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Abstract: Understanding the dynamics of polycentric urbanization is important for urban studies
and management. This paper proposes an analytical model that uses multisource big geospatial
data to characterize such dynamics to facilitate policy making. There are four main steps: (1) main
centers and subcenters are identified using spatial cluster analysis and geographically weighted
regression (GWR) based on Visible Infrared Imaging Radiometer Suite (VIIRS)/NPP and social
media check-in data; (2) the built-up areas are extracted by using Defense Meteorological Satellite
Program—Operational Linescan System (DMSP/OLS) gradient images; (3) the economic corridors
that connect the main center and subcenters are constructed using road network data from Open
Street Map (OSM) with the least-cost distance method; and (4) the major urban development direction
is identified by analyzing the changes in built-up areas within the economic corridors. The model is
applied to three major cities in northeastern, central, and northwestern China (Shenyang, Wuhan,
and Xi’an) from 1992 to 2012.

Keywords: polycentric urbanization; big geospatial data; nighttime light imagery; social media;
economic corridors

1. Introduction

Urbanization is a complex phenomenon that is accompanied by profound land-cover/land-use
changes and social dynamics [1,2]. Urbanization leads to the redistribution of social and economic
resources, thereby possibly transforming the landscape from a monocentric to a polycentric structure.
Typically, a main urban center has the highest population density in its region, and features a central
business district [3]. Subcenters, which have higher population densities than adjacent regions, are
typically distributed around the main center [4]. Polycentric urbanization is a process of interaction
between a main center and subcenters by which the built-up areas of the main center and subcenters
expand, thereby gradually approaching one another [5].
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Economic corridors within polycentric cities typically feature high-density road networks that
connect main centers and subcenters [6]. Polycentric urbanization in the developed countries and
regions is mainly manifested in the generation of polycentric employment subcenters, while the
developing world typically witnesses the expansion of built-up areas [7]. China has both features [8].
By studying polycentric urbanization, the evolution of the relationship between main centers and
subcenters can be analyzed for enhanced urban management [9].

In recent years, polycentric urban structure and polycentric urbanization have been studied
extensively. Most studies rely on aggregate-level socioeconomic data and adopt the methods such as
the data thresholding method, nonparametric analysis, and principal component analysis [4,7,10–12].
The central business districts (CBDs) of Chinese cities are considered the main centers in polycentric
cities [13–15]. These methods assume that the main centers or subcenters are of a higher population
or employment density than the surrounding areas. These centers are identified by analyzing the
density and the degree of polycentric urbanization, which can be estimated from the density change.
However, the coarse spatial and temporal scales of socioeconomic data and the arbitrary definition of
the thresholds limit the use of these methods. For example, polycentric structure detection sometimes
relies on subjectively set density thresholds [7], and nonparametric analysis might require the manual
selection of the main centers [4].

Remote sensing provides raster data support. Due to the time issue of MODIS data and the
classification difficulty of Landsat data, nighttime light remote sensing data have been widely used
in urban and regional analysis [16,17]. For example, built-up areas that are extracted from nighttime
light data can cover the parks within cities that are ignored by Landsat data [18]. In the Defense
Meteorological Satellite Program—Operational Linescan System (DMSP/OLS) and Visible Infrared
Imaging Radiometer Suite (VIIRS)—NPOESS Preparatory Project, the urban structure has been studied,
e.g., via the Gaussian volume model with DMSP/OLS data [19] and the topographical metaphor
method with VIIRS/NPP data [20]. These methods examine the objective evidence of interaction
between spectral changes of nighttime light data and urban structural dynamics. However, nighttime
light data contain lights from roads, ports, and industrial areas, which reduces the accuracy of urban
structure detection [21]. Nighttime light data are more often used to analyze the spatial coverage
change of built-up areas instead of the spatial expansion direction [13,22,23]. Recently, social media
data have provided new opportunities for analyzing the population distribution and human activity
at the final scale [14,15]. A polycentric urban structure can be analyzed via spatial cluster analysis
and geographically weighted regression (GWR) by integrating Weibo check-in data and VIIRS/NPP
data [3].

In this paper, we develop a polycentric urbanization analytical model for identifying the main
urban expansion direction. This model can enhance the understanding of polycentric urbanization
at fine spatial and temporal scales. First, we perform relative radiation correction for multitemporal
DMSP/OLS data in the data preprocessing step. Second, Local Moran’s I (LMI) and geographically
weighted regression (GWR) are used to define main centers and subcenters. Third, the minimum cost
distance and the optimal route buffer are used to construct economic corridors. Meanwhile, by using
DMSP/OLS gradient images under spatial constraints, multitemporal built-up areas are extracted.
Finally, the changes in the multitemporal built-up areas are analyzed within the economic corridors.
Three major Chinese cities are examined. In addition, our approach is compared with other methods.
Finally, we summarize the main advantages and disadvantages of the proposed method.
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2. Materials and Methods

2.1. Study Areas

We select three major cities in China as the study areas: Shenyang, Wuhan and Xi’an. These cities
serve as the centers of politics, economy, culture, education, and transportation of their regions.
Shenyang is the largest city in northeastern China, with a total area of 3423 square kilometers and
a permanent population of 8.2 million in 2016. Wuhan is the most populous city in central China.
The total area of the municipal administrative jurisdiction is 1372 square kilometers, and the permanent
population was 10.7 million in 2016. It is divided by the Hanjiang River and Yangtze River into the
Hanyang, Hankou, and Wuchang districts. Xi’an is the largest city in northwestern China, with a total
area of 815 square kilometers and a permanent population of 8.7 million in 2016.

2.2. Data

2.2.1. Nighttime Light Imagery

DMSP/OLS data and VIIRS/NPP data are currently the most widely used nighttime light remote
sensing data. DMSP/OLS data range from 1992 to 2013 with a spatial resolution of 1000 m. For this
research, stable DMSP/OLS data for 1992, 1996, 2000, 2004, 2008, and 2012 are selected, and the
interference from sunlight, moonlight, clouds, wildfires, lightning, and auroras is removed. VIIRS/NPP
data cover 2012 to the present, with a spatial resolution of 500 m. To ensure that the time was consistent
with the Weibo check-in data, we selected VIIRS/NPP data from October 2014. Stable VIIRS/NPP
data were used to generate new image processing units, which reduced the spatial instability of the
Weibo check-in data [3].

2.2.2. Social Media Data

Social media data can describe the time and location of human activities [24]. Weibo is one of
the most popular and widely used social media and networking platforms in China. The number of
active Weibo users reached 222 million in September 2015, 85% of whom were mobile active users [25].
Due to restricted data permission, we only have the Weibo check-in data from October 2014 for
identifying main centers and subcenters.

2.2.3. Road Network Data

Urbanization is accompanied by the extension and expansion of road networks [26]. Open Street
Map (OSM) is an open-source editable map service platform of road network data that was jointly
created by the public [27]. Road network data from OSM have been applied in urban analysis [28,29].
In this paper, such data were used to construct economic corridors that connect main centers
and subcenters.
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3. Methodology

3.1. Data Preprocessing

The proposed model is illustrated in Figure 1. To improve the stability and continuity of
the multitemporal DMSP/OLS data, a relative radiation correction algorithm that uses the binary
regression model is applied [30]. This method assumes that the gray values of the DMSP/OLS data
in the reference area do not change. The relationship between each corrected gray value and the
corresponding original gray value is established by a quadratic regression equation. The DMSP /OLS
data for 1992, 1996, 2000, 2004, 2008, and 2012 are corrected.

The corrected DMSP/OLS data is set to Asia Lambert conformal conic projection with a
resampling resolution of 500 m. The VIIRS/NPP data and Weibo check-in data are set to the same
projection and sampling resolution. The relative radiation-corrected DMSP/OLS data for 1992, 2000,
and 2012 are shown in Figure 2.Remote Sens. 2019, 11, 310 4 of 25 
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Figure 1. Flowchart of the proposed polycentric urbanization analytical model, which uses 
multisource big geospatial data. 

The corrected DMSP/OLS data is set to Asia Lambert conformal conic projection with a 
resampling resolution of 500 meters. The VIIRS/NPP data and Weibo check-in data are set to the same 
projection and sampling resolution. The relative radiation-corrected DMSP/OLS data for 1992, 2000, 
and 2012 are shown in Figure 2. 

Figure 1. Flowchart of the proposed polycentric urbanization analytical model, which uses multisource
big geospatial data.



Remote Sens. 2019, 11, 310 5 of 24
Remote Sens. 2019, 11, 310 5 of 25 

 

 

Figure 2. Corrected multitemporal Defense Meteorological Satellite Program – Operational Linescan 
System (DMSP/OLS) data. 

3.2. Polycentric Urban Structure Definition 

3.2.1. Observation Units 

Social media data can be used to identify population centers [24,31]. Due to the instability of 
social media data [31], we use the method that was proposed by [3] to integrate social media data 
with VIIRS/NPP data. The image processing method, which is based on objects, uses a cluster of 
pixels that have the same homogeneity as a processing unit. The fractal net evolution approach 
(FNEA) segmentation algorithm is widely employed in remote sensing image segmentation [32]. In 
this paper, FNEA is used to perform image segmentation on VIIRS/NPP data and Weibo check-in 
data to construct new processing units. The Weibo check-in data and VIIRS/NPP data are assigned 
equal weight, which can effectively reduce the influence of nighttime light data. Three parameters 
(scale, shape, and compactness) affect the segmentation results. The shape parameter is set to 0.1 to 
increase the influence of the spectrum. The compactness parameter is set to 0.5 to balance the 
convergences of image objects with the ratio of the perimeter to the area. Since the scale parameter is 
application-dependent, we set it to five. To ensure integrity, the image objects that have an area of 
less than one square kilometer are merged. 

3.2.2. Main Center 

The main center is the core of the city, and has a high level of population activity. The main 
center is the center of gravity of the main center region. In this paper, the main center region and 

Figure 2. Corrected multitemporal Defense Meteorological Satellite Program—Operational Linescan
System (DMSP/OLS) data.

3.2. Polycentric Urban Structure Definition

3.2.1. Observation Units

Social media data can be used to identify population centers [24,31]. Due to the instability of
social media data [31], we use the method that was proposed by [3] to integrate social media data with
VIIRS/NPP data. The image processing method, which is based on objects, uses a cluster of pixels
that have the same homogeneity as a processing unit. The fractal net evolution approach (FNEA)
segmentation algorithm is widely employed in remote sensing image segmentation [32]. In this paper,
FNEA is used to perform image segmentation on VIIRS/NPP data and Weibo check-in data to construct
new processing units. The Weibo check-in data and VIIRS/NPP data are assigned equal weight, which
can effectively reduce the influence of nighttime light data. Three parameters (scale, shape, and
compactness) affect the segmentation results. The shape parameter is set to 0.1 to increase the influence
of the spectrum. The compactness parameter is set to 0.5 to balance the convergences of image objects
with the ratio of the perimeter to the area. Since the scale parameter is application-dependent, we set
it to five. To ensure integrity, the image objects that have an area of less than one square kilometer
are merged.
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3.2.2. Main Center

The main center is the core of the city, and has a high level of population activity. The main center
is the center of gravity of the main center region. In this paper, the main center region and main center
are defined based on the local Moran index [3]. The mean of the Local Moran’s I values of the Weibo
check-in data of each image object is used to merge the image objects that have high positive z-score
values (larger than 1.96) into sets of image objects. The image object sets that have the largest area are
selected as the main center region. The center of gravity of the main center region is considered the
main center.

3.2.3. Subcenter

The subcenter regions represent the aggregation of high-level economic activities outside the
main center region. The human activity density in the subcenter region substantially exceeded that of
its adjacent region, which is reflected in the image as an island of brightness. We define the subcenter
region using geographically weighted regression (GWR) and Jenks’ natural breaks classification (NBC).
GWR provides local regression analysis for observational data. GWR combines dependent variables
and explanatory variables for elements that fall within the bandwidth of each target element:

yi = β0(ui, vi) + ∑
k

βk(ui, vi)dik + εi (1)

where yi is the square root of the Weibo check-in mean density of image object i, β0(ui, vi) is the
intercept, βk(ui, vi) is the local estimation coefficient for the kth independent variable of image object i,
and εi is the residual [33]. A Gaussian kernel was used to establish the local distance function, and
the optimal bandwidth was identified via cross-validation. Since the subcenter had a higher density
of Weibo check-in data than the surrounding area, image objects that had a standard deviation that
exceeded 1.96 were selected as the candidate subcenters [3]. The subcenter regions were acquired after
the candidates that had lower human density or area over the entire study area had been filtered using
NBC. The centers of gravity of the subcenter regions were extracted to represent the subcenters.

3.3. Built-Up Area Extraction

DMSP/OLS data are highly correlated with economic activity, population density, and
impermeable areas [23,34]. The fluctuations of the DMSP/OLS gray values correspond to the dynamics
of the economy and the density of the built-up area. The brightness values of DMSP/OLS data change
with the spatial economic fluctuations, thereby providing a basis for built-up area extraction. Suburban
areas are transitional belts between built-up areas and rural areas, where the changes of DMSP/OLS
brightness are obvious. This paper proposes an automatic built-up area extraction method that uses
DMSP/OLS gradient images under spatial constraints. A two-step strategy is used to implement
this method:

(1) DMSP/OLS gradient image construction. Sobel operators are used to obtain gradient
images [35]. The size of each operator is 3 × 3. Gradient images of multitemporal DMSP/OLS
data are shown in Figure 3. To highlight the features of the images, a percent truncated stretch has
been applied to each of the images.



Remote Sens. 2019, 11, 310 7 of 24
Remote Sens. 2019, 11, 310 7 of 25 

 

 

Figure 3. Gradient images of multitemporal DMSP/OLS data. 

As shown in Figure 3, the built-up areas exhibit slight changes in the corresponding gray values, 
and their gradient images show low-gray-value areas with strong homogeneity. In contrast, the 
suburban areas correspond to high degrees of gray value change. The suburban gradient images 
show high-gray-value areas with weak homogeneity, and the main spatial features are large closed 
ring areas that surround the built-up area. Finally, the rural areas correspond to small degrees of gray 
value change. The rural gradient images show low gray value regions with strong homogeneity, 
which are located in the outer areas of the suburban areas. After Sobel processing, the DMSP/OLS 
data are divided into high gray value regions with weak homogeneity and low gray value regions 
with strong homogeneity. 

(2) Built-up area extraction under spatial constraints. Multi-scale segmentation that is based on 
FENA is performed on the gradient images of DMSP/OLS. To ensure that the image objects have 
strong homogeneity, the segmentation scale is set to two. The shape parameter is set to 0.1, and the 
compactness parameter is set to 0.5. To extract suburban areas, the suburban gray value range is set 
to: 

min suburb maxDN DN DN≤ ≤  (2)

where suburb
DN is the gray value that corresponds to the suburban areas, min

DN is the suburban lower-

limit gray value, and max
DN is the suburban upper-limit value. min

DN is obtained via the gray value 
increment operator: 

Figure 3. Gradient images of multitemporal DMSP/OLS data.

As shown in Figure 3, the built-up areas exhibit slight changes in the corresponding gray values,
and their gradient images show low-gray-value areas with strong homogeneity. In contrast, the
suburban areas correspond to high degrees of gray value change. The suburban gradient images show
high-gray-value areas with weak homogeneity, and the main spatial features are large closed ring
areas that surround the built-up area. Finally, the rural areas correspond to small degrees of gray
value change. The rural gradient images show low gray value regions with strong homogeneity, which
are located in the outer areas of the suburban areas. After Sobel processing, the DMSP/OLS data
are divided into high gray value regions with weak homogeneity and low gray value regions with
strong homogeneity.

(2) Built-up area extraction under spatial constraints. Multi-scale segmentation that is based on
FENA is performed on the gradient images of DMSP/OLS. To ensure that the image objects have
strong homogeneity, the segmentation scale is set to two. The shape parameter is set to 0.1, and the
compactness parameter is set to 0.5. To extract suburban areas, the suburban gray value range is set to:

DNmin ≤ DNsuburb ≤ DNmax (2)

where DNsuburb is the gray value that corresponds to the suburban areas, DNmin is the suburban
lower-limit gray value, and DNmax is the suburban upper-limit value. DNmin is obtained via the gray
value increment operator:

DNmin = 1 + DNinterval ∗ n (3)
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where the incremental gray value step, which is denoted as DNinterval, is set to 0.5, and n is the number
of increases. Since the suburban areas are closed, DNmin is the gray value at the last time when
the suburban ring closed. To obtain a full suburban ring, the spatial extent of the DMSP/OLS data
is extended to the adjacent regions. The multitemporal suburban gray limits are listed in Table 1.
According to Table 1, the lower-limit gray value is distributed in the range of 4.5 to 7, and is stable.

Table 1. Multitemporal suburban gray limits.

Region 1992 2000 2012

Shenyang 5 7 5
Wuhan 4.5 6 4
Xi’an 4 6 4.5

The suburban classification results of Shenyang, Wuhan, and Xi’an are shown in Figure 4.
The green regions outside the suburbs correspond to the countryside. According to Figure 5, the
coverage of the built-up areas continues to expand, and small towns around the main built-up areas
are gradually being integrated.
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3.4. Economic Corridor

An economic corridor is a narrow delineated area that connects major economic nodes, along with
transportation infrastructure such as roads, railways, and canals [6]. As the main traffic infrastructure,
the density of the road network can reflect the economic status of a city [36]. The collaborative
development of a main center and a subcenter is accompanied by the flow of resources. The main center
provides financial and commercial resources for subcenters, while subcenters provides residential,
industrial facilities, and food for the main center. This paper proposes an economic corridor
construction method that uses the minimum cost distance. The first step is optimal route extraction.
The minimum cost distance algorithm uses raster data that describe the cost of calculating the minimum
cost distance between the focus cells to the other neighboring cells. The road network density cost
data are obtained via inverse processing of the road network data. The road network density cost data
are expressed as:

Dp = Rmax − Rp (4)

where Dp is the gray value of the road network density cost data at point p, Rmax is the maximum
gray value of the road network density raster data, and Rp is the gray value of the road network
density data at point p. The second step is to generate the buffer for the optimal route and construct
the economic corridor. The buffer extends two kilometers from both sides of the optimal route.

3.5. Polycentric Urbanization Analysis

The multitemporal built-up areas are denoted as B1, . . . , Bm, . . . , BM, where Bm is a polygon vector
that records the properties of built-up areas in year m. The area of the built-up area in year m is
recorded as Am. The built-up area growth rate (BAGR), which is denoted as Rm, from year m-1 to year
m is expressed as:

Rm =
Am − Am−1

Am−1 (5)

The number of economic corridors is the same as the number of subcenters. The economic
corridors are denoted as C1, . . . , Cn, . . . , CN , where Cn is a polygon of the economic corridor.
The built-up area of economic corridor n in year m is denoted as Am

n . The BAGR of the economic
corridor, which is denoted as rm

n , is expressed as:

rm
n =

Am
n − Am−1

n

Am−1
n

(6)

A large value of rm
n corresponds to the rapid development of economic corridor n from year m-1

to year m. It is inferred that subcenter n was the major spatial expansion direction during that period
of time.
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4. Results

4.1. Polycentric Structure

4.1.1. Segmentation

Using FENA to segment the Weibo check-in data and the VIIRS/NPP data, Shenyang, Wuhan,
and Xi’an are divided into 268, 487, and 337 image objects, respectively. The segmentation results are
shown in Figure 5.

The smaller image objects are mainly distributed in the built-up areas. The larger image objects
are mainly distributed in the outer regions of administrative divisions, most of which are located in
rural areas. Since the Weibo check-in density data and the VIIRS/VPP data reflect the human activity
density, the gray values are larger in the areas where the human activity density is higher. This is why
the image objects that are within the built-up areas are smaller, and the image objects that are within
the rural areas are larger.

4.1.2. Polycentric Structure

The main center regions, main centers, subcenter regions, and subcenters are shown in Figure 6.
The main center region of Shenyang is 130.75 square kilometers, which accounts for 4.1% of the total
area. There are two subcenters to the north and south of the main center region. The area of the
main center region of Wuhan is 311.75 square kilometers, which accounts for 3.72% of the total area.
There are seven subcenters to the north, west, and south of the main center region. The area of
the main center region of Xi’an is 195 square kilometers, which accounts for 3.86%. There are two
subcenters to the north and northeast of the main center area.

The results of the GWR model are presented in Figure 7 and Table 2. A satisfactory fitting degree
is realized for each of the three cities, with R2 exceeding 0.75.

The results for the subcenters are listed in Table 3. For Shenyang, Wuhan, and Xi’an, the numbers
of image objects for which the GWR residuals exceed 1.96 are 9, 18, and 16, respectively. The numbers
of image objects that overlap and are adjacent to the main center regions are three, nine, and eight,
respectively. The numbers of image objects that belong to the final level of NBC of the Weibo check-in
density or area are four, two, and six, respectively. The numbers of image objects that belong to
subcenter regions are two, seven, and two, respectively. Since there is no adjacency relationship
among these image objects, the numbers of image objects that belong to subcenters are two, seven, and
two, respectively.

Table 2. Results of the GWR model.

Parameters Shenyang Wuhan Xi’an

Residual Squares 646.22 1997.91 1246.41
Sigma 1.98 2.33 2.23
AICc 1209.27 2289.09 1557.75

R2 0.85 0.78 0.81

Table 3. Results for subcenters.

GWR Estimation and Subcenters Shenyang Wuhan Xi’an

Number of image objects that have higher standard residuals 9 18 16
Number of image objects that overlap and are adjacent to main center regions 3 9 8
Number of image objects that belong to the final level of NBC* (either density

or area) 4 2 6

Number of image objects that belong to subcenter regions 2 7 2
Final number of image objects that belong to subcenter regions 2 7 2

NBC*: natural breaks classification.



Remote Sens. 2019, 11, 310 11 of 24

Remote Sens. 2019, 11, 310 11 of 25 

 

 

Figure 6. Polycentric structure. (a) Shenyang; (b) Wuhan; (c) Xi'an; (d) Xinzhu; (e) Liucunpu; and (f) 
Hongqing; (g) North and East; (h) South, Southwest and West;(i) Puhe and Hunhan; and (j) Lintong 
and Weiyang. 

The results of the GWR model are presented in Figure 7 and Table 2. A satisfactory fitting degree 
is realized for each of the three cities, with R2 exceeding 0.75. 

 
Figure 7. Geographically weighted regression (GWR) model. 

Table 2. Results of the GWR model. 

Parameters Shenyang Wuhan Xi’an 
Residual Squares 646.22 1997.91 1246.41 

Sigma 1.98 2.33 2.23 
AICc 1209.27 2289.09 1557.75 

R2 0.85 0.78 0.81 

Figure 6. Polycentric structure. (a) Shenyang; (b) Wuhan; (c) Xi’an; (d) Xinzhu; (e) Liucunpu; and (f)
Hongqing; (g) North and East; (h) South, Southwest and West; (i) Puhe and Hunhan; and (j) Lintong
and Weiyang.

Remote Sens. 2019, 11, 310 11 of 25 

 

 

Figure 6. Polycentric structure. (a) Shenyang; (b) Wuhan; (c) Xi'an; (d) Xinzhu; (e) Liucunpu; and (f) 
Hongqing; (g) North and East; (h) South, Southwest and West;(i) Puhe and Hunhan; and (j) Lintong 
and Weiyang. 

The results of the GWR model are presented in Figure 7 and Table 2. A satisfactory fitting degree 
is realized for each of the three cities, with R2 exceeding 0.75. 

 
Figure 7. Geographically weighted regression (GWR) model. 

Table 2. Results of the GWR model. 

Parameters Shenyang Wuhan Xi’an 
Residual Squares 646.22 1997.91 1246.41 

Sigma 1.98 2.33 2.23 
AICc 1209.27 2289.09 1557.75 

R2 0.85 0.78 0.81 

Figure 7. Geographically weighted regression (GWR) model.

4.2. Built-Up Areas

The extraction results of the built-up areas are shown in Figure 8. The statistics of the built-up
areas are listed in Table 4. According to Figure 8 and Table 4, the built-up areas from the time series
exhibited steady growth.
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Table 4. Statistics of the built-up areas (km2).

Region 1992 2000 2012 1992–2000 2000–2012 Mean Max

Shenyang 202 351 706 73.76% 101.14% 87.45% 2000–2012
Wuhan 271 492 1166 81.55% 136.99% 109.27% 2000–2012
Xi’an 174 300 821 72.41% 173.67% 123.04% 2000–2012

4.3. Economic Corridors

The economic corridors are shown in the third column of Figure 9. The urban core has the highest
road network density. The background image shows the road network density cost data. The higher
gray value regions have a higher cost density, and the lower gray value areas have a lower cost density.
The black lines represent the optimal routes that connect the main centers and the subcenters, which
were extracted via the minimum cost distance algorithm. The optimal routes pass through the regions
with the lowest costs, which correctly reflects the optimal routes of transport between the main centers
and the subcenters.
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4.4. Polycentric Urbanization

The changes in the urban built-up areas are summarized in Table 4. The built-up areas of
Shenyang, Wuhan, and Xi’an exhibited fast growth rates from 2000 to 2012 of 101.14%, 136.99%, and
173.67%, respectively. The mean values of the GRBAs for the three cities are 87.45%, 109.27%, and
123.04%, respectively. From 1992 to 2000, the urbanization of Xi’an was the fastest, followed by Wuhan
and Shenyang.

The built-up areas of the economic corridors for Shenyang, Wuhan, and Xi’an are shown in
Figures 10–12, respectively. The multitemporal built-up area statistics of the economic corridors for
Shenyang, Wuhan, and Xi’an are listed in Tables 5–7. The polycentric urbanization results for Shenyang,
Wuhan, and Xi’an are as follows:
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Table 5. Statistics of the built-up areas within the economic corridor for Shenyang.

Number
1992 2000 2012

All Area 1992–2000 2000–2012 Mean Max
A R A R A R

1 41 0.65 48 0.76 63 1 63 17.07% 31.25% 24.16% 2000–2012
2 38 0.59 53 0.83 61 0.95 64 39.47% 15.09% 27.28% 1992–2000

A: Area; R: Ratio.
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Table 6. Statistics of the built-up areas within the economic corridor for Wuhan.

Number
1992 2000 2012

All Area 1992–2000 2000–2012 Mean Max
A R A R A R

1 60 0.32 67 0.36 97 0.52 185 11.67% 44.78% 28.23% 2000–2012
2 50 0.38 74 0.57 83 0.64 130 48.00% 12.16% 30.08% 1992–2000
3 11 0.13 23 0.26 84 0.97 87 109.09% 265.22% 187.16% 2000–2012
4 51 0.39 91 0.7 128 0.98 130 78.43% 40.66% 59.55% 1992–2000
5 51 0.56 85 0.93 91 1 91 66.67% 7.06% 36.87% 1992–2000
6 76 0.73 103 0.99 104 1 104 35.53% 0.97% 18.25% 1992–2000
7 63 0.47 70 0.52 126 0.93 135 11.11% 80.00% 45.56% 2000–2012

A: Area; R: Ratio.

Table 7. Statistics of the built-up areas within the economic corridor for Xi’an.

Number
1992 2000 2012

All Area 1992–2000 2000–2012 Mean Max
A R A R A R

1 50 0.6 66 0.8 83 1 83 32.00% 25.76% 28.88% 1992–2000
2 48 0.36 54 0.41 114 0.86 133 12.50% 111.11% 61.81% 2000–2012

A: Area; R: Ratio.

(a) Shenyang. The BAGR of economic corridor one is higher than that of economic corridor
two, except from 1992 to 2000. Economic corridor one and economic corridor two were the key
expansion directions of Shenyang from 2000 to 2012 and 1992 to 2000, respectively. For the entire time
period, the development of economic corridor two slightly exceeded that of economic corridor one.
Therefore, Shenyang exhibited balanced urbanization development over the whole period; however,
its development direction differed between two subperiods. North (economic corridor one) and south
(economic corridor two) are the key urbanization directions of each subperiod.

(b) Wuhan. The BAGRs of economic corridor one, economic corridor three, and economic corridor
seven from 2000 to 2012 were higher than those from 1992 to 2000, and the opposite was observed
for the remaining economic corridors. Since the built-up area coverages of economic corridor five
and economic corridor six were nearly 100% in 2000, they could only participate in the analysis from
1992 to 2000. From 1992 to 2000, the BAGRs of economic corridor three and economic corridor four
were 109.09% and 78.43%; hence, these two economic corridors were the key urbanization directions
of Wuhan in this period. Economic corridor seven and economic corridor three exhibited the fastest
built-up area growth from 2000 to 2012. Economic corridor seven replaced economic corridor four as
the urbanization focus, together with economic corridor three. The BAGR of economic corridor seven
in the first period is low, and the key urbanization directions for the whole period were economic
corridor three and economic corridor four. Therefore, south (economic corridor three) and southwest
(economic corridor four) were the key urbanization directions of Wuhan in the past 20 years, and
developed rapidly in the northwest direction (economic corridor 7) in the past 10 years.

(c) Xi’an. The periods in which economic corridor one and economic corridor two had higher
BAGRs were from 1992 to 2000 and from 2000 to 2012, respectively. Since economic corridor one had
a higher BAGR from 1992 to 2000, economic corridor one was a key development area during this
period. From 2000 to 2012, economic corridor two replaced economic corridor one with a higher BAGR.
In the past 20 years, the mean BAGR of economic corridor two exceeded that of economic corridor one
by nearly 31%. Although the north direction (economic corridor 1) maintained a high BAGR, northeast
(economic corridor two) has been the key urbanization direction of Xi’an recently.

The urban expansion directions of Shenyang, Wuhan, and Xi’an are shown in Figure 13.
Shenyang and Xi’an have different key spatial expansion directions from 1992 to 2000 and from
2000 to 2012. Wuhan differs from the other two cities. South of Wuhan is always the main direction,
and southwest and northwest are the key directions in different periods.
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4.5. Evaluation

4.5.1. Polycentric Structure Detection Accuracy

To evaluate the effectiveness of the polycentric structure definition method, the centers that are
derived from the master plans for 2020 that were formulated by the governments are collected for
comparison with our results. The detection accuracies for Shenyang, Wuhan, and Xi’an are listed in
Table 8. The evaluation results are described as follows:

(a) Shenyang: The main center region, which consists of seven districts (Figure 6a) that were
defined by the master plan of Shenyang 2011–2020 (Shenyang Government, 2011), was detected via
the proposed method.

Puhe (Figure 6a, No. 1) was detected; Tiexichanye was covered by the main center region; and
Yongan and Hunhe were not detected. In addition, another subcenter (Figure 6a, No. 2), which
is covered by the Hunnan district, is included in our results. The user accuracy of the method for
Shenyang is 81.82%.

(b) Wuhan: The main center region consists of seven districts, as defined by the master plan of
Wuhan 2010–2020 (Wuhan Government, 2011), and all of the districts were detected via the proposed
method (Figure 6b). Five of the six subcenters in the master plan were detected. Panlong (Figure 6b, 1)
belongs to the north, Yangluochai Lake (Figure 6b, No. 2) belongs to the east, Tangxun Lake (Figure 6b,
No. 3) belongs to the south, Xuefeng (Figure 6b, No. 4) belongs to the southwest, Caidian (Figure 6b,
No. 5) belongs to the west, Dongxihu (Figure 6b, No. 6) belongs to the west, and Tianhe airport
(Figure 6b, No. 7) belongs to the north. Therefore, the user accuracy is 92.31%.

(c) Xi’an: The main center region of Xi’an includes five districts, as defined by the master plan
of Xi’an 2008–2020 (Xi’an Government, 2009), and all of the districts were detected in this paper
(Figure 6c). One subcenter (Changning) of the four subcenters that were defined by the government is
covered by the main center region. As the other three subcenters have not been effectively developed
(Figure 6d–f), none of them were detected. One subcenter (Figure 6c, No. 1) that was defined by the
method is covered by Weiyang district, because it is close to the main center; the other subcenter is
Lintong district, which is a tourist industrial zone. The user accuracy for Xi’an is 66.7%.
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Table 8. Polycentric structure detection accuracy.

Region Center Master Plan Our Results User Accuracy

Shenyang

Main centers

Heping, Shenhe,
Huanggu, Dadong,

Tiexi, Hunnan,
Yuhong

Heping, Shenhe, Huanggu,
Dadong, Tiexi, Tiexichanye b,

Yuhong
81.82%

Subcenters
Puhe, Hunhe,
Tiexihchanye,

Yongan

Puhe (Figure 6a, No. 1), Hunnan c

(Figure 6a, No. 2)

Wuhan

Main centers

Jiangan, Jianghan,
Qiaokou, Hanyang,

Wuchang,
Qingshan,
Hongshan

Jiangan, Jianghan, Qiaokou,
Hanyang, Wuchang, Qingshan,

Hongshan
92.31%

Subcenters
East, Southeast,

South, Southwest,
West, North

North (Figure 6b, No. 1 and No.
7), East (Figure 6b, No. 2), South

(Figure 6b, No. 3), Southwest
(Figure 6b, No. 4), West (Figure 6b,

No. 5 and No. 6),

Xi’an

Main centers
Weiyang, Lianhu,
Xincheng, Beilin,

Yanta

Weiyang, Lianhu, Xincheng,
Beilin, Yanta, Changning b,

66.67%

Subcenters
Liucunpu,

Changning,
Xinzhu, Hongqing

Lintong a (Figure 6c, No. 1),
Weiyang c (Figure 6c, No. 2)

a Subcenters from the master plan are inconsistent with results of the proposed method; b Subcenters are covered by
the main center region; c Main center is covered by the subcenter region.

4.5.2. Built-Up Area Extraction Accuracy

For calculating the built-up area extraction accuracy, the built-up reference areas are obtained via
visual interpretation of Landsat satellite data for Shenyang, Wuhan, and Xi’an from 1992, 2000, and
2012. The built-up area reference data are shown as yellow areas in Figure 14.

(a) Shenyang. The extracted built-up areas coincide with the built-up areas of the reference data.
The degree of coincidence between the built-up areas that were extracted via the proposed method
and those of the reference data was gradually improved.

(b) Wuhan. The extracted built-up area covers the built-up area of the reference data as well, and
the extraction result had high integrity. The number of false detections was increased compared with
Shenyang. There is a large amount of water in the inner part of Wuhan, and the false detections are
mostly due to the surfaces of lakes and rivers. Water-based transport and tourism industries may have
caused an increase in the lighting effects in the water areas.

(c) Xi’an. The extracted built-up area matches the reference data. There are many false detections
in the northeast of Xi’an, where the famous tourist district of Lintong is located. The tourist area
has bright lights at night, but is covered with dense vegetation. This is an important reason why the
reference data and the extracted results are not consistent. In addition, because the area that connects
Lintong and the main center region has not been developed, reference data for the built-up area are
not included.

The confusion matrices of the built-up area extraction accuracy for Shenyang, Wuhan, and Xi’an
are presented in Table 9, where the user accuracy is denoted as Au, the charting accuracy is defined as
Am, the overall accuracy is defined as as Ao, and the Kappa coefficient is defined as Kappa.
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Table 9. Confusion matrix for the extraction of built-up areas.

Data
Shenyang Wuhan Xi’an All

Mean1992 2000 2012 Mean 1992 2000 2012 Mean 1992 2000 2012 Mean

Au 0.88 0.80 0.85 0.84 0.70 0.67 0.75 0.71 0.68 0.69 0.61 0.66 0.74
Am 0.85 0.86 0.89 0.87 0.92 0.92 0.88 0.91 0.87 0.94 0.95 0.92 0.90
Ao 0.98 0.96 0.94 0.96 0.99 0.98 0.95 0.97 0.99 0.98 0.93 0.97 0.97

Kappa 0.86 0.81 0.84 0.84 0.79 0.76 0.78 0.78 0.76 0.78 0.70 0.75 0.79

(a) Shenyang. The mean values of Au, Am, Ao, and Kappa reach 0.84, 0.87, 0.96, and 0.84,
respectively. There are no significant fluctuations in the indicators; hence, this method for extracting
built-up areas in the region is robust.

(b) Wuhan. According to Table 9, Au ranged from 0.67 to 0.75. The mean values of Au, Am, Ao,
and Kappa are 0.71, 0.91, 0.97, and 0.78, respectively. The accuracy of Wuhan is lower than that of
Shenyang, which may be due to the light on the rivers and lakes of Wuhan.

(c) Xi’an. The mean values of Am and Ao are 0.92 and 0.97, respectively, and both reach a more
satisfactory level of accuracy. However, since the mean value of Au is 0.66, the average value of Kappa
drops to 0.75. A main reason for the decrease in the detection accuracy for Xi’an may be the light in the
tourism areas on the edge of the city.

We summed all the data and calculated the mean value of each precision index. Am and Ao

have ideal mean values of 0.90 and 0.97, and Kappa has a mean value of 0.79; hence, the proposed
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method performs well. Au is influenced by the low radiation resolution of DMSP/OLS and natural
human factors [37]; its mean value is slightly lower at 0.74. Through the above precision analysis,
it is demonstrated that the method that is proposed by this paper realizes satisfactory accuracy in
extracting built-up areas.

The proposed method is also compared with a built-up area extraction algorithm that is based on
Iterative Self Organizing Data Analysis Techniques Algorithm(ISODATA) using DMSP/OLS data to
further evaluate its reliability [38]. The accuracy of the built-up area extraction algorithm that is based
on ISODATA is listed in Table 10. Compared with Table 9, the Am value of the built-up area extraction
algorithm that is based on ISODATA has an advantage. However, the Au value of the built-up area
extraction algorithm that is based on ISODATA is very low; hence, the results that were extracted
by the algorithm have more false detections. The small value of Au leads to decreases in the Ao and
Kappa values. These results demonstrate that the proposed algorithm is more robust.

Table 10. Confusion matrix of the built-up area extraction method that uses ISODATA with DMSP/OLS.

Data
Shenyang Wuhan Xi’an All

Mean1992 2000 2012 Mean 1992 2000 2012 Mean 1992 2000 2012 Mean

Au 0.7 0.77 0.71 0.73 0.42 0.46 0.48 0.45 0.37 0.22 0.41 0.33 0.5
Am 0.95 0.94 0.98 0.96 1 1 0.99 1 0.99 1 1 1 0.99
Ao 0.97 0.97 0.91 0.95 0.97 0.96 0.87 0.93 0.95 0.85 0.85 0.88 0.92

Kappa 0.79 0.83 0.77 0.8 0.58 0.61 0.58 0.59 0.52 0.32 0.51 0.45 0.61

Landsat data are widely used in land-cover classification and urbanization analysis. To further
analyze the reliability of the method that is proposed in this paper, we used Landsat data with the
ISODATA algorithm to extract built-up areas [39]. The confusion matrix for the extraction of built-up
areas based on ISODATA using Landsat data is presented in Table 11. Compared with the results
in Table 9, the proposed method, which uses DMSP/OLS, and the method that uses Landsat data
differ in terms of their characteristics; however, the proposed method outperforms the other method
in terms of the Kappa coefficient, which reflects the overall performance of the algorithm. The results
are also compared with the results that were obtained using DMSP/OLS with the same classification
method of ISODATA. If the same classification algorithm is adopted, the method that uses Landsat
data outperforms the method that uses DSMP/OLS data on all accuracy indices except Am. The value
of Am with Landsat data is relatively low; this may be because the integrity of the built-up areas
that are extracted via the method that uses Landsat data is not as high compared to the method that
uses DMSP/OLS data [18]. The main reason for the lower Au of the method that uses DSMP/OLS
data may be the false detections that are caused by the light spreading effect of the DMSP/OLS
data [30,40]. The method that uses Landsat data realized higher accuracy due to its higher spatial
resolution. According to the above comparative analysis, the proposed method effectively increased
the built-up area extraction accuracy using DMSP/OLS data.

Table 11. Confusion matrix of the built-up area extraction method that uses ISODATA with
Landsat data.

Data
Shenyang Wuhan Xi’an All

Mean1992 2000 2012 Mean 1992 2000 2012 Mean 1992 2000 2012 Mean

Au 0.76 0.88 0.73 0.79 0.72 0.98 0.73 0.81 0.97 0.78 0.81 0.85 0.82
Am 0.83 0.67 0.75 0.75 0.43 0.69 0.87 0.66 0.61 0.87 0.85 0.78 0.73
Ao 0.97 0.96 0.89 0.94 0.98 0.99 0.95 0.97 0.98 0.97 0.93 0.96 0.96

Kappa 0.78 0.74 0.67 0.73 0.53 0.81 0.76 0.70 0.74 0.81 0.78 0.78 0.74
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5. Discussion and Conclusions

Through the analysis of three Chinese cities, the validity of the proposed model in modeling
polycentric urbanization is demonstrated. We establish the relationship between polycentric structure
and urban dynamics, and detect the main urban expansion direction. To improve the precision of the
built-up area extraction method that only uses spectral features, we propose a method under spatial
constraints that is more robust and reliable. In contrast to the polycentric structure identification
method that was proposed by [3], our method establishes the relationship between polycentric urban
structure and urban dynamics to identify the key spatial expansion direction. First, the economic
corridors are utilized to establish the connections between main centers and subcenters. Second, the
key spatial expansion direction is identified by analyzing the multitemporal built-up area changes
within the spatial buffer of each economic corridor.

5.1. Correlation Analysis of Built-Up Area and GDP

A scatter plot is used to analyze the relationship between the gross domestic product (GDP) and
the built-up areas for each city in 1992, 1996, 2000, 2004, 2008, and 2012. The correlations between the
built-up areas and the GDP for each city are shown in Figure 15. The R2 values of the built-up areas
and GDP values for Shenyang, Wuhan, and Xi’an are 0.9489, 0.9935, and 0.8784, respectively. Hence,
the built-up area and GDP value have a strong positive correlation. Built-up areas can explain GDP
values well.
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5.2. Segmentation Scale

To demonstrate the rationale behind the selection of the scale parameters, the proposed method is
used to extract built-up areas with various segmentation scales. The DMSP/OLS data of Shenyang,
Wuhan, and Xi’an from 1992 are selected, and the Kappa value is used as a judgment index.
The segmentation scale parameters are set to one, two, three, four, and five. The relationship between
the segmentation scale and the Kappa values that are obtained from the experiment is shown in
Figure 15. As shown in Figure 16, the Kappa values are the highest for Shenyang and Xi’an when the
segmentation scale is set to two. The Kappa values are the same for Wuhan for segmentation scales of
one, two, three, and four, and the value is the lowest when the segmentation scale is five. Therefore,
when the segmentation scale is set to two, the built-up area that is extracted by this method is the
most accurate.
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5.3. Suburban Lower-Limit Gray Value

The suburban lower-limit gray value is the maximum value at which the suburban area forms a
closed ring. If the gray value exceeds the limit, the suburban ring regions will be broken. The method
for analyzing the performance of various suburban lower-limit gray values is as follows: a gray value
of 0.5 is selected as the step length. The analysis begins with the maximum gray value and successively
decreases it four times. The DMSP/OLS data for Shenyang, Wuhan, and Xi’an from 1992 were used; the
relationships between the limit gray values and the Kappa values are shown in Figure 17. The Kappa
values of Shenyang and Xi’an at the extreme are the largest. The Kappa value of Wuhan decreased by
0.03 at the extreme. Hence, the suburban gray value lower-limit method is effective.
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Social media data have various limitations. First, economic and cultural differences among regions
will affect social media data and cause the data to differ among regions. Second, the performance of
social media data varies across scales. Third, the location and content information of social media may
be biased or intentionally manipulated [31]. Due to the lack of multitemporal Weibo check-in data,
our model only defines the urban main center and subcenters using recent data, which might ignore
changes in urban center quantity and positions.

Although the proposed built-up area extraction method has higher stability and balance than
that of the previous method, the accuracy of Au is not optimal. This finding may be due to the low
data depth of the DMSP/OLS data and natural human factors. We can replace the DMSP/OLS data
with VIIRS/NPP data, whose data depth is 32 bit, to improve the low radiation resolution in future
research [41]. In addition, we may reduce the impact of natural human factors by using other social
media data, such as POIs. Finally, we only considered human factors, not natural factors such as
topological factors. Topological factors, such as ground elevation, ground slope, and ground curvature
affect the distribution of the artificial facilities [42,43], which may affect the locations of built-up areas
and economic corridors. Such factors should be considered in future studies. Our model can provide
data support for urban management by facilitating the analysis of whether the urban development
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outcomes are the same as the planning intention, e.g., in terms of the main spatial expansion direction.
In addition, the proposed built-up area extraction method, under spatial constraints, explicitly describes
the spatial fluctuations in the magnitude of the nighttime light across the built-up areas, suburban
areas, and rural areas.
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