
remote sensing  

Article

Enhancing UAV–SfM 3D Model Accuracy in
High-Relief Landscapes by Incorporating
Oblique Images

Paul Ryan Nesbit * and Christopher H. Hugenholtz

Department of Geography, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
chhugenh@ucalgary.ca
* Correspondence: paul.nesbit@ucalgary.ca

Received: 4 December 2018; Accepted: 21 January 2019; Published: 24 January 2019
����������
�������

Abstract: Complex landscapes with high topographic relief and intricate geometry present challenges
for complete and accurate mapping of both lateral (x, y) and vertical (z) detail without deformation.
Although small uninhabited/unmanned aerial vehicles (UAVs) paired with structure-from-motion
(SfM) image processing has recently emerged as a popular solution for a range of mapping
applications, common image acquisition and processing strategies can result in surface deformation
along steep slopes within complex terrain. Incorporation of oblique (off-nadir) images into the
UAV–SfM workflow has been shown to reduce systematic errors within resulting models, but there
has been no consensus or documentation substantiating use of particular imaging angles. To address
these limitations, we examined UAV–SfM models produced from image sets collected with various
imaging angles (0–35◦) within a high-relief ‘badland’ landscape and compared resulting surfaces with
a reference dataset from a terrestrial laser scanner (TLS). More than 150 UAV–SfM scenarios were
quantitatively evaluated to assess the effects of camera tilt angle, overlap, and imaging configuration
on the precision and accuracy of the reconstructed terrain. Results indicate that imaging angle
has a profound impact on accuracy and precision for data acquisition with a single camera angle
in topographically complex scenes. Results also confirm previous findings that supplementing
nadir image blocks with oblique images in the UAV–SfM workflow consistently improves spatial
accuracy and precision and reduces data gaps and systematic errors in the final point cloud. Subtle
differences among various oblique camera angles and imaging patterns suggest that higher overlap
and higher oblique camera angles (20–35◦) increased precision and accuracy by nearly 50% relative
to nadir-only image blocks. We conclude by presenting four recommendations for incorporating
oblique images and adapting flight parameters to enhance 3D mapping applications with UAV–SfM
in high-relief terrain.

Keywords: unmanned aerial vehicle; UAV; structure-from-motion photogrammetry; SfM–MVS;
oblique images; geology; geologic mapping; topographic mapping; high-relief terrain;
complex landscapes

1. Introduction

Uninhabited/unmanned aerial vehicles (UAVs) paired with structure-from-motion and multiview
stereopsis (SfM–MVS) photogrammetric workflows (henceforth UAV–SfM) have become widely
accepted tools for mapping and modeling in the geosciences [1–10]. UAV–SfM workflows are
particularly attractive because they can produce higher-resolution datasets (centimeter–decimeter) than
conventional airborne and satellite sensors and can cover a larger area (104–106 m2) than can practically
be collected from ground-based techniques [11–13]. In the geosciences, UAV–SfM workflows have
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been used to map laterally extensive planform landscapes [6,10,14] and demonstrated the ability to
map inaccessible or dangerous areas, such as vertical cliff sections [15–18]. Though effective, a majority
of these applications have centered on mapping a single two-dimensional (2D) plane. Complex
landscapes, characterized by high-relief topography and intricate geometric morphology, require a
deeper consideration of image collection and processing techniques to reduce data gaps and maintain
accuracy and detail in both horizontal (x, y) and vertical (z) dimensions.

UAV data acquisition strategies are commonly modeled after conventional airborne
photogrammetry (i.e., [19,20]), in which an ‘image block’ is formed from parallel flight lines, flown
in a ‘lawnmower’ or ‘snaking’ pattern at a stable altitude, with consistent overlap (frontlap and
sidelap), and a nadir (or straight down)-facing camera angle [21,22]. This classic gridded flight plan
is straightforward and can be generated automatically by specifying a few basic flight parameters in
modern flight planning software (e.g., Pix4Dcapture, DroneDeploy). However, these flight patterns
take little account of a scene’s 3D geometry [22]. In particular, they are not ideal for recording features
exposed along vertical façades (e.g., stratigraphic surfaces along a vertical cliff face) as these features
are prone to greater deformation and/or chance of omission from nadir-view sensors [23–25].

Pragmatic solutions for capturing vertical façades from a UAV include adjusting the camera angle
to collect images with the image plane roughly parallel to the feature of interest [15,26] and rotating
the typical image block so flight lines mirror the vertical plane. However, these single look-direction,
gridded image blocks typically do not capture enough detail or geometric information in more complex
scenes with features of interest extending in all directions [27,28].

An alternative approach is to acquire oblique images in which the camera axis is intentionally
angled ≥5.0◦ from nadir [29]. Two common subcategories of oblique images are high-oblique
images, which include the horizon, and low-oblique images, which do not [30]. Oblique images
are commonly used in classic close-range photogrammetry and have recently been incorporated in
UAV–SfM modeling of isolated 3D objects, such as archaeological structures or buildings [31,32], for
assessing building damage [33], and inspecting transmission line towers/pylons [34]. Common survey
methods involve a series of orbital flight patterns collecting inward-looking, low-oblique images at
various altitudes, occasionally in conjunction with nadir images [31,35]. These data collection strategies
may be suitable for modeling spatially constrained objects or outcrops (e.g., Cawood et al. [36]) for
which orbital patterns may be easily obtained, but may not provide complete coverage for mapping
extensive scenes with high-relief (e.g., cities, badlands).

Integration of oblique images into the photogrammetric workflow for mapping complex scenes
is not a new issue and has been an appealing solution for urban applications in order to obtain
complete coverage of both planar and façade features [30,37–40]. Research in this field commonly
employs multisensor systems containing four oblique and one nadir-facing camera (e.g., Maltese cross
configuration), typically onboard piloted aircraft [12]. Initial photogrammetric processing of these
multiview angle images through aerial triangulation approaches produced unsatisfactory results, due
to the complexity of oblique images, which contain vastly different-perspective viewing angles, large-scale
differences within individual images, and occlusion of objects within a scene [40–43]. Development
of unique processing solutions that maintain the rigorous standards of aerial triangulation while
capitalizing on the advantages presented by airborne oblique views continues to be a key topic in
photogrammetric research [44–46].

Alternatively, SfM–MVS processing solutions were developed to match features in images with
different scales and viewpoints [4,5,47,48] and are well-suited for challenging datasets collected with
low-flying UAVs [11] and/or oblique images [21,42,43]. Incorporation of oblique images into UAV–SfM
datasets has been suggested as an approach to improve geologic mapping applications by providing
more complete coverage, especially along steep slopes [6,17,27,36,49].

Additionally, integration of oblique images with nadir image blocks can reduce the systematic
deformation that is well-known to result from inaccurate modeling of internal camera geometry during
self-calibrating bundle adjustment, in both conventional close-range photogrammetry [50,51] and
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modern SfM–MVS photogrammetry [13,21,52–54]. Camera calibration is the determination of the
internal geometry of a camera and has the most significant influence on the accuracy and reliability of
photogrammetric measurements [55]. SfM calibration approaches use a large number of automatically
identified tie points, which provide redundancy in the solution. However, the high number of tie
points may also impart a false sense of calibration quality (i.e., small reported errors) due to high
internal consistency [55,56]. Errors may remain undetected and propagate into final point locations in
3D object space. Furthermore, consumer digital cameras are currently the most commonly employed
sensors on UAVs [9] and generally have unstable internal geometry that may fluctuate over time,
perhaps as often as between image exposures [57].

There are no simple solutions to solve the problem of instability in low-cost sensors [58],
but an accurate self-calibration through bundle adjustment [59] can improve results. Following
well-proven rules for self-calibration can minimize observation errors and provide more accurate
estimates of calibration parameters, enabling accurate and reliable measurements from almost any
camera [50,51,55,58,60]. These ‘rules’, as summarized by Luhmann et al. [55], include:

1. Incorporate convergent images (i.e., oblique images) in the imaging network
2. Include diverse camera roll angles (i.e., landscape and portrait orientation)
3. Obtain images with sufficient variation in scale (i.e., depth variation in object/scene or images

acquired at various distances/altitudes)
4. Image sets should have a high amount of redundancy in image content
5. Cameras should be set to a fixed zoom/focus and aperture settings

Although use of oblique images in UAV–SfM workflows has been shown to improve resulting
outputs, applications within high-relief terrain have been sparse and there is no consensus or
documentation substantiating use of particular oblique camera angles (Table 1).

Table 1. Recommended oblique image angles for supplementing structure-from-motion (SfM) nadir
image blocks from the literature.

Imaging Strategy Author Suggested Angle Additional Notes

Airborne UAV 1

Bemis et al. [6] 10–20◦

James and Robson [21] 20–30◦

Markelin et al. [61] 25–30◦

Harwin et al. [52] 45–65◦

Carbonneau and Dietrich [54] 20–45◦ >10% of image sets
Carvajal-Ramirez et al. [15] 35◦ Orthogonal to surface

James et al. [62] 20◦

Rossi et al. [25] 60◦ Orthogonal to surface
Agüera-Vega et al. [18] 45◦

Ground-based
Moreels and Perona [63] <25–30◦

Gienko and Terry [64] <20◦ Angle of incidence >40◦

James and Robson [21]
Stumpf et al. [65]

10–20◦

<30◦

Multicam
Fritsch and Rothermel [66] 45◦ Higher angles of

intersection are optimal

Rupnik et al. [67] 35 or 45◦
Higher tilt angle was
more robust but more

susceptible to occlusions
1 Uninhabited/unmanned Aerial Vehicle.

To evaluate how imaging angle influences accuracy and detail of UAV–SfM 3D outputs, we
compared more than 150 scenarios with various combinations of oblique and nadir camera angles,
image overlap settings, and flight line orientations to a reference dataset collected with a terrestrial
laser scanner (TLS). Datasets were collected in a section of Dinosaur Provincial Park (southeastern
Alberta, Canada) with a complex array of diverse slope gradients ranging from flat to nearly vertical
and a maximum elevation gain of ~20 m. This paper builds on previous work [21,49] to quantitatively
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evaluate UAV–SfM datasets processed from (1) nadir-only image blocks, (2) image blocks collected
with a single oblique camera angle (05–35◦), and (3) combinations of nadir image blocks supplemented
with various oblique image configurations and angles. Results empirically demonstrate the benefits of
including oblique images as part of a UAV image network to reduce systematic errors and increase
detailed coverage of steep slopes.

2. Materials and Methods

2.1. Study Site

To develop the test dataset, we performed a series of UAV flights over ‘badland’ terrain associated
with high drainage density. The site was located in Dinosaur Provincial Park (Figure 1A)—a UNESCO
World Heritage site containing fossil-rich deposits from the Late Cretaceous Dinosaur Park and Oldman
formations [68]. The incised topography, which initiated during deglaciation of the Laurentide Ice
Sheet, reveals laterally continuous layers of siltstone and fine-to-medium-grained sandstone deposited
by meandering channel belts [49,69–71]. To test UAV–SfM data collection and processing strategies,
a representative section of the park was selected that contains a wide range of slope azimuths and
gradients (20◦ mean slope), multiple changes in relief (~20 m maximum), and limited vegetation cover
(Figure 1).
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Figure 1. (A) Field location with UAV and terrestrial laser scanner (TLS) data extents, ground control
points (GCPs), and TLS scan locations; (B) digital surface model (DSM) of the field area used for
data assessment.

2.2. UAV Data Collection

UAV images were collected using a DJI Phantom 3 Professional quadcopter equipped standard
with a 1/2.3” complementary metal oxide semiconductor (CMOS) sensor with 12 megapixels. The
camera has a 20-mm focal length (35 mm equivalent), and a nadir image records an approximate
ground footprint of 87 m × 65 m at a flying height of 50 m above ground level. This UAV records
geolocation (x, y, z) to a manufacturer-stated accuracy of ±1.5 m (horizontal) and ±0.5 m (vertical)
(https://www.dji.com/phantom-3-pro/info; accessed 22 January 2019), though operational conditions
may be less precise [72]. The Phantom 3 Professional was selected because the camera is mounted

https://www.dji.com/phantom-3-pro/info
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on a three-axis gimbal that can be programmed to capture images between 0–90◦ and record the roll,
pitch, and yaw (stated accuracy ±0.02◦) relative to the flight lines of the aircraft. UAV image sets were
collected over the same 125 m × 125 m footprint. UAV image blocks were pre-programmed using
the freely available Pix4Dcapture application for iOS, with consistent settings for flight area, altitude
(40 m above take off), and overlap (90/90 frontlap/sidelap). Pix4Dcapture also allows the user to select
the camera angle for data collection, which was adjusted at 05◦ increments for each flight ranging
from 00◦ (nadir) to 35◦ off-nadir. Higher imaging angles (e.g., 45◦) were not considered in this study
because SfM image-matching algorithms can be unreliable and/or camera calibration can fail with
large perspective differences [6,46,73].

Each camera angle was applied for an entire image block with flight lines oriented north–south
(NS), followed by a separate flight with flight lines oriented east–west (EW), creating a ‘cross-hatch’,
or double-grid, image block. This resulted in 16 total image sets consisting of 231 images each.
Uncontrolled variables, notably lighting conditions, were accounted for by flying during optimal
(diffuse) lighting conditions whenever possible; however, natural variations and changes in cloud
cover and sun angle did occur and were noted. A set of five ground control points (GCPs) were
distributed throughout the field site and measured at subcentimeter precision with a Trimble R4
real-time kinematic global navigation satellite system (RTK-GNSS) and used in image processing.

2.3. UAV Processing and Scenarios

Pix4Dmapper commercial software was used to process all scenarios following steps outlined
by [49,74] on a high-performance computer (Intel®Core™ i9-7900X CPU @ 3.30 GHz with 64 GB RAM
and an NVIDIA GeForce GTX 1080 graphics card). Scenarios were created with variations to camera
angle, changes to image overlap, different flight line directions, and combinations of nadir and oblique
image sets. Image blocks collected with oblique camera angles formed convergent imaging geometry
with alternating flight lines containing camera angles posed in opposing directions. To emulate lower
overlap settings, images in the original image block were selectively removed so every third image
and/or flight line were retained, resulting in overlap settings of 90/70 and 70/70, respectively. Image
blocks composed of both NS and EW flight lines combined (NSEW) were processed for each individual
camera angle (0–35◦) and overlap scenario (90/90, 90/70, and 70/70).

We also evaluated dataset combinations of the scenarios above based on suggestions from the
literature for ideal imaging geometry and practical flight plans with common UAVs (e.g., [21]).
Combinations included standard nadir-facing image blocks with various overlap and flight line
settings supplemented with images selected from oblique image sets to match suggested flight patterns
(Figure 2 and Table 2). Combination datasets included oblique images facing inward in (1) a box
around the perimeter of nadir flight lines (Figure 2A; ‘BoxO’); (2) a box around the center of the nadir
flight lines (Figure 2B; ‘BoxI’); (3) a combination of both boxes (Figure 2C; ‘BoxIO’); single convergent
arcs (Figure 2D); and double convergent arcs (Figure 2E).

To ensure comparability among imaging scenarios, a consistent processing area was defined,
a common GCP marking strategy used, and consistent processing settings applied. Initial image
sets (90/90 overlap and both NS and EW flight lines) were imported for each camera angle and
georeferenced by manually marking GCPs in every photo in which they clearly appeared. Images
were then removed from the initial datasets to setup the scenarios described in the paragraphs above
(Figure 2) and reprocessed using consistent processing settings for each scenario (Table 3). Processing
included self-calibrating bundle block adjustment using camera internal orientation parameters:
principal distance (focal length), principal point (x, y), and lens distortion terms (three radial (R1,
R2, R3) and two tangential (T1, T2)) and camera external orientation parameters (location (x, y, z)
and orientation (roll, pitch, yaw)). Appropriate weighting of image and GCP locations (precisions)
within processing is crucial for obtaining accurate and repeatable SfM–MVS reconstructions, yet are
seldom (if ever) reported in geoscience applications [13]. Precision of GCPs were defined according to
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instrument precisions: 0.005 and 0.010 m (horizontal and vertical) for GCPs surveyed with RTK-GNSS
and a conservative 5 m and 10 m (horizontal and vertical) for UAV geotagged images.Remote Sens. 2019, 11 FOR PEER REVIEW  6 
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Figure 2. Oblique combination scenarios (A) outside box, BoxO; (B) inside box, BoxI; (C) inside and
outside box, BoxIO; (D) single convergent arcs; (E) double convergent arcs. Note light-grey lines
represent north–south (NS) nadir image flight lines.

Table 2. UAV–SfM processing scenarios.

Overlap Image Pattern 1 Camera Angles

Single camera angle 90/90 or 90/70 or 70/70 Image block
(parallel flight lines) 0–35◦

Combination datasets 90/70 or 70/70

BoxO
BoxI

BoxIO
Single arcs

Double arcs

Image block at nadir + image
pattern collected with an oblique

camera angle (5–35◦)

1 See Figure 2 for description of combination patterns.

Table 3. Processing settings in Pix4Dmapper selected for all UAV–SfM scenarios.

Step Processing Option Setting

1. Initial processing
Keypoint image scale
Matching image pairs

Calibration

Full
Aerial grid or corridor

Standard (AAT 1, BBA 2, camera
self-calibration)

2. Point cloud densification

Image scale
Point density

Minimum number of matches
Matching window size

1 (original image size, slow)
Multiscale
Optimal

4
9 × 9 pixels

1 Automatic aerial triangulation (AAT); 2 Bundle block adjustment.

Resulting UAV–SfM datasets had an expected ground sample distance (GSD) of 1.75–2.91
cm/pixel. Variation in GSD is caused by (1) variation of scale within individual oblique images
and (2) flying height relative to underlying terrain. Pixels within an individual aerial oblique image
will have a range of GSDs, such that pixels near the top of the tilted image have elongated (trapezoidal)
footprints on the ground [44]. Additionally, although UAV surveys maintained a fairly consistent
altitude, 40 m above takeoff from the highest local point in the field area, UAV altitude above ground
level (AGL) varied up to an additional 20 m due to undulating terrain, resulting in a variation to
relative flying height ranging from 40–60 m AGL. Dense point clouds produced during intermediate
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UAV–SfM processing steps were used for comparison (see Section 2.5 below) and had an average point
spacing of 0.035–0.051 m (70/70 overlap scenarios) and 0.019–0.032 m (90/70 overlap scenarios).

A recent survey of published geoscience literature reported the ratio of root mean squared error
(RMSE):viewing distance for more than 40 investigations and found a median ratio of ~1:640 [75].
Within our datasets, this would produce expected precisions ranging from 0.063–0.094 m. However,
UAV–SfM combination scenarios, which include oblique images, should produce higher-precision
datasets as a result of stronger image network geometry. As a result, we expect precisions to exceed
this ratio and range from 0.04–0.06 m (~1:1000, precision:viewing distance), as achieved by [48].

2.4. Reference Data Acquisition and Processing

Reference data were recorded with a FARO Focus3D S120 TLS, also referred to as ground-based
light detection and ranging (LiDAR). This TLS can record up to 976,000 points per second using a
phase-based laser (905-nm wavelength) and has a precision of 0.01 m at a scan distance of 50 m (https://
doarch332.files.wordpress.com/2013/11/e866_faro_laser_scanner_focus3d_manual_en.pdf, accessed
22 January 2019). Laser scanners are capable of recording high-precision point measurements in 3D
space, but are susceptible to data gaps in locations not in direct line-of-sight of the scanner. Therefore,
to avoid occlusions and data gaps around the scene, a total of six scans were acquired from various
perspectives within the 7240 m2 field area. Each scan location, along with 25 checkerboard targets
distributed throughout the field area, were recorded using the RTK-GNSS system described above and
incorporated into scan coregistration and georeferencing processes.

Each TLS scan was individually imported, processed, and georeferenced within FARO Scene
7.1.1.81 software. Initial scan locations (applied from RTK-GNSS) and orientation information (from
integrated sensors) were refined by manual identification of at least four checkerboard targets
appearing in multiple TLS scans. Fine registration was then performed using cloud-to-cloud
registration of all TLS datasets and then merged into a single point cloud. A final alignment and
optimization was performed to fit the merged point cloud to RTK-GNSS control points, resulting
in a final registration error of 0.013 m, approximately half the size of the expected GSD within
UAV–SfM models. Points were filtered to remove any colocated points within 0.002 m of another
point, resulting in a merged point cloud of 231 million points. This point cloud was filtered to remove
vegetation using the CANUPO plugin [76] in the open source CloudCompare software [77]. Vegetation
was removed due to the added uncertainty in point cloud datasets and issues known in UAV–SfM
reconstruction [78,79], creating a final reference dataset of 186 million points with an average point
spacing of 0.004 m.

2.5. Point Cloud Accuracy

Several methods have been used to validate SfM–MVS accuracy in the geosciences, with
point-based metrics, such as RMSE and mean absolute error (MAE), being the most common. Though
point measurements can be extremely precise, spatial variability of errors may remain imperceptible
without sufficient number and distribution of validation points [75]. Surface-to-surface comparisons
have been used to document the changes between two continuous surfaces, such as digital elevation
models (DEMs). DEMs are 2.5D interpolations with a single elevation (z) attribute for each planar
(x, y) location that may reveal spatial variability, but can also result in overgeneralization and
degradation of highly three-dimensional landscapes [49,54,62,80].

To assess the accuracy of the various UAV–SfM processing scenarios in our topographically
complex field area, we use the freely available Multiscale Model to Model Cloud Comparison (M3C2)
plugin for open-source CloudCompare software [80]. M3C2 calculates local differences between
two point clouds relative to local surface normal orientation and point cloud roughness. Normal
orientations are locally calculated by averaging points within a user-defined radius (D/2) in the
reference point cloud (PC1). A cylinder with user-defined radius (d/2) is then projected along the
normal direction (N) to specify the search space on the target point cloud (PC2). The algorithm then

https://doarch332.files.wordpress.com/2013/11/e866_faro_laser_scanner_focus3d_manual_en.pdf
https://doarch332.files.wordpress.com/2013/11/e866_faro_laser_scanner_focus3d_manual_en.pdf
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calculates the average position of points within the cylinder for both PC1 and PC2 and calculates
the local difference between the two positions. To limit the influence of point cloud roughness on
difference calculations, D was defined as 0.1 m, following recommendations to define D as >20 to
25 times the average local roughness [80] and methods in [81]. A subsample of the TLS reference
cloud was created using 10% of the point cloud and used to compare all UAV–SfM point clouds with
a consistent reference dataset. M3C2 distances between point clouds were calculated between the
TLS reference point cloud (0.004 m average point spacing) and UAV–SfM point clouds (0.019–0.051 m
average point spacing). Calculations were carried out by differencing UAV–SfM point clouds from
the TLS reference point cloud, with negative distances indicating that the TLS surface was above the
UAV–SfM surface and positive values signifying that the UAV–SfM surface was above the reference
TLS surface.

3. Results

3.1. Single Camera Angle and Single Flight Direction

Images collected along a single flight line orientation (NS or EW) generally resulted in inconsistent
coverage, especially along the perimeter of the field area, and substantial data gaps (up to 14 × 8 m)
within point clouds. Data gaps due to insufficient coverage typically occurred along steep slopes in
different locations throughout the field area, dependent on the flight line orientation and camera tilt
angle during acquisition. Due to incomplete coverage and shifting data gap locations, single flight line
datasets were considered unsuitable for comparison and removed from further analysis. However,
datasets that combined NS and EW flight lines into ‘cross-hatch’ (NSEW) datasets and/or included
supplemental oblique images in various patterns (Figure 2) resulted in reduced data gaps. Readers
should note that data gaps occurring in the same locations of the remaining analyses were the expected
result of vegetation removal from the TLS reference point cloud (Section 2.4).

3.2. Single Camera Angle and Cross-Hatch Flight Lines

Image blocks collected with a single camera angle and cross-hatch flight lines produced complete
datasets with smaller data gaps for all overlap scenarios (70/70, 90/70, and 90/90). Datasets collected
with a single camera angle always resulted in higher standard deviations (lower precision) of M3C2
distance measurements between UAV–SfM and TLS models than combination datasets (Figure 3A) and
usually had means further from 0 (lower accuracy) than combination datasets (Figure 3B). Single-angle
datasets with high tilt angles (25–35◦) had mean values similar to or smaller than combination datasets
(Figure 3B). High tilt angles usually resulted in standard deviations lower than nadir-only datasets
and higher than combination datasets (Figure 3A).

Within single-angle datasets (Figure 4), overlap did not have a direct relationship with precision
(i.e., increasing overlap did not always increase precision). Increasing overlap from 70/70 to 90/70
resulted in better precision for most datasets, but increasing from 90/70 to 90/90 resulted in lower
precisions, except for the nadir and 05◦ datasets (Figure 4A). Increasing overlap for single-angle
datasets had a direct relationship with mean values (Figure 4B); lower overlap (70/70) resulted in
smaller mean values, while high overlap (90/70 and 90/90) produced larger mean values for all
camera angles. Regardless of camera angle, high-overlap scenarios consistently resulted in higher
point counts. Among datasets with similar overlap, increasing camera angle always resulted in lower
standard deviations and smaller mean values, with the exception of nadir-only image blocks (Figure 4).
Nadir-only datasets had lower standard deviations and smaller means than all other single-angle
datasets, except for high oblique angles (30–35◦), which outperformed all nadir-only datasets regardless
of overlap (Figure 4). Increasing camera angle typically resulted in decreasing point counts, with
nadir-only image blocks containing the most points among similar overlap scenarios.
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Although nadir-only datasets generally had higher point counts, higher precision, and mean
values closer to 0, the spatial distribution of difference values reveals a systematic pattern of errors
(Figure 5). This pattern represents UAV–SfM underestimation of height values of high elevation points
(near the perimeter of the scene) and overestimation of low elevation points (near the center of the
scene) in nadir-only image blocks. All single-angle oblique datasets may also contain a systematic error
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pattern (Figure 6). Most evident in lower oblique angles (05–15◦), this pattern contains differences in
which lows are too low and highs are too high.
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Figure 5. M3C2-calculated distance between TLS reference dataset and UAV–SfM data sets collected
with nadir camera angles and cross-hatch flight lines (NSEW) with various image overlap settings:
(A) 70/70, (B) 90/70, and (C) 90/90. Positive values indicate UAV–SfM surface above TLS reference
surface; negative values suggest UAV–SfM surface below. Note the systematic distribution of error
with low points (near the center of the field area) higher than the reference dataset and high points
(near the perimeter of the field area) lower than the reference dataset. This systematic error is similar to
that noted by James and Robson [21] and is present regardless of overlap.
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Figure 6. M3C2-calculated distance between TLS reference dataset and UAV–SfM image sets collected
with 90/70 overlap, cross-hatch flight lines (NSEW), and a single camera angle; (A) 00◦ (nadir); (B) 05◦;
(C) 10◦; (D) 15◦; (E) 20◦; (F) 25◦; (G) 30◦; (H) 35◦. Positive values indicate UAV–SfM surface above TLS
reference surface; negative values suggest UAV–SfM surface below.
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3.3. Nadir Image Blocks (NSEW) Supplemented with Oblique Images

Inclusion of oblique images into nadir image blocks with cross-hatch (NSEW) flight lines
diminished the systematic error present in nadir-only image blocks, regardless of oblique image
angle and flight pattern (Figure 7). In each oblique combination scenario, precision and accuracy were
better than or equal to any nadir-only dataset (Figure 3). Datasets incorporating oblique combinations
had a maximum difference in precision of 0.027 m and absolute difference in accuracy of ±0.028 m.
Among combination datasets, high-overlap scenarios typically had lower standard deviations than
lower-overlap scenarios, regardless of oblique flight pattern (Figure 8A,B). Combinations that included
high angles had smaller standard deviations in both 90/70 and 70/70 overlap scenarios. Combinations
with supplemental oblique camera angles between 10–15◦ had the smallest means, while 25–30◦ were
consistently further from 0 (Figure 8C,D). Nadir image blocks supplemented with oblique images
always resulted in more points than any single-angle image block with similar overlap. Point increases
for combination datasets (relative to nadir-only datasets) were typically greatest for oblique angles of
15◦ and smallest for angles of 35◦ (low-overlap scenario) or 5–10◦ (high-overlap scenario).
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Figure 7. M3C2-calculated distance between TLS reference dataset and UAV–SfM combination image
sets: (A) 70/70—05◦ BoxIO; (B) 70/70—20◦ BoxIO; (C) 70/70—35◦ BoxIO; (D) 90/70—05◦ BoxIO;
(E) 90/70—20◦ BoxIO; (F) 90/70—35◦ BoxIO. See Figure 2 for description of flight patterns. Positive
values indicate UAV–SfM surface above TLS reference surface; negative values suggest UAV–SfM
surface below.
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Figure 8. M3C2-calculated difference between TLS reference dataset and various UAV–SfM
combination datasets with different image configurations: (A) standard deviation, 70/70 overlap
combinations; (B) standard deviation, 90/70 overlap combinations; (C) mean difference, 70/70 overlap
combinations; (D) mean difference, 90/70 overlap combinations. See Figure 2 for description of
flight patterns.

3.4. Nadir Image Blocks (Single Flight Line) Supplemented with Oblique Images

Single flight direction (NS or EW) datasets supplemented with oblique images produced complete
coverage and reduced data gaps compared to those without oblique images. Single flight direction
datasets supplemented with oblique images had lower standard deviations than all nadir-only and
most single oblique camera angle datasets (Figure 3A). Single flight line combinations generally
had slightly lower precision (Figure 3A) and lower accuracy (Figure 3B) than cross-hatched flight
line combinations with similar overlap. For oblique angles 15–35◦, high-overlap (90/70) single
flight line combinations had similar standard deviations to low-overlap (70/70) cross-hatched flight
line combinations.

3.5. Combination Datasets—Flight Pattern

Image configuration of supplemental oblique images had some effect on UAV–SfM dataset
precision and accuracy (Figure 8). The inner box (BoxI) and single convergent arc patterns (Figure 2B,D,
respectively) generally resulted in the highest standard deviations and means farthest from 0 compared
to datasets with similar overlap and camera angle. Outer box (BoxO), inner/outer box (BoxIO),
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and double convergent arc patterns (Figure 2A,C,E) usually resulted in highest precisions; double
convergent arcs were more effective for low angles (10–15◦), while box patterns were slightly more
effective for high angles (25–35◦), particularly for the 70/70 overlap scenario (Figure 8A). Mean
difference values were also affected by different oblique image configurations, although results were
less consistent. Oblique flight patterns resulting in small means (closest to 0 m) varied considerably
within the 70/70 overlap scenario (Figure 8C), while the 90/70 scenario typically had smallest means
for single convergent arcs and BoxO patterns and largest mean values for BoxIO and double convergent
arc patterns (Figure 8D).

4. Discussion

Our results confirm the presence of systematic vertical deformations (i.e., ‘dome effect’ [21])
within UAV–SfM datasets processed from parallel-axis (nadir) image blocks and further verify effective
data acquisition strategies for mitigating such errors. We build upon recommended image acquisition
strategies (e.g., [21]) by evaluating more than 150 scenarios and quantifying differences among various
oblique imaging angles. Results indicate that imaging angle has a profound impact on accuracy and
precision for data acquisition with a single camera angle (Figure 6) in topographically complex scenes.
Combination scenarios generally revealed consistent improvements relative to nadir-only image blocks,
regardless of oblique imaging angle and pattern. However, differences among oblique imaging patterns
and camera angles for combination datasets only revealed subtle differences that do not decisively
determine an optimal configuration for UAV–SfM applications in complex topographic landscapes.

Results are based on M3C2 distances, which are calculated in the direction of surface normals of
the reference point cloud, rather than strictly vertical distances. Relating results and GCP residuals
to the topography of the field site (Figure 1B) suggests that vertical error is more prevalent than
horizontal. Differences between the TLS reference dataset and UAV–SfM datasets could be attributed to
inconsistencies/deformation of reconstructed surface shape (relative accuracy), georeferencing errors
(absolute accuracy), or a combination of both. Within this investigation, TLS data was considered
as the reference dataset because of its superior precision and a final georegistration error of 0.013 m.
UAV–SfM datasets had resulting precisions more than a magnitude higher than the TLS, but GCP
residuals in UAV–SfM datasets were generally comparable. This suggests that deviations between
the TLS reference dataset and various UAV–SfM scenarios were primarily a result of differences in
surface shape in the dense point clouds. Some datasets, however, exhibited large inconsistencies in
both georeferencing and surface shape, most notably 05–10◦ (Figure 6B,C), which had vertical RMSE
values up to 0.13 m.

4.1. Nadir-Only Image Blocks

Nadir-only image blocks resulted in systematic ‘dome’ errors that can be attributed to inaccurate
estimation of radial lens distortion from self-calibration of the relatively unstable, consumer-grade
digital camera used on the UAV [21]. Although this has been well-documented in the literature,
nadir-only image blocks remain widespread UAV–SfM data collection strategies. Applications in the
geosciences have often accounted for systematic doming by using well-dispersed and high-precision
control points. However, as previously stated [21] and documented ([62], Figure 6A) and further
confirmed by our results (Figure 5), use of GCPs does not guarantee that systematic vertical doming
errors will be reduced to negligible levels.

Some authors have suggested that increasing overlap or including cross-strips in airborne image
blocks can help reduce systematic errors due to higher redundancy [42,82]. Others have noted that
increased overlap results in shorter baselines (distance between adjacent photos) and subsequently
narrower angles of ray convergence, ultimately subjecting calculated object space locations to errors,
especially in depth/height [53,62]. Our results suggest that increasing overlap may slightly lower
the standard deviation in nadir-only scenarios (Figures 4 and 5), but an increase in the number of



Remote Sens. 2019, 11, 239 17 of 24

images does not linearly increase accuracy [83] and systematic doming errors remained clearly visible,
regardless of overlap (Figure 5).

4.2. Single Oblique Camera Angle Image Blocks

Collecting image blocks with a single off-nadir camera angle has been recommended as an effective
means for reducing systematic deformation [21]; however, recommendations within the literature
are not consistent (Table 1). Our results quantify the effects of different imaging angles on point
cloud accuracy in high-relief landscapes. Lower oblique image angles between 0–15◦ (Figure 6B–D)
clearly reveal a systematic error that also corresponds to lower precisions and means further from
0 m. However, deformation appears as a concave ‘bowl’ shape rather than a convex dome. Large
GCP residuals in these datasets appear to contribute to the large discrepancies with the TLS reference
through large mean offsets (Figure 6B–D); however, the wide range of values suggests that surface
reconstruction is also contributing to errors relative to the reference data.

Based on these results, users should be cautioned against collecting full image sets at very
low-oblique angles to the object of interest. Specifically, this may pertain to applications flown with
a manual ‘free flight’ mode in which camera angles may be close, but not directly orthogonal to the
surface. Additionally, data quality in manual flight modes is inherently reliant on the remote piloting
skills of the operator and can often result in notable data gaps, especially in complex landscapes [22].
Increasing camera angle further off-nadir appears to mitigate the systematic bowl effect and increase
precision and accuracy (Figure 6E–H). Precisions achieved with these single camera angle (20–35◦)
image blocks are similar to the 1:1000 ratio attained by [48], while lower oblique camera angles fail
to achieve the ~1:640 ratio realized in [75]. It is worth considering that systematic errors may still
be occurring outside our assessment area, but this is subject to future research considerations. Good
GCP distribution appears specifically necessary for these single camera angle datasets, as the most
prevalent errors consistently occur in the N–NW areas (Figure 6), outside the constraints of GCPs.

Collection of image blocks with single off-nadir camera angles is not a common practice in UAV
or piloted aircraft image collection. These datasets resemble multicam image sets (one nadir and four
45◦ off-nadir sensors), which are growing in popularity in both conventional and SfM communities
for mapping complex 3D scenes, such as cities. Multicams with oblique sensors are not yet widely
available for UAVs and research on the capabilities of such imaging geometries is still developing.
However, our results suggest that SfM software is capable of processing off-nadir image sets and may
produce more optimal results than nadir-only image blocks.

4.3. Combination Datasets

Our findings further confirm that supplementing parallel-axis (nadir) image blocks with oblique
images reduces or eliminates systematic dome errors in UAV–SfM datasets, regardless of overlap,
camera angle, and oblique image configuration (Figure 7). Combination datasets always resulted
in more points produced, lower standard deviations (higher precision), and had comparable or
better mean values relative to nadir-only datasets (Figure 3). Nadir-only datasets consistently had
precision:viewing distance ratios of ~1:1000, while nadir image blocks supplemented with oblique
images produced ratios ~1:1500, regardless of oblique imaging pattern and overlap. Production of
more points can be simply explained by a higher number of input images allowing for the calculation
of more matching points within the final SfM model. Additionally, oblique images may obtain a better
viewing angle of steep slopes that are not easily visible in nadir images, thus producing more potential
matching points in both SfM and MVS steps. This is consistent with Vacca et al. [32], who found tie
point matching to be quite successful between nadir and oblique (45◦) images.

Increasing camera tilt angle in combination datasets generally improved precision, but also
resulted in lower accuracy (Figure 8). Lower oblique images (05–10◦) have a similar perspective to
nadir images and therefore may not provide substantial benefits for self-calibration due to narrow
angles of intersection (parallactic angles). In contrast, inclusion of higher oblique camera angles
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resulted in larger parallactic angles (closer to 90◦) known to be beneficial for self-calibration [20,55,83].
Regardless of oblique tilt angle, higher-overlap scenarios typically resulted in higher precision and
accuracy (Figure 3), which is likely a result of greater redundancy (i.e., more object points observed
in more images). This is consistent with other studies [42,67,84] and the direct relationship between
overlap and precision of nadir-only image blocks within this study (Figure 4A). In combination
scenarios, accuracy may be adversely affected by the proportion of oblique images relative to nadir
images used in SfM processing. Suggestions from the literature indicate that oblique images should
constitute ~10% of an image block [54]. Our results seem to show agreement with this suggestion,
with higher-overlap image blocks (6.7–14.4% oblique images) typically producing better results than
the lower-overlap scenarios (up to 33.3% oblique images); however, a more rigorous investigation on
the impact of oblique image proportions within a given image block is warranted.

Imaging pattern of oblique images also appears to have an influence on precision and accuracy.
Oblique image patterns with more images (e.g., BoxIO and double convergent arcs) consistently
produced datasets with the highest precision (Figure 8A,B), but lowest accuracy (Figure 8C,D),
especially in the higher overlap scenario. Higher precision and lowest accuracy may again be related
to the proportion of oblique images, but we suspect that image locations also have a strong influence.
For example, a 30◦ oblique image in BoxI may record ~40% of the field area, leaving more than half of
the image frame unused in generating tie points, and as a result, tie point matches are concentrated
in only a portion of the image frame, which is considered less than ideal for self-calibrating bundle
adjustment [50]. Conversely, a 30◦ oblique image in the BoxO pattern captures ~65% of the scene, and
consequently, has the potential to produce more tie point matches and have a greater influence on
camera calibration.

4.4. Cameras and Calibration

Low-cost sensors commonly used in UAV applications, such as the one used in this study, are
relatively unstable [9,57] and common SfM processing solutions may give a false sense of quality
while errors propagate into the final model [55,56], as demonstrated in this investigation. Previous
studies have thoroughly demonstrated the benefits of oblique images for camera calibration [21,50];
however, obtaining an optimal image network for both calibration purposes and scene reconstruction
is not always straightforward [60]. Self-calibration can be performed prior to data acquisition
(precalibration) or calculated simultaneously with 3D object space point coordinates (‘on-the-job’).
Remondino et al. [85] suggested that a separation of calibration and scene reconstruction is preferable,
but this assumes similar conditions between calibration and scene acquisition. In contrast, a direct
comparison of pre- and ‘on-the-job’ self-calibration of UAV image blocks has yielded similar results [52].
Within this investigation, ‘on-the-job’ self-calibration with combination scenarios that included oblique
images provided satisfactory results and improved precision relative to single camera angle datasets.
Due to practical and logistical concerns, ‘on-the-job’ self-calibration is likely to remain the most applied
method within geoscience research [21,86].

Although cameras are continuously being produced in smaller sizes with improved resolution
and stability, an accurate camera calibration will always be essential for reliable photogrammetric
measurements. Many UAVs have the flexibility to facilitate improved calibration by collecting airborne
images with varying orientations (e.g., multirotor platforms with gimbaled cameras, senseFly S.O.D.A.
3D (https://www.sensefly.com/camera/sensefly-s-o-d-a-3d/; accessed 22 January 2019)). Therefore,
we strongly urge practitioners employing UAV–SfM (and ground-based SfM) methods to implement
data collection strategies that consider the well-established ‘rules’ of self-calibration (Section 1),
specifically items (1–3).

4.5. GCPs

Precise and well-distributed GCPs are important for obtaining accurate and reliable UAV–SfM
models; GCPs define the absolute orientation and scale within an external coordinate system and

https://www.sensefly.com/camera/sensefly-s-o-d-a-3d/
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provide constraints within the bundle adjustment [13,21,67,83]. Our results show that GCPs are
especially important for single camera angle datasets. The zone of weakness occurring in the NW
corner of Figure 6E–H (peripheral to all GCPs) is a textbook example of the deficiencies that can result
outside the surface constrained by GCPs. At a minimum, for accurate results, GCPs should be placed
around the perimeter of the field area of interest [50]; however, feasibility and accessibility may hinder
GCP planning.

As a result, logistical and practical motivations are driving interests in a number of applications
(e.g., geologic mapping) to reduce or completely omit the use of GCPs. Incorporation of oblique images
should reduce the need for a dense network of precise GCPs [13], particularly for constraining the
bundle adjustment. Harwin et al. [52] found that with fewer GCPs or lower precision measurements,
oblique images were especially effective for improving camera calibration and resulting 3D model
accuracy; however, more GCPs should be preferred. Combination datasets in this investigation
(Figure 7) appear to reduce GCP requirements; in the NW zone of weakness (outside the GCP area),
errors were reduced by nearly 50% in combination datasets (most notably in 90/70 overlap) relative to
single camera angle datasets. Although oblique images may reduce the need for GCPs, some control
measurements are still recommended to add external constraints to the bundle adjustment along with
providing absolute orientation.

Recent advances in UAV onboard orientation sensors (e.g., real-time kinematic global navigation
satellite system, RTK-GNSS), provide an attractive solution for direct georeferencing (DG) without
the need for GCPs. Although DG UAV–SfM has shown comparable planar (x, y) accuracy to surveys
incorporating GCPs, vertical accuracy may still be up to a magnitude poorer [86,87]. Through the
addition of oblique images, accuracy and precision of DG UAV–SfM could be nearly commensurate
with surveys incorporating GCPs [54]. However, this topic requires further investigation and we
expect that higher-grade inertial measurement units (IMUs) may be required to provide accurate
angular camera orientation (yaw, pitch, and roll) within the solution, and that weighting capabilities
for angular orientation will also need to be available within processing software.

4.6. Software and Settings

Readers should be cautioned that oblique images may create complications within certain
SfM-MVS processing software. A limitation of this study is the evaluation of a single software
package, Pix4Dmapper, an established commercial SfM solution that has consistently demonstrated
reliability in processing oblique images (e.g., [32,43,88]). A list of additional software packages that
have been successfully used in processing oblique images can be found in Verykokou and Ioannidis [30].
Although many commercial photogrammetric software suites have optimized aerial triangulation of
oblique images [88], most retain proprietary details and continuously modify algorithms to improve
efficiency and precision. Software packages may offer users limited options for processing that can
alter image matching strategies; however, the use of a matching strategy that is inappropriate with the
image set can result in failure during processing.

5. Conclusions

UAV–SfM workflows have demonstrated the ability to map extensive 2D planes and model
isolated 3D objects. Complex scenes with high-relief and intricate geometric morphology, however,
require deeper consideration of imaging strategy to maintain detail and accuracy in planar (x, y)
and vertical (z) dimensions. Within topographically complex scenes, image sets collected with a
single camera angle are unlikely to produce complete datasets and are prone to higher levels of
deformation along steep slopes. Parallel-axis image sets (i.e., nadir image blocks) are susceptible to
systematic ‘dome’ deformation, even with the use of survey-grade control points within high-relief
scenes. As suggested by several authors, our results confirm that supplementing nadir image blocks
with oblique images consistently mitigates these systematic error patterns within complex topography.
Results from more than 150 scenarios with various combinations of overlap and imaging angles
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provide quantitative evidence of increased precision, higher accuracy, and reduced data gaps within
combination datasets. Based on our results and the existing literature, we provide the following
recommendations for improving UAV–SfM surveys in high-relief terrain. These recommendations
should be equally adaptable for SfM data acquisition in alternative scenarios (e.g., vertical façades
from UAV or ground-based imaging):

1. Combination datasets (i.e., nadir image block supplemented with off-nadir images) are preferred
over image sets collected using a single camera angle.

2. Higher overlap is preferred for combination datasets.
3. Higher camera tilt angles (15–35◦) in combination datasets generally increase precision, but may

have an adverse effect on accuracy.
4. Single-angle image sets at higher-oblique angles (30–35◦) can produce reliable results if

combination datasets are not possible. However, single-angle image sets collected at lower angles
may be more volatile and can result in large systematic errors. This should prove cautionary for
image sets collected at near orthogonal angles using manual ‘free flight’ modes.
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