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Abstract: Irrigation water management and real-time monitoring of crop water stress status can
enhance agricultural water use efficiency, crop yield, and crop quality. The aim of this study
was to simplify the calculation of the crop water stress index (CWSI) and improve its diagnostic
accuracy. Simplified CWSI (CWSIsi) was used to diagnose water stress for cotton that has received
four different irrigation treatments (no stress, mild stress, moderate stress, and severe stress) at the
flowering and boll stage. High resolution thermal infrared and multispectral images were taken using
an Unmanned Aerial Vehicle remote sensing platform at midday (local time 13:00), and stomatal
conductance (gs), transpiration rate (tr), and cotton root zone soil volumetric water content (θ) were
concurrently measured. The soil background pixels of thermal images were eliminated using the
Canny edge detection to obtain a unimodal histogram of pure canopy temperatures. Then the wet
reference temperature (Twet), dry reference temperature (Tdry), and mean canopy temperature (Tl)
were obtained from the canopy temperature histogram to calculate CWSIsi. The other two methods
of CWSI evaluation were empirical CWSI (CWSIe), in which the temperature parameters were
determined by measuring natural reference cotton leaves, and statistical CWSI (CWSIs), in which
Twet was the mean of the lowest 5% of canopy temperatures and Tdry was the air temperature (Tair) +
5 ◦C. Compared with CWSIe, CWSIs and spectral indices (NDVI, TCARI, OSAVI, TCARI/OSAVI),
CWSIsi has higher correlation with gs (R2 = 0.660) and tr (R2 = 0.592). The correlation coefficient (R)
for θ (0–45 cm) and CWSIsi is also high (0.812). The plotted high-resolution map of CWSIsi shows
the different distribution of cotton water stress in different irrigation treatments. These findings
demonstrate that CWSIsi, which only requires parameters from a canopy temperature histogram,
may potentially be applied to precision irrigation management.
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1. Introduction

Water is an important factor limiting crop quality and yield. As the global climate changes and
the imbalance between water supply and demand grows, farmers are faced with great shortages in
agricultural water resources, especially in the arid and semi-arid areas of northwest China [1]. Today,
agriculture consumes about 70–90% of world’s water resources [2,3]. Hence, it is necessary to improve
agricultural water use efficiency through reasonable irrigation, accurate, and timely monitoring of
crop water status. A common indicator of water stress is crop canopy temperature, which is measured
using handheld thermography cameras [4,5]. Idso et al. [6] proposed the first indicator of crop stress
conditions, the crop water stress index (CWSI), and established a relationship between leaf-to-air
temperature difference and vapor pressure deficit. Jackson et al. [7] developed a method for calculating
theoretical CWSI by crop canopy energy balance theory, but this approach requires more meteorological
data. One method to easily obtain the calculation parameters for empirical CWSI (CWSIe) is to calculate
the normalized canopy temperature [8,9] by measuring directly the temperatures of wet reference
(Twet) and dry reference (Tdry). Twet is fully transpiring leaves with open stomata obtained by spraying
part of the canopy [10,11], and Tdry is non-transpiring leaves with closed stomata obtained by covering
the leaves with petroleum jelly [10,12]. However, these natural reference surfaces are easily disturbed
by meteorological factors and the location of reference leaves, and CWSIe may not be uniform in
different regions. The other method is the statistical CWSI (CWSIs) [13], in which Twet is estimated
by the average of the lowest 5% of temperatures histogram [14], and Tdry is assumed to be equal to
the air temperature (Tair) + 5 ◦C [15–18]. However, these literatures rarely eliminate the effect of soil
background pixels nor consider the unstable effect of air temperature.

The field of precision agriculture has rapidly expanded, and because ground-based handheld
thermography cannot be easily used for large-scale measurements, various remote sensing platforms
have been developed. In particular, Unmanned Aerial Vehicle (UAV) thermal infrared remote sensing
has been widely used in agriculture for crop water stress monitoring and irrigation management
purposes [19–21]. In addition, some studies have pointed out that for crops such as olive, potato,
and cotton, there is a robust relationship between CWSI calculated using parameters obtained
from UAV thermal infrared images and physiological measurements of stomatal conductance (gs),
transpiration rate (tr), and soil water content [22–25].

UAVs play an extremely important role in modern agriculture, but two issues of using UAV
thermal infrared images for estimating crop water status need further study. One issue is that pure
crop canopy pixels need to be extracted from the UAV thermal image to eliminate the soil background.
The other one is how canopy average temperature (Tl), Twet, and Tdry are easily obtained from canopy
temperature histogram. In order to acquire pure canopy temperature, Möller et al. [26] utilized visible
(RGB) images as a reference to register thermal infrared images, and visible images were used to
make a mask image in which canopy pixels were represented by a value of one and other pixels
(mainly soil pixels) were represented by a value of zero. However, Meron et al. [27] noted that the
image co-registration method is too time-consuming and expensive for practical applications, and
recommended that pure canopy pixels should be determined based on Tair (Tair − 10 ◦C < Tcanopy <
Tair − 7 ◦C). The Tl can then be calculated using the lowest 33% of Tcanopy values. To further improve
the accuracy of extracting pure canopy pixels, the use of temperature histogram obtained from UAV
thermal infrared images has been introduced. The temperature histogram, which contains both canopy
and soil pixels, is bimodal, but canopy temperatures follow a Gaussian distribution [27]. It is necessary
to remove the soil background using the Expectation–Maximization algorithm to fit the Gaussian
distribution of canopy temperatures [28], but there exists the error in Gaussian fitting. Therefore, it is
still difficult to eliminate soil pixels to improve the diagnostic accuracy of thermal infrared indicators.

Many studies have used different methods to calculate Twet and Tdry values. In particular, the use
of a statistical approach may greatly simplify the calculation of Twet and Tdry [29]. Twet was calculated
by taking the average of the lowest 5% of temperature histogram from the whole potato experimental
region [14]. Park et al. [30] proposed a method to obtain Twet and Tdry values from the critical values at
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the 99% confidence intervals of Gaussian distribution fitting the canopy temperature distribution based
on Gaussian mixture model for different sub-regions and crop cultivars, but directly using the critical
values for Twet and Tdry may lead to great uncertainty and error. In general, the mean temperatures
of the lowest (coldest) and highest part of crop canopy temperature histogram can better represent
Twet and Tdry than the critical values do. The histogram approach, which reduces the complexity of
CWSI calculation, does not need meteorological elements and reference surfaces. Some current studies
have shown that Twet of CWSI is determined by the histogram, but Tdry relies on other methods. It is
probable to find out the CWSI calculation method completely depending on the canopy temperature
histogram after the soil background is removed.

Additionally, drones equipped with multispectral sensors are also used for precision agriculture.
Some vegetation indices have a certain relationship with crop water stress conditions [19]. There
is a significant correlation between multispectral spectral vegetation indices (normalized difference
vegetation index (NDVI), transformed chlorophyll absorption in reflectance Index (TCARI), optimized
soil-adjusted vegetation index (OSAVI) and TCARI/OSAVI), and water stress indicators such as
stomatal conductance [31]. To further validate the reliability of simplified CWSI, these spectral indices
were also calculated on the basis of UAV multispectral images.

It is very important to build a simplified CWSI using a canopy temperature histogram generated
from high resolution UAV thermal infrared images to diagnose crop water stress status and improve
agricultural irrigation water use efficiency. The objectives of this study are to: (i) eliminate the soil
background and acquire pure canopy pixels using the Canny edge detection method and a series of
image processing; (ii) obtain Twet, Tdry, and Tl from canopy temperature histograms merely based on
UAV thermal infrared imagery; (iii) establish an optimized relationship to effectively diagnose cotton
water stress conditions by comparing CWSIe, CWSIs, CWSIsi, and spectral indices.

2. Materials and Methods

2.1. Study Site Description

The experimental field plot is located at the Institute of Water Saving Agriculture in Arid Regions
of China (108◦4′20”E, 34◦17′42.17”N; 525 m a.s.l.; Figure 1), Northwest A & F University, Yangling,
Shaanxi, China. The plot belongs to temperate monsoon climate. The cotton (xinongmian 1008) was
planted on 19 April 2017, and the UAV data were collected on 11 to 14 July 2017 (13:00 local time).
The specific meteorological factors are shown in Table 1. The experimental field has an arid and
semi-arid climate with an average daily temperature of 12.9 ◦C and a mean annual rainfall of 640 mm
and a pan evaporation of 993.2 mm. The soil is clay loam with a soil volumetric water content at field
capacity of 33. 52% and an average bulk density of 1.40 g cm−3. The average daily air temperature
was 35.0 ◦C during UAV data collection.

Table 1. The main meteorological factors (local time 13:00).

Date Air Temperature
(◦C)

Relative Humidity
(%)

Wind Speed
(m·s−1)

Net Radiation
(W·m−2)

11 July 2017 37.1 30.5 1.3 698
12 July 2017 36.9 34.2 0.7 720
13 July 2017 37.1 40.6 0.4 695
14 July 2017 36.7 38.6 0.9 707

2.2. Experiment Design

There are four completely randomized irrigation treatments with three replicates and a total of 12
experimental plots. In order to effectively control irrigation water and soil moisture changes, each
plot was designed to be 4 m wide (7 rows) and 5 m long (Figure 1b). The four different treatments
are: full irrigation (T1), mild water stress (T2), moderate water stress (T3), and severe water stress (T4).
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In order to maintain differences in irrigation, the plots of T1, T2, T3, and T4 were watered to maintain
the volumetric soil water content at 95%–100%, 80%, 65%, and 50% of the field capacity, respectively.
The cotton was fully irrigated in the seedling stage, and irrigation treatments were imposed in the
cotton flowering and early boll stages. Cotton were irrigated using a drip system with one line per
row, and the drippers, which had a flow rate of 1.2 L h−1, were spaced at intervals of 0.1 m.

Figure 1. (a) Location of the experimental site from basemap of ArcGIS software; (b) RGB image of the
study area. The labels indicate the treatment and the replicate. For example, T11 represents the first
replicate of the first treatment.

2.3. Aerial Thermal Infrared and Multispectral Imagery Acquisition

Thermal infrared (TIR) cameras (Zenmuse XT, FLIR System, Inc., USA) and multispectral sensor
(u-MCA, Tetracam, Inc., USA) were mounted on a UAV platform (a six-rotor unmanned aircraft M600,
manufactured by DJI). The Matrice 600 six-rotor UAV has the characteristics of stable flight and long
battery life. The maximum take-off weight is 15.1 kg, the maximum wind speed can withstand 8 m/s
and flight time is 40 min. The u-MCA multispectral sensor consists of six bands in the VIS-NIR spectral
range at 490, 550, 680, 720, 800, and 900 nm, respectively, a spatial resolution of 1280 × 1024 pixels, 9.6
mm fixed lens, and angle of view of 38.26◦(H) × 30.97◦(V). The TIR camera has a spatial resolution of
640 × 512 pixels, a spectral range of 7.5–13.5 µm, a focal length of 19 mm, thermal sensitivity (NEdT)
of 50 mk, and an angular field of view of 32◦(H) × 26◦(V). Multispectral and thermal infrared sensors
acquired images from crop canopy 15 m and 20 m, respectively. All UAV data were collected from
the 11 through 14 July 2017 (13:00 local time). The mosaic thermal infrared images were acquired
using the photogrammetric software Pix4D (Lausanne, Switzerland). In order to calibrate the thermal
infrared images, the temperatures of six sunlit leaves and six shaded leaves were monitored using a
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handheld thermal infrared thermometer during the collection of thermal infrared images with the
UAV. The temperature calibration parameters: emissivity, target distance, background temperature
and relative humidity were input to FLIR Tools software.

2.4. Physiological and Soil Moisture Data

Stomatal conductance (gs, mol m−2s−1) and the transpiration rate (tr, mmolm−2s−1) of the leaves
were measured using a portable photosynthesis system (LI-6400, LI-COR Inc., USA). This leaf is the
third from the upper part of the cotton canopy and had been fully exposed to the sun, and three leaves
per plot were measured. The volumetric water content (θ, m3m−3) of the soil in different depths
(15, 30, and 45 cm) was measured using soil moisture sensors (Decagon EM50 data logger, ECH2O
sensor) when thermal infrared images were collected. These sensors were installed in the middle of
each plot.

2.5. Removal of Soil Background

Calculation of Tl requres pure canopy pixels, and it is necessary to exclude soil pixels from
UAV thermal infrared images. However, it is complicated and expensive to remove soil background
in the traditional approaches [27]. To resolve this problem, we excluded soil pixels using Canny
edge detection in Matlab R2016b (Mathworks Inc., Matick, MA, USA). Two other edge detection
algorithms, Prewitt and Roberts, were also applied and compared. The Prewitt, Roberts, and Canny
edge detection were used to detect changes in the gradient and edge of the images [32,33]. The soil
background were removed by using edge detection and a series of operations. The specific procedure
included: (1) detecting cotton canopy edge in matlab and acquiring cotton canopy edge feature raster
image; (2) converting canopy edge feature raster images to cotton canopy edge polyline vector layer in
ArcGIS (version 10.4.1); (3) obtaining cotton canopy polygon vector layer converted from the cotton
canopy polyline layer using ArcGIS; (4) clipping UAV thermal images using cotton canopy polygon
vector layer.

2.6. Calculation of Twet and Tdry

The CWSI calculation parameters were obtained using empirical, statistical, and simplified
methods based on different Twet and Tdry values. For the CWSIe calculation parameters, the
temperature of fully transpiring leaves was obtained by measuring the temperature of reference
leaves sprayed with water on both sides (Twet), and the temperature of non-transpiring leaves was
obtained by measuring the temperature of reference leaves covered with petroleum jelly (Tdry) [10].
Twet is the mean value of the lowest 5% of the temperature distribution histogram [14] and Tdry is Tair +
5 ◦C [9,15–18,34]. In order to further simplify the histogram approach. This study was designed with
different levels of irrigation (both full irrigation and severe water stress) under the whole experimental
area. We take the two-sided critical value of at the 99% [30] confidence intervals of canopy temperature
histograms of the whole experimental area as calculation criteria. The Twet and Tdry used to calculate
the CWSIsi were calculated as follows: Twet is the mean of the lowest 0.5% of canopy temperatures and
Tdry is the mean of the highest 0.5% of canopy temperatures.

2.7. Crop Water Stress Index (CWSI) and Spectral Indices

The temperature-based index CWSI was developed by Idso et al. [6], and is defined by the
following formula [35]:

CWSI =
Tl − Twet

Tdry − Twet
(1)

where Tl is the average canopy temperature acquired using the UAV thermal images after the removal
of soil pixels, Twet is the lower boundary temperature of the cotton canopy, and Tdry is the upper
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boundary temperature of the cotton canopy. Twet represents the temperature of fully transpired leaves
with open stomata, and Tdry represents the temperature of non-transpired leaves with closed stomata.

The soil background of multispectral images was removed using the supervised classification
workflow of ENVI 5.3, and the canopy and soil area were selected with the region of interest (ROI).
The spectral Indices were also calculated using canopy spectral reflectance, such as normalized
difference vegetation index (NDVI) [36], transformed chlorophyll absorption in reflectance Index
(TCARI) [37] and optimized soil-adjusted vegetation index (OSAVI) [38,39].

NDVI =
R800− R680
R800 + R680

(2)

TCARI = 3 ∗ [(R700− R670)− 0.2 ∗ (R700− R550) ∗ (R700/R670)] (3)

OSAVI = (1 + 0.16) ∗ (R800− R670)/(R800 + R670 + 0.16) (4)

In this study, a canopy temperature histogram was used to estimate Twet, Tdry, and Tl based on
which the CWSIsi was acquired (Figure 2).

Figure 2. Flow chart on the calculation of the simplified crop water stress index using a cotton canopy
temperature histogram.

3. Results

3.1. Different Edge Detection Algorithms

Results on removal of soil background were shown in Figure 3. Figure 3a–c show the canopy
edge detected using Canny, Prewitt, and Roberts methods. Comparison among the three different
edge detection algorithms indicated that the raster image of canny edge detection algorithm can well
distinguish between cotton canopy and soil background pixels, and had a very clear canopy edge
texture (Figure 3a). Figure 3b shows that the raster image of Prewitt edge detection algorithm had the
thick edge pixels. The thick edge pixels included a lot of canopy and soli pixels, so it is difficult to
distinguish canopy pixels. The Roberts edge feature raster image (Figure 3c) had also a rough results
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and lost more canopy edge information. The specific processes of removing the soil background using
the canny edge detection algorithm were shown in Figure 3d–f. The green polylines in Figure 3d
depict the edge of cotton canopy, and other areas include cotton canopy and soil. The jade polygons
in Figure 3e are cotton canopy areas. Figure 3f shows the white areas were null temperature values,
and pure canopy temperatures were acquired.

Figure 3. (a) Canny edge feature raster image (binary image: the cotton canopy edge pixels are white
and the non-canopy edge pixels are black); (b) Prewitt edge feature raster image; (c) Roberts edge
feature raster image; (d) Cotton canopy polyline vector layer; (e) Cotton canopy polygon vector layer;
(f) Cotton canopy raster clip image.

3.2. Simplified CWSI Calculation Parameters Obtained from the Canopy Temperature Histomgram

The canopy temperature histogram obtained from UAV thermal infrared images was drawn
based on the temperatures taken from the entire experimental plot under four irrigation treatments,
each of which has three replicated plots. The temperature distribution of cotton canopy and soil pixels
from images was bimodal (Figure 4a). It was crucial to remove soil background pixels to improve the
accuracy of CWSI calculations. When soil background pixels were removed, the distribution of pure
canopy temperatures was Gaussian [40] (Figure 4b). In this study, Twet and Tdry were derived from the
mean of the lowest 0.5% and highest 0.5% of canopy temperature histogram respectively. CWSIe and
CWSIs were obtained using traditional methods. CWSIe, CWSIs, and CWSIsi were shown in Table 2.

There was a great difference in Twet and Tdry values calculated using the different methods.
The Twet values of CWSIe, CWSIs, and CWSIsi were 26.6 ◦C, 28.6 ◦C, and 28.0 ◦C respectively.
The Twet of CWSIe was as low as 26.6 ◦C, and the air temperature during the experiment was 38.3 ◦C.
A huge gap exists between the Twet and air temperature, therefore there was an uncertain error in
the measured Twet values. Additionally, the Twet values of CWSIs and CWSIsi were similar. From the
definition of TWet, we considered that the smaller Twet value was closer to the actual situation. The Tdry
values of CWSIe, CWSIs, and CWSIsi were 44.4 ◦C, 43.3 ◦C, and 39.2 ◦C, respectively. The Tdry of
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CWSIsi was lower than those by other two methods. Different CWSI values were calculated using the
three different Twet and Tdry values. That means the accuracy of CWSIsi was higher than that of CWSIe
and CWSIs.

Figure 4. (a) Histogram (canopy and soil pixels) of temperatures of the entire experimental plot;
(b) Histogram (cotton canopy pixels) of canopy temperatures of the entire experimental plot. Note: the
white lines of histogram represent null temperature values.

Table 2. Different methods of Twet and Tdry calculation.

CWSI Types Methods Twet (◦C) 1 Tdry (◦C) 2

CWSIe Leaves covered with petroleum jelly / 44.4
Leaves sprayed with water on both sides 26.6 /

CWSIs Tair + 5 ◦C / 43.3
Mean of the lowest 5% of temperature histogram 28.6 /

CWSIsi Canopy temperature histogram 3 28.0 39.2
1 Temperature measured from wet reference leaves, which represent fully transpired leaves. 2 Temperature measured
from dry reference leaves, which represent non-transpired leaves. 3 Average of the lowest 0.5% and highest 0.5% of
values in the canopy temperature histogram.

The Tl was obtained from the canopy temperature histograms. The canopy and soil temperature
distributions for four different treatments are shown in Figure 5. The histograms of temperatures
were distinctly bimodal and those of canopy temperatures were Gaussian. The bimodal distributions
contain both canopy and soil pixels, and the temperatures of the canopy pixels were lower than those
of the soil pixels. The parameters of CWSIsi were calculated using the Canny edge detection to
eliminate soil background pixels. (Figure 5). The Tl of T4 (35.1 ◦C) was higher than that of T3 (32.2 ◦C),
T2 (31.3 ◦C), and T1 (30.5 ◦C). The four irrigation treatment plots demonstrate obvious differences
among the Tl values derived from the canopy temperature histograms, so canopy edge detection was
a method used to extract pure canopy temperature values from UAV thermal images.

3.3. Relationships between CWSI and Cotton Physiological Indicators

Several studies have shown that there is a high correlation between stomatal conductance and
CWSI calculated from thermal images [9,29,41]. The stomatal conductance was measured to further
validate the accuracy of the different CWSI types in this paper. The relationship between stomatal
conductance and different CWSI values is shown in Figure 6. Stomatal conductance is negatively
correlated with all three CWSI models, but the coefficients of determination (R2) differ. The R2

(0.660) of CWSIsi is higher than those of CWSIs (0.528) and CWSIe (0.474). Figure 6d–g show that
relationship between the four spectral indices (NDVI, TCARI, OSAVI, TCARI/OSAVI) and stomatal
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conductance. However, lower R2 were observed in the spectral indices. The R2 of NDVI, TCARI,
OSAVI, TCARI/OSAVI, and stomatal conductance are 0.387, 0.040, 0.168, 0.148, respectively.

Figure 5. (a–d) Histograms of the temperature from the cotton canopy and soil pixels and histograms
of the temperature from the cotton canopy pixels only for each treatment plot; (i) Original thermal
infrared image, (ii) Temperature histogram (canopy and soil pixels), and (iii) canopy temperature
histogram (cotton canopy pixels) for the T1 (a), T2 (b), T3 (c), and T4 (d) treatment plots. Note: the
white lines of histogram represent null temperature values.

Transpiration rate was also measured while the UAV was collecting thermal infrared images at
midday (13:00 local time). There are obvious differences between the CWSI and cotton physiological
indexes. A negative linear relationship exists between the transpiration rate and each of the empirical,
statistical, and simplified CWSI, and the R2 values are 0.527, 0.516, and 0.592, respectively. CWSIsi,
the most highly correlated with transpiration rate, well reflects cotton water stress (Figure 7a–c).
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In addition, it can be seen in Figure 7d–g that the correlations between spectral indices (NDVI, TCARI,
OSAVI, TCARI/OSAVI) and transpiration rate were relatively weak compared with CWSI. The results
imply that simplified CWSI using canopy temperature histogram has a high applicability and can
adequately represent different water stress conditions.

Figure 6. Relationship between stomatal conductance and (a) empirical CWSI (CWSIe), (b) statistical
CWSI (CWSIs), (c) simplified CWSI (CWSIsi), (d) normalized difference vegetation index (NDVI),
(e) transformed chlorophyll absorption in reflectance Index (TCARI), (f) optimized soil-adjusted
vegetation index (OSAVI), (g) TCARI/OSAVI. Note: four days of data at plot level, n = 48.

3.4. Relationship between Simplified CWSI and Cotton Root Zone Soil Volumetric Water Content

Soil volumetric water content (θ) was measured at different depths to further evaluate the
water deficit status of cotton using different CWSI types and spectral indices. Pearson’s correlation
coefficients were shown in Table 3. There was a high correlation coefficient (R > 0.50) between θ and
CWSI, and the correlations at the depth of 0–45 cm were higher, in which R (0.812) of CWSIsi was
the higest. Consistent with this, the R between CWSIsi and θ was also the highest at the soil depth of
0–30 cm and 0–15 cm. Additionally, the relationship between NDVI and OSAVI, and soil moisture was
significant, while other indices failed to demonstrate a reliable relationship. These results demonstrate
that the CWSIsi model is more reliable and is more highly correlated with θ. Thus, CWSIsi better
reflects cotton root zone moisture content compared with the CWSIe and CWSIs models.
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Figure 7. Relationship between stomatal conductance and (a) empirical CWSI (CWSIe), (b) statistical
CWSI (CWSIs), (c) simplified CWSI (CWSIsi), (d) normalized difference vegetation index (NDVI),
(e) transformed chlorophyll absorption in reflectance Index (TCARI), (f) optimized soil-adjusted
vegetation index (OSAVI), (g) TCARI/OSAVI. Note: four days of data at plot level, n = 48.

Table 3. Pearson’s correlation coefficients (R) for three CWSI types and the soil volumetric water
content (θ, m3·m−3) obtained at different depths (15, 30, and 45 cm).

CWSI Types θ0~15 θ0~30 θ0~45

CWSIe 0.517 ** 0.554 ** 0.654 **
CWSIs 0.627 ** 0.675 ** 0.776 **
CWSIsi 0.643 ** 0.729 ** 0.812 **
NDVI 0.468 ** 0.527 ** 0.558 **
TCARI 0.174 0.199 0.201
OSAVI 0.507 ** 0.514 ** 0.443 **

TCARI/OSAVI 0.074 0.093 0.066

Significant correlations (p < 0.01) are indicated by ‘**’, n = 48.

3.5. Simplified CWSI Mapping

It is necessary to draw high resolution water stress maps for agricultural water management.
The map of CWSIsi (Figure 8) shows that there are obvious differences among the experimental plots.
CWSIsi values range from 0.100 to 0.810, and the mean CWSIsi values for T1, T2, T3, and T4 are 0.162,
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0.364, 0.531, and 0.693, respectively (Figure 8b). The distribution of CWSIsi is consistent with the
water status of cotton plants in the different irrigation treatment plots. The CWSIsi map indicates
strong relationship exists between CWSIsi and water stress conditions.

Figure 8. (a) Map of simplified CWSI measured at 13:00; (b) Map of CWSIsi for specific regions in the
T1, T2, T3, and T4 plots.

4. Discussion

UAV thermal infrared technology has great application potential in precision agriculture, but there
are also some challenges in its application [19,42,43]. In this study, a map of canopy temperatures
measured using the UAV thermal infrared platform reveals obvious differences among irrigation
treatments. Canopy temperature can be used to monitor crop water status. CWSI is also a good
indicator of crop water status [44,45], and some previous studies have suggested that good relationships
exist between CWSI and the stomatal conductance, transpiration rate as well as soil water moisture
respectively [23,46]. Here the Canny edge detection algorithm was used to eliminate soil background
pixels from UAV thermal infrared orthomosaic images, and CWSIsi parameters (Tl, Twet, and Tdry) were
calculated from a canopy temperature histogram. Compared with two other CWSI models, CWSIsi
can more accurately characterize cotton moisture conditions, and no meteorological factor is required
in the calculation of CWSIsi.

The soil background pixels in thermal infrared images should be removed prior to the extraction
of canopy temperature and CWSI calculation. RGB images can eliminate soil pixels to a certain extent,
but this method is expensive and complicated. In this work, the Canny edge detection, which can be
used to detect the edges of canopy and soil pixels, was used to preprocess thermal infrared images
using ArcGIS and ENVI software (Figure 3). We applied three different methods to the calculation of
Tdry, and Tdry values of CWSIe, CWSIs, and CWSIsi were 44.4 ◦C, 43.3 ◦C, and 39.2 ◦C, respectively.
The previous studies have shown that the Tdry value of 39.2 was more reasonable [30,47]. Canopy
average temperatures with Canny edge detection method to remove soil pixels were T4 (35.1 ◦C),
T3 (32.2 ◦C), T2 (31.3 ◦C), and T1 (30.5 ◦C), respectively. The difference between T1 and T4 agrees with
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the relevant previous researches [48,49]. Prior to the removal of background soil pixels, the temperature
histogram was bimodal (Figures 4 and 5). This can be explained by the fact that the canopy and soil
pixels have not only different temperatures, but also partially overlapping temperatures. These
differences in temperatures and grayscale images can be used to distinguish the soil and canopy
pixels detection. CWSIsi does not require UAV RGB image to extract canopy temperatures and greatly
simplifies the application of UAV thermal infrared technology in agriculture. Besides this, removing
ambiguous mixtures of pixels is also a difficult problem [30]. Therefore, we used high resolution
thermal images (0.001 m) to greatly reduce the number of mixed pixels.

The relationship between crop physiological indicators and different stress indices were compared.
It is clear that the correlation of CWSIsi with physiological parameters is higher than that of CWSIe,
CWSIs, NDVI, TCARI, OSAVI, TCARI/OSAVI (Figures 6 and 7). There is a high correlation (R2 = 0.660)
between CWSIsi and stomatal conductance. The latter is a good indicator of cotton water stress and is
preferable to transpiration rate. In addition, some studies have shown that relationship between CWSI
and crop physiological indicators (stomatal conductance or transpiration rate) is non-linear [8,14,50,51].
In this paper, we further analyzed and pointed out that the relationship between CWSI and crop
physiological indicators was a linear model, and to some extent, linear relationship was superior
to non-linear model relationship. The uncertainty of the model may be caused by meteorological
conditions, data analysis and microclimate in the field.

The values of CWSIe and CWSIs range from 0.15 to 0.55 and 0.05 to 0.50, whereas the values of
CWSIsi range from 0.15 to 0.60. This significant difference can be attributed to the different methods
used to estimate Twet and Tdry. Natural wet and dry reference surfaces (empirical method), the mean
of the lowest 5% of temperature histogram (statistical methods) and a canopy temperature histogram
(simplified method) were used to calculate the lower and upper bounds of the canopy temperature for
CWSIe, CWSIs, and CWSIsi respectively. We found that the parameter Tdry using the simplified method
is smaller than that using the empirical and statistical methods; and the Twet using the simplified
method is similar to that using statistical method. The Tdry of CWSIe is affected by the measurement
time after the leaves were covered with petroleum jelly. The Tdry of CWSIs may fluctuate greatly due
to the changes of Tair + 5 ◦C. Such factors as measurement time and Tair + 5 ◦C lead to an unstable
estimate and different stress thresholds of CWSIe and CWSIs. Furthermore, Twet and Tdry of CWSIsi
are stable and easy to calculate. We conclude that the error of CWSIsi is the lowest using canopy
temperature histogram which reduces the error of meteorological factors and manual measurements.

Multispectral indices have a low performance with cotton soil water stress conditions. In 1971,
Thomas et al. [52] pointed out that reflectance at the 1.45 um absorption bands was related to crop
water content. The water absorption bands, 0.76 um, 0.97 um and 1.45 um, were used to detect crop
water stress [53]. Some studies have also shown the low correlation between these spectral indices
(NDVI, TCARI, OSAVI, TCARI/OSAVI) and stomatal conductance [19,31,54,55]. The amount of data
may cause a low correlation in the model. Therefore, thermal indices are better than the multispectral
indices for diagnosing crop water stress.

Our findings suggest that CWSIsi may be applied to precision irrigation. The method described
here simplifies the calculation of the lower and upper bounds of canopy temperature, and the accuracy
of using CWSIsi to diagnose crop water stress is higher than that of multi-spectral vegetation indices.
The thermal infrared camera (13,000 dollars) has also an affordable cost relative to multispectral camera
(20,000 dollars) or hyperspectral camera. In addition, this small UAV, which costs only 4500 dollars,
equipped with a thermal infrared camera is a convenient tool for precision agriculture. Some specifics
included:(1) The taking off and landing of UAV requires a flat ground when farmers are working in
the field; (2) UAV flight parameters must be set, including automatic return altitude and low battery
reminder; (3) the thermal infrared camera should be removed after the flight to avoid damage to
camera platform; (4) the photo format of the thermal infrared camera should be adjusted, such as
TIFF and JPG, etc. We conducted this experiment during the cotton flowering and boll stage, which is
a crucial period for cotton yield, but we did not explore the changes in cotton canopy temperature
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over other growth stages. The canopy temperatures obtained using UAV thermal infrared technology
may be affected by the altitude of the drone, phenotypic information available for cotton, the area
covered with vegetation and farmland microclimate. To further explore the effects of these factors on
the monitoring of crop water stress using the UAV platform, future experiments will be conducted at
different cotton growth stages.

5. Conclusions

In this study, we explored whether simplified CWSI, obtained from a canopy temperature
histogram, is an effective tool for the diagnosis of cotton water stress status. We conclude that
(i) compared with Prewitt and Roberts edge detection algorithm, the Canny algorithm requires no UAV
RGB image and can well eliminate soil pixels from UAV high resolution (0.001 m) thermal infrared
images; (ii) CWSIsi calculated using Twet, Tdry, and Tl is simpler and more robust than CWSIe, CWSIs,
NDVI, TCARI, OSAVI, TCARI/ OSAVI. Twet and Tdry are the means of the lowest 0.5% and highest
0.5% respectively of the canopy temperature histogram in whole experimental area. Tl is calculated on
the basis of the canopy temperature histogram for different treatment plots; and (iii) soil volumetric
water content at different depths (15, 30, and 45 cm) and stomatal conductance are highly correlated
with CWSIsi. Future studies will consider the effect of cotton phenotypic information (growth, plant
height, leaf area, planting density, etc.) on simplified CWSI and crop canopy temperature.
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