze-free image directly. Specialized designed for single remote sensing image
dehazing, we propose to first extract an HDM from the original hazy image, which can be regarded
as a haze density prior, and subsequently combine the HDM with the original hazy image as input
of the network for a better description of the non-uniform haze distribution in hazy remote sensing
images. Meanwhile, both spatial and channel attention blocks are carefully constructed in the network
to recalibrate the extracted feature maps, thus allowing more adaptive and efficient training. To make
sure that the estimated dehazed result is undifferentiated from the corresponding clear image, we
further utilize a discriminator at the end of net, to refine the output.

To further validate the effectiveness of each module of the network, we conducted experiments on a
network without the HDM (DADN_noHDM), a network without the discriminator (DADN_noDISCRI),
and a network without the attention blocks (DADN_noRCSAB). The results are presented in Figure 13
and Table 6. DADN_noHDM and DADN_noRCSAB fail to detect the non-uniform haze, and obvious
vestiges of haze remain, especially in the last two images, indicating that models without the HDM
prior and RCSAB lack the ability to mine high-level haze-relevant features, and thus fail to remove all
the non-uniform haze. Meanwhile, for the PSNR and SSIM criterion in Table 6, the proposed DADN
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method considerably outperforms DADN_noHDM and DADN_noRCSAB, which demonstrates that
the haze density prior of the HDM and the attention module (RCSAB) are important and effective in the
detection and removal of the non-uniform haze existing in remote sensing images. For the visual effects,
DADN_noDISCRI and DADN are the most competitive methods, with vivid color, clear structure,
and most of the non-uniform haze removed, while for the qualitative results, DADN outperforms
DADN_noDISCRI, with the PSNR improved by 0.5. The qualitative results on the large-scale test data
further validate the effectiveness of the proposed discriminator. Furthermore, a comparison on average
consuming time (per image) is conducted. As we can see, our module makes obvious improvement
in dehazing performance only with the cost of less than 0.06 s increase in time (per image), which
is acceptable.

Overall, all the modules, i.e., the HDM prior, RCSAB, and the discriminator, are effective and
necessary for single remote sensing image haze removal.
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Table 6. Quantitative results for the test modules.

DADN_noHDM DADN_noRCSAB DADN_noDISCRI Proposed

PSNR 30.4668 29.3695 34.6575 35.1895
SSIM 0.8919 0.8894 0.8964 0.8965
Time 0.1841 0.2262 0.1891 0.2368

5. Conclusions

In this paper, we proposed a specialized solution for single remote sensing image dehazing which
combines the haze density prior with deep learning technology. In the solution, the haze density prior
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HDM is extracted from the original hazy image at the first step and subsequently used as input of the
network together with the original hazy image. The effectiveness of the HDM input has been further
demonstrated through comparative experiments. A dense attentive dehazing network (DADN) is also
presented in the solution, which composed of dense blocks and attention blocks (both spatial attention
and channel attention) and directly learns the mapping from the input images to the corresponding
haze-free image. The whole network contains an encoder-decoder architecture and has a discriminator
at the end of the network, to further refine the dehazed results.

A large-scale hazy remote sensing dataset was created as a benchmark, which contains both
uniform and non-uniform, synthetic and real hazy remote sensing images. The experimental results on
the created dataset demonstrated that DADN achieves better performances than the other prevailing
dehazing algorithms, especially when it comes to a non-uniform haze distribution. However, when
handling large-scale dense haze, the proposed method may be challenged. In our further work, we will
attempt to improve the performance of DADN by incorporating more background prior knowledge,
and further mine haze-relevant features to better handle the large-scale dense haze existing in single
remote sensing images.
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