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Abstract: To overcome the environmental changes occurring now and predicted for the future,
it is essential that fruit breeders develop cultivars with better physiological performance. During the
last few decades, high-throughput plant phenotyping and phenomics have been developed primarily
in cereal breeding programs. In this study, plant reflectance, at the level of the leaf, was used to
assess several physiological traits in five Vaccinium spp. cultivars growing under four controlled
conditions (no-stress, water deficit, heat stress, and combined stress). Two modeling methodologies
[Multiple Linear Regression (MLR) and Partial Least Squares (PLS)] with or without (W/O) prior
wavelength selection (multicollinearity, genetic algorithms, or in combination) were considered.
PLS generated better estimates than MLR, although prior wavelength selection improved MLR
predictions. When data from the environments were combined, PLS W/O gave the best assessment
for most of the traits, while in individual environments, the results varied according to the trait
and methodology considered. The highest validation predictions were obtained for chlorophyll
a/b (R2

Val ≤ 0.87), maximum electron transport rate (R2
Val ≤ 0.60), and the irradiance at which

the electron transport rate is saturated (R2
Val ≤ 0.59). The results of this study, the first to model

modulated chlorophyll fluorescence by reflectance, confirming the potential for implementing this
tool in blueberry breeding programs, at least for the estimation of a number of important physiological
traits. Additionally, the differential effects of the environment on the spectral signature of each cultivar
shows this tool could be directly used to assess their tolerance to specific environments.

Keywords: spectroscopy; spectrometer; spectroradiometer; phenotype; gas exchange; stem water
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1. Introduction

Agriculture is essential to human survival, but it is being critically affected by global warming,
compromising the food security of the population that is predicted to continue to increase
over the coming decades [1]. Elevated temperatures, changes in precipitation patterns and more
frequent extreme weather events have given rise to greater intra- and inter-annual variability
in the yield and quality of crops [2]. These new climatic scenarios make it necessary to further
our understanding of the principal projected stresses (drought and heat stress) impacting plant
performance, and to develop relevant information to generate cultivars capable of overcoming more
complex environmental scenarios.

To the extent that breeders can consider useful additional information (e.g., plant physiology)
to plan each season’s crosses and perform early selection of material suitable for each breeding
program’s aims, it should be possible to improve both efficiency (cost and time) and productivity
(higher proportion of new cultivars carrying advantageous characteristics) [3,4].

Unfortunately, the practical and economic limitations of performing complex evaluations
(e.g., plant water status, photosystem status, leaf gas exchange, photosynthetic pigment contents) of
a large number of genotypes has been one of the main constraints to performing in-depth phenotypic
characterization, especially under water deficit or heat stress conditions [3,5,6]. This highlights
the urgent need to develop faster and cheaper methodologies to estimate key physiological traits,
which have proven to be relevant in the multi-dimensional characterization of the phenotype
(phenomics) [7], especially in fruit breeding programs [3]. Nevertheless, it is important to highlight
that these new technologies need to be calibrated and validated; therefore, they must first be
developed in conjunction with reference traditional measures to establish correlations and the degree
of realistic predictability.

Among the remote sensing technologies with potential for high-throughput plant phenotyping
and phenomics, reflectance spectroscopy is probably the most promising. When the leaf receives
radiation of the sun, part is transmitted to lower leaf layers, part is absorbed by the chlorophylls and
other pigments, and the rest is reflected; the reflectance is therefore the ratio of the reflected and incident
radiation. The spectral signature (graphical representation of the reflectance for each wavelength)
is closely associated with the absorption of certain wavelengths linked to specific characteristics or
plant conditions [8–11]; plant spectral reflectance can thus be used for characterizing the effects of
abiotic and biotic stresses [3,9,12,13]. For example, in a healthy leaf, chlorophyll pigments absorb
in the blue (400–500 nm) and red (600–700 nm) range, generating a higher reflection in the green
wavelengths (500–600 nm); carotene has also a strong absorbance in the blue range. Most of the past
research has concentrated on the measurement in the visible (VIS; ~400–770 nm) and near infrared
(NIR; ~770–1300 nm) spectrum, although new studies are also covering the UV (~300–400 nm) and the
short wavelength infrared 1 (SWIR1; ~1300–1900 nm) and 2 (SWIR2; ~1900–2500 nm) [14,15].

Reflectance spectroscopy has gained importance and is being widely used in eco-physiological
studies for predicting traits of interest [10,16]. However, most of the studies have focused on the
use of Spectral Reflectance Indices (SRIs) (denoting relationships between specific wavelengths or
spectrum bands), paying less attention to the use of a wider proportion of wavelengths or the full
spectrum [11,17–20].

Because of the large volume of data generated by spectral measurements, it is common to use
multivariate techniques for trait modeling [21]. The simplest method is Multiple Linear Regression
(MLR), which is a well-known statistical procedure based on ordinary least squares regression [22,23].
In principle, MLR can be used with many predictors; however, if the number of these becomes too
large, it is likely to generate a model that fits the sampled data but has a probability of failing to predict
new one, a phenomenon called over-fitting [24,25]. Furthermore, an important assumption for the
MLR method is that independent variables are linearly independent, which is not always true for
spectral data due to multicollinearity (MC). One alternative to MLR is the use of Partial Least Squares
(PLS), which is a bilinear modeling method where information in the original x variables is projected
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onto a small number of latent variables called PLS components; characteristics of principal component
analysis and multiple linear regression are used to reduce the complex variability to some smaller
number of relevant factors [26–28]. PLS is thus a method for constructing predictive models when
there are many factors and high multicollinearity.

To avoid problems associated with MLR models in spectral studies, prior to the modeling
it is suggested that a selection of predictors is used to reduce their number, leaving only those
that contribute most to the model. Due to spectral data characteristics, in which one or several
sets of predictors provide the same information, the use of an MC analysis contributes towards
eliminating those predictors with redundant contributions to the model [29,30]. Another alternative
for the selection of independent variables is Genetic Algorithm (GA) analysis, widely used in
chemical spectrometry [21,31–37]. GAs are adaptive procedures for finding solutions, or numerical
optimizations, and are inspired by the theory of evolution: in a living environment, the “best”
individuals have a greater chance of surviving and a higher probability of spreading their genes
by reproduction [38]. In particular, the best chromosomes (with higher fitness) are allowed to survive,
mutate and recombine to generate offspring, and after a number of generations have elapsed, only those
selected chromosomes (equivalent to sets of wavelengths) are preserved [39].

Despite numerous studies relating the spectral signature (total or partial) to different traits, further
investigation is required. A significant number of articles cling to the use of PLS as the principal
multivariate technique; nevertheless, comparisons with other methodologies have not always been
considered. The literature suggests that modeling with MLR, after selecting wavelengths, would
generate models with similar predictive ability to PLS [30,38,40,41]. For example, [42] indicated that
the selection of wavelengths with lower MC would improve the performance of MLR models for
spectral data with a large number of samples. Questions regarding the best modeling methodology for
physiological trait prediction (e.g., PLS vs. MLR), and whether the model should consider the whole
spectrum or the convenience of a wavelength selection method still remain unclear.

We propose that it is possible to estimate complex physiological traits using models based on the
spectral signature, providing fruit breeders with additional relevant information for plant selection
(parents to be crossed or advanced lines) under adverse abiotic conditions (water deficit or heat
stress, and their combination). Thus, through the comparison of the coefficients of determination of
validation, the aim of this study was to evaluate the potential use of spectral reflectance, at the leaf level,
to estimate physiological traits (plant water status, chlorophyll content, leaf gas exchange, and the
working state of the photosynthetic apparatus) by determining the performance of PLS and MLR
in relation to a previous wavelength selection procedure (GA, MC or in combination). Additionally,
a secondary goal was placed on the recognition of the effects of environmental constraints on the leaf
spectral signature, considering the differences between and within cultivars.

2. Materials and Methods

2.1. Experimental Trial and Plant Material

The experimental trial was conducted at the Universidad de Talca, Campus Lircay (35◦ 24′ 20”S,
71◦ 38′ 5”W), Talca, Chile, in the course of the 2013/14 growing season. During dormancy
in the previous year (June 2012), 2- to 3-year-old plants of northern highbush blueberry
(Vaccinium corymbosum L.; ‘Bluegold’ and ‘Liberty’), southern highbush blueberry (V. corymbosum L.;
‘Bluecrisp’ and ‘Star’) and rabbiteye (V. ashei Reade; ‘Bonita’) were established in 20 L pots, containing
a substrate mixture of sand, peat moss, and sawdust (1:3:1); according to [43], a mature blueberry
is shallow-rooting with most roots only exploring up to 0.4 m deep, indicating that the cylinder pot
(305 × 383 mm) should provide enough space for a young root system to grow without restrictions.
Plants were maintained outdoors until early August 2013 (mid-winter in Chile) when they were moved
into two greenhouses (12 × 9 m) covered with alveolar polycarbonate sheeting (6 mm and 86% of
solar transmission); one of them (only roof covered) was considered to reproduce the conditions of
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ambient temperature (at), while the second one, completely enclosed with temperature control set to
keep approximately 5 ◦C above at, simulated an overheated environment (at+5) (temperature records
in Figure S1). Both greenhouses had two water regimes, full irrigation (FI) and water deficit (WD) with
approximately one-third of the water supplied under FI. Therefore, four environmental conditions
were generated: (i) at–FI; (ii) at–WD; (iii) at+5–FI; and (iv) at+5–WD.

There were three benches (blocks) in each greenhouse, and both water regimes were applied to
each one. Each individual bench included all cultivars and two replications of each water regime;
thus, six plants represented each environmental condition.

2.2. Measurements

Assessments started when 20–30% of the fruit in each cultivar reached maturity (berry skin 100%
blue coverage) on each bush. Measurements were performed on fully illuminated tissue (leaves or
shoots) from the edge of the middle-third of the canopy, at solar zenith (±2 h) during completely
sunny days.

Evaluations of chlorophyll (Chl) content, leaf gas exchange, modulated chlorophyll fluorescence,
and spectral reflectance were conducted on the same leaves. Stem water potential (SWP) was measured
in shoots of neighboring buds. Descriptions of the measurements are given below:

2.2.1. SWP

Plant water status was assessed on one shoot (15 cm) per plant using a pressure chamber (PMS600,
PMS Instruments Company, Corvallis, OR, USA). Prior to the measurement, shoots were covered with
aluminum foil and plastic ZiplocTM bags for two hours [44].

2.2.2. Chl Content

From one leaf per plant, one disc of 0.32 cm2 was extracted from each side of the central vein in the
middle of the leaf [44]. Both discs were placed in 1.5 ml of the organic solvent N,N-dimethylformamide
for 48 h in the dark at 4 ◦C [45]. The concentrations of Chl a, b and total were determined using
a UV/VIS spectrophotometer (T80 +, PG Instruments Ltd., England) at 664.5 and 647 nm, according to
the equation proposed by [46]. Additionally, the ratio between Chl a and b (Chl a/b) was calculated.

2.2.3. Leaf Gas Exchange

On one leaf per plant, CO2 assimilation rate (A), stomatal conductance (gs), transpiration rate (E),
and internal CO2 concentration (Ci) were recorded using an infrared gas analyzer (Ciras 2, PP Systems,
Amesbury, MA, USA) with a leaf cuvette of 2.5 cm2. Measurements were performed using a light
source (CRS131, PP Systems, Amesbury, MA, USA) at saturation conditions (1500 µmol m−2 s−1),
a flow rate of 0.15 L min−1 and 390 ppm of CO2.

2.2.4. Modulated Chlorophyll Fluorescence:

On one leaf per plant, the working state of the photosynthetic apparatus was evaluated by fast
light curves using a portable fluorometer (PAM 2500, Walz, Effeltrich, Germany). The equipment was
configured to deliver 20 pulses of actinic light at different levels of photosynthetically active radiation
(PAR), between 0 and 2700 µmol m−2 s−1. The parameters evaluated were those reported by [47],
which were useful to discriminate between environments with water deficit and heat stress: effective
photochemical quantum yield of photosystem II [Y(II)], coefficient of non-photochemical fluorescence
quenching (qN), coefficient of photochemical fluorescence quenching (qP), initial slope of the fast light
curve (Alpha), maximum electron transport rate (ETRmax), and the irradiance at which the electron
transport rate is saturated (IK), or in other words, the PAR value at the point of intersection of the
horizontal line between ETRmax and Alpha.
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2.2.5. Spectral reflectance

This was measured using a portable spectrometer (FieldSpec 3 Jr., Analytical Spectral Devices
ASD Inc., Boulder, CO, USA) with a spectral range of 350–2500 nm. The spectrometer fiber (25◦) was
inserted (32◦) into a contact probe device (ASD Inc., Boulder, CO, USA) with a halogen light source
(5 W to prevent the blade from burning), keeping a constant distance from the leaf (10 mm), and
generating a measuring spot of ~10 mm diameter. The contact probe was calibrated every 15 minutes
using a white reference tile (Spectralon, ASD Inc., Boulder, CO, USA) for scatter correction. Software
RS3 (ASD Inc., Boulder, CO, USA) was used to calibrate, control the spectrometer and to acquire the
spectral signatures. The equipment was configured to integrate three samples (350–2500 nm) per
scan, and each leaf was scanned ten times. Reflectance data were extracted using View Spec Pro 2008
software (ASD Inc., Boulder, CO, USA). For leaf scan averaging, exploratory analysis of high-resolution
spectral reflectance was performed using Spectral Knowledge software (SK-UTALCA) [19].

2.3. Modeling Analysis

Multivariate regression analysis was performed for each of the four individual environments
(at–FI, at–WD, at+5–FI, and at+5–WD), but also considering the four conditions taken together (All).
The regression models were developed using MLR (MATLAB, version 7.8.0 R2009a, MathWorks,
Inc., Natick, MA, USA) and PLS (The Unscrambler X, version 10.4, Computer Aided Modelling
Camo, Trondheim, Norway). PLS was implemented by considering the number of components that
maximized the calibration of the models in each analysis. A mean-centering procedure was carried
out on all datasets prior to MLR and PLS to remove the offset effect. The validation of each model was
evaluated using the methodology of leave-one-out cross-validation (LOO).

Each modeling methodology (PLS or MRL) considered the complete spectral signature (PLS W/O
or MLR W/O), which was contrasted with that in which a selection of wavelengths was previously
performed by: (i) multicollinearity (MC PLS or MC MLR); (ii) genetic algorithms (GA PLS or GA MLR);
(iii) MC and then GA (MC+GA PLS or MC+GA MLR); and (iv) GA and then MC (GA+MC PLS or GA+MC
MLR). The final number of wavelengths after each of the selection procedures is given in Table S1.

Using Spectral Knowledge software (SK-UTALCA) [19], MC was established by linear regression
analysis, considering a cut-off coefficient of determination of 0.95. Selection by GA was determined
by the MATLAB package developed by Leardi (2000), considering the equivalent of the following
parameters: population size (30 chromosomes), probability of mutation (1%), probability of crossover
(50%), and elitism (1) [10].

As a way to simplify the analysis and discussion of the multiple combinations generated for
the study (15 traits, five environmental conditions, two multivariate analyzes, and five wavelength
selection methods), only the values of the coefficient of determination for the validation procedure
(R2

Val) were considered for the comparisons. Detailed information on the calibration and validation
coefficients of determination, and root mean square error (RMSE) of the calibration and validation are
given in Table S2.

2.4. Determining the Environmental Effects in the Leaf Spectral Signature

As a way to easily characterize the environmental effects on the spectral signature, magnifying
the differences between the compared reflections, a practical methodology is proposed. For each
cultivar, the ten scans per leaf were averaged to generate the spectral signature of the replica.
Then, the six replicates were also averaged, constituting the spectral signature of the evaluated
environment. For each cultivar and wavelength, analyses of variance (ANOVAs) were performed to
verify whether the reflectance measurements were statistically different (Table S3).

When statistical differences were found between environments at each wavelength, the average
reflectance values of the control treatment and the different adverse conditions (at–WD, at+5–FI and
at+5–WD) were subtracted (at–FI vs. at–WD, at+5–FI or at+5–WD). Finally, at each wavelength assessed,
the reflectance differences between environments were plotted per cultivar.



Remote Sens. 2019, 11, 329 6 of 19

3. Results

In general, PLS was a better approximation than MLR and this was evident throughout all the
analyses. Regardless of the methodology of wavelength selection, the validation models indicated
an R2

Val ≥ 0.45, at least in some environments, for SWP, Chl (a, b, total, and a/b), ETRmax and
IK (Figures 1–4, respectively). When all environmental data were combined (All), in general, the
wavelength selection (simple or double) did not improve the estimation by PLS, but it was enhanced
under each particular condition (at–FI, at–WD, at+5–FI, or at+5–WD). At the same time, MLR coefficients
of determination of validation increased, particularly when a double selection was considered.
In contrast, independent of the modeling methodology and the wavelength selection applied, the
worst results obtained were for the estimation of Alpha, qP, qN and Y(II).

3.1. Stem Water Potential (SWP)

PLS performed better than MLR in the prediction of SWP (Figure 1). PLS W/O (full spectrum)
showed the best estimation when all environments were considered together (All; R2

Val = 0.29) and
under water deficit conditions (at–WD; R2

Val = 0.48). Wavelength selection proved to be an adequate
procedure for modeling SWP by PLS for plants growing under fully irrigated conditions with (at+5–FI;
R2

Val = 0.38 considering GA) or without heat stress (at–FI; R2
Val = 0.31 considering GA+MC). When

both of the adverse conditions were present, the prediction level was low (R2
Val < 0.06) and the best

approaches were found when a prior wavelength selection was performed.
MLR allowed estimation of SWP under at+5–FI conditions with an R2

Val of 0.36, when a double
wavelength selection (MC+GA) was considered. Under the same conditions with the full spectrum
(W/O), MLR performed poorly.
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Figure 1. Coefficients of determination of the validation (R2
Val) process of the estimation of stem water

potential in different environments (at–FI: without water stress or heat stress; at–WD: only water stress;
at+5–FI: only heat stress; at+5–WD: with water stress and heat stress; All: all environments combined)
and modeled by partial least squares (PLS) and multiple linear regression (MLR), considering five
wavelength selection methods: without selection (W/O) or full spectrum, multicollinearity (MC),
genetic algorithms (GA), and the combinations MC+GA or GA+MC.

3.2. Chlorophyll Content (Chl a, Chl b, Chl total, and Chl a/b)

For the environments individually or in combination, the estimations of Chl a, b, total and a/b
(Figure 2a–d, respectively) were higher under PLS. PLS W/O was the best approximation (R2

Val = 0.36,
0.69, 0.61, and 0.87 for Chl a, b, total and a/b, respectively) when all environments were processed as one.
Either with or without wavelength selection, there were no large differences in the estimation of Chl a
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under at–FI (0.18 < R2
Val < 0.23) or at+5–WD (0.25 < R2

Val < 0.27). Nevertheless, under at–WD and at+5–FI
the coefficients of determination were improved when part of the spectral signature was selected to
build the PLS models (0.26 < R2

Val < 0.58 and 0.18 < R2
Val < 0.26, respectively) (Figure 2a). Considering

some magnitude differences associated with the environment and the prediction methodology, Chl
total followed similar trends to Chl a (Figure 2c). With some exceptions, the estimation of Chl b did not
improve when predictors were selected prior to modeling with PLS (Figure 2b); the R2

Val was higher
than Chl a (All: 0.69; at–FI: 0.43; at–WD: 0.62; at+5–FI: 0.71; at+5–WD: 0.47). Higher R2

Val was found in
Chl a/b with PLS (Figure 2d); All: 0.87 (W/O), at–FI: 0.85 (W/O), at–WD: 0.80 (GA), at+5–FI: 0.84 (MC),
and at+5–WD: 0.72 (GA).
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Figure 2. Coefficients of determination of the validation (R2
Val) process of the estimation of chlorophyll

(Chl) a (a), Chl b (b), total Chl (c) and Chl a/b (d), in different environments (at–FI: without water stress
or heat stress; at–WD: only water stress; at+5–FI: only heat stress; at+5–WD: with water stress and heat
stress; All: all environments combined) and modeled by partial least squares (PLS) and multiple linear
regression (MLR), considering five wavelength selection methods: without selection (W/O) or full
spectrum, multicollinearity (MC), genetic algorithms (GA), and the combinations MC+GA or GA+MC.

In the case of MLR, and irrespective of the variable and the environmental conditions,
the estimations were always higher when a wavelength selection process was considered.

3.3. Leaf gas Exchange (A, gs, E, and Ci)

Although PLS generally proved to be a better approach to the estimations of leaf gas exchange,
none of the modeling analyses were able to reach coefficients of determination higher than 0.44.

Among the four variables studied, the estimation of the CO2 assimilation rate (A) had the highest
coefficients of determination under each condition (Figure 3a). Using PLS, when all environments
were considered as one (All), there were no substantial differences between the wavelength selection
methodologies (0.34 < R2

Val < 0.38), while the at–FI, at+5–FI, and at+5–WD models were improved
by GA (0.44, 0.43, and 0.43, respectively). For the estimation of A under at–WD, the highest R2

Val



Remote Sens. 2019, 11, 329 8 of 19

(0.22) was obtained by performing a double selection (GA+MC PLS). In the case of MLR, wavelength
selection was always better than the whole spectrum (MLR W/O).
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Figure 3. Coefficients of determination of the validation (R2
Val) process of estimation of CO2

assimilation rate (a), stomatal conductance (b), transpiration rate (c) and internal CO2 concentration
(d), in different environments (at–FI: without water stress or heat stress; at–WD: only water stress;
at+5–FI: only heat stress; at+5–WD: with water stress and heat stress; All: all environments combined)
and modeled by partial least squares (PLS) and multiple linear regression (MLR), considering five
wavelength selection methods: without selection (W/O) or full spectrum, multicollinearity (MC),
genetic algorithms (GA), and the combinations MC+GA or GA+MC.

Similar to A, when all environmental conditions were combined, the estimation of gs did not vary
among the PLS modeling approaches (0.24 < R2

Val < 0.29) (Figure 3b). Wavelength selection by GA was
the best methodology for stomatal conductance under at–FI and at–WD (0.33 and 0.35, respectively),
and double selection (MC+GA PLS) was best for at+5–FI and at+5–WD (0.31 and 0.06, correspondingly).
Again, estimates by MLR were always higher when a wavelength selection procedure was considered,
although it resulted in lower coefficients of determination than PLS.

Regarding E, wavelength selection prior to PLS improved the estimates (Figure 3c). A double
selection by MC+GA increased R2

Val when all environments were combined (All) and also under at–FI
and at+5–FI (0.23, 0.43, and 0.43, respectively), while GA+MC improved the estimation under at–WD
(0.27). When the double stress (at+5–WD) was present, the R2

Val was very low, regardless of either the
PLS or MLR methodology.

When the internal CO2 concentration (Ci) was estimated for All, at–FI, and at–WD, the best
approaches were from modeling with PLS and considering a previous selection by GA+MC
(R2

Val = 0.21, 0.23, and 0.35, respectively) (Figure 3d). In the case of plants subjected to heat stress alone
(at+5 –FI), selection by MC and modeling with PLS gave the highest coefficients of determination (0.41).
The selection by GA+MC and subsequent modeling with MRL was the best methodology to estimate
the Ci in blueberry plants growing under the double stress (water deficit and heat stress) (R2

Val = 0.34).
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3.4. Modulated Chlorophyll a Fluorescence [Y(II), qN, qP, ETRmax, IK, and Alpha]

PLS models showed higher R2
Val than MLR. With the exception of ETR and IK, the estimates of

these variables had a R2
Val lower than 0.26 (Figure 4).
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Figure 4. Coefficients of determination of the validation (R2
Val) process of estimation of the photochemical

quantum yield of photosystem II (a), the coefficient of non-photochemical fluorescence quenching (b),
the coefficient of photochemical fluorescence quenching (c), the maximum electron transport rate (d)
the irradiance at which the electron transport rate is saturated (e) and the initial slope of the fast light
curve (f), in different environments (at–FI: without water stress or heat stress; at–WD: only water stress;
at+5–FI: only heat stress; at+5–WD: with water stress and heat stress; All: all environments combined)
and modeled by partial least squares (PLS) and multiple linear regression (MLR), considering five
wavelength selection methods: without selection (W/O) or full spectrum, multicollinearity (MC),
genetic algorithms (GA), and the combinations MC+GA or GA+MC.

When data of the effective photochemical quantum yield of photosystem II of all environments
were combined (All), there were no major disparities in the estimates of [Y(II)] by GA PLS or MC+GA
PLS (R2

Val = 0.11 and 0.10, respectively) (Figure 4a). Double selection by MC+GA also improved the
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estimation under at–FI, at–WD, and at+5–FI (0.17, 0.26, and 0.17, respectively). In the case of at+5–WD,
W/O and MC+GA did not show large differences (0.07 and 0.06, respectively).

Regarding qN, MC+GA PLS were the best estimation methodologies under AlI, at–FI, and at+5–FI
(R2

Val = 0.18, 0.22, and 0.22, respectively) (Figure 4b). In the case of at–WD, PLS W/O generated
coefficients of determination of 0.14, whereas at+5–WD was lower than 0.1 (MLR W/O). For qP,
R2

Val values higher than 0.1 were obtained under at–FI (GA+MC PLS: 0.15), at–WD (GA PLS: 0.17),
and at+5–FI (MC+GA PLS: 0.11) (Figure 4c).

The best approach when modeling ETRmax (Figure 4d) in All and at–WD was PLS W/O
(R2

Val = 0.54 and 0.40, correspondingly). For at–FI and at+5–FI, there were no major differences between
PLS W/O and MC+GA PLS (~0.60, and 0.28, respectively). In regard to at+5–WD there was no variation
between PLS W/O and MC PLS (R2

Val = 0.53).
With respect to IK (Figure 4e) under All and at–FI, modeling with PLS W/O resulted in the best

estimates (R2
Val = 0.35 and 0.59, respectively). GA PLS was the best wavelength selection method for

at–WD (R2
Val = 0.43), whereas MC+GA PLS was best for at+5–FI and at+5–WD (R2

Val = 0.56 and 0.35,
correspondingly).

Finally, Alpha was the trait with the lowest estimates, independent of the wavelength selection
procedure and the modeling methodology considered (R2

Val < 0.1).

3.5. Determining the Environmental Effects in the Leaf Spectral Signature

When the spectral signatures of each genotype were compared (Figure 5a,c,e,g,i; Table S3),
differences between environments were clearer in those blueberries growing with and without heat
stress (red and blue lines, respectively); dissimilarities were more consistent from ~740 nm onwards.
Within each heat condition, differences between environments were difficult to examine. On the
other hand, the proposed methodology to contrast the control spectral signature (at–FI) with the
characteristic reflectance under each adverse condition (at–WD, at+5–FI and at+5–WD) allowed the
magnification of the differences between the compared reflections (Figure 5b,d,f,h,j). In terms of
magnitude, a greater number of differences were observed with at+5–FI (black lines) and at+5–WD
(red lines) than in an environment without heat stress (at–WD; blue lines) (Figure 5b,d,f,h,j).

When the averaged reflectances under the adverse conditions were compared with that of the
control (Figure 5b,d,f,h,j), a larger range of differences were observed, recognizing four comparable
stretches: i) ~350–710 nm: V. ashei ‘Bonita’ (Figure 5j) behaved differently to V. corymbosum cultivars
(Figure 5b,d,f,h); V. corymbosum was more reflective than the control, whereas V. ashei showed no
differences between environments; ii) ~710–1450 nm: before the peak at 1450 nm, the responses
varied according to the treatment and cultivar; this was the only section where all the cultivars
proved to respond differently among the conditions studied. In general, the differences between
at+5–FI and at+5–WD were minor in the southern V. corymbosum ‘Bluecrisp’ and ‘Star’ (Figure 5f,h)
and V. ashei ‘Bonita’ (Figure 5j), but larger in the northern V. corymbosum ‘Bluegold’ and ‘Liberty’
(Figure 5b,d). In relation to at–WD, due to it lesser distance from the at–FI, the northern V. corymbosum
‘Bluegold’ (Figure 5b) and V. ashei ‘Bonita’ (Figure 5j; blue line) appeared to be less influenced by water
deficit than the rest of the cultivars; iii) ~1450–1880 nm: the spectral signatures differed in a small
region common to all cultivars, plateau between both extremes (~1570–1700 nm), in which a greater
number of different patterns between environments was observed. The southern V. corymbosum ‘Star’
(Figure 5h) was notable because it showed the largest differences between at–FI and at–WD, and when
heat stress was present its spectral signatures were not influenced by the water content in the pots
(at+5–FI and at+5–WD; black and red lines); and (iv) ~1880–2500 nm: in the significant common section
(2100–2250 nm), the ‘Star’ cultivar (Figure 5h) under at–WD differed the most from the control, and
when heat stress was present, the spectral signatures of at+5–FI and at+5–WD were relatively similar.
Additionally, V. corymbosum ‘Bluegold’ (Figure 5b) and V. ashei ‘Bonita’ (Figure 5j) seemed to be less
influenced than the rest of the cultivars when they were grown under at–WD.
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Figure 5. Spectral signatures (a,c,e,g,i) of V. corymbosum (‘Bluegold’, ‘Liberty’, ‘Bluecrisp’, and ‘Star’)
and V. ashei (‘Bonita’) growing under four environmental conditions (at–FI: without water stress or
heat stress; at–WD: only water stress; at+5–FI: only heat stress; and at+5–WD: with water stress and heat
stress). Comparisons between control (at–FI) and each environmental condition are represented by the
subtraction of reflectance at each wavelength (b,d,f,h,j; at each wavelength, interruptions in the lines
indicate sections without statistical differences, p < 0.05, between the environments).

4. Discussion

The incorporation of physiological assessments in plant breeding programs will become
increasingly important, not only for the estimation of specific traits, but also for the simultaneous
integration of a number of different characters, improving the chances of identifying cultivars
well-adapted to the more challenging environments predicted for the future [3,4].

Studies in which physiological traits have been estimated by spectral reflectance are varied in
terms of equipment used (e.g., manufacturer, resolution and spectral sample, reproducibility and
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accuracy), methodology of reflectance measurements (e.g., calibration procedure, distance to the
measured object, use and intensity of light source, angle of measurement, screening of a single spot or
moving the fiber across the plot, number of scans per plot, and integration time), and data analysis
(e.g., the criterion of elimination of spectral noise, with or without prior wavelength selection, and
linear and nonlinear approximations). Therefore, not only it is difficult to compare results between
studies but, due to the same reasons, it is also inadequate on many occasions.

Methodologically, the first point of interest is the modeling criterion when the environmental
conditions were evaluated together (All); usually performed better when higher coefficients of
determination are looked for by the increment of the trait-range [20]. Interestingly, the results of
the present study suggest that blueberry models, in general, had a better performance when the
environments were considered separately, at least when a proximal approach (leaf clip with light source)
is used. When [17] and [20] estimated several physiological and productive traits by non-proximal
spectral reflectance (80 cm above the canopy); it was concluded that the estimations were always
improved when data from the contrasting water supply conditions (fully irrigated, mild and severe
water deficit) were combined.

In most instances (i.e., variables, environments, wavelength selection criterion, and modeling
methodology), PLS was superior to MLR. In this regard, the PLS method transforms the space of
spectral properties so that the resulting factors represent the maximum variation in the covariance of
the variable being evaluated. This produces efficient data compression and therefore a better calibration
model compared to other linear statistical methods [48–50]. Furthermore, the PLS method is based on
a projection of the predictors (x) and response (y) variables into a set of latent variables (or PLS factors)
and corresponding scores, minimizing the dimensionality of the data while maximizing the covariance
between x and y variables [27].

On the other hand, as expected, MLR W/O was not a suitable methodology for modeling spectral
data. It was common that a prior wavelength selection, especially MC, did improve the estimation
(R2

Val values) of the different variables analyzed (Figures 1–4, and Table S2). Although the MLR R2
Val

values were lower than the PLS, there are studies where a previous selection of wavelengths improved
the predictive ability of MLR over PLS, or at least both methodologies were of equal strength [30,40,41].

The variables analyzed in this study are considered key for physiological breeding approaches [51],
many of which have not previously been modeled by the use of spectral reflectance, especially in
fruit breeding programs [3,4]. Among the characters delivering valuable information about plant
physiological status, photosynthetic pigments are probably the most extensively studied, especially the
chlorophylls, where a strong association with the nitrogen content has been described [10,52,53].
Independent of the plant species studied or the modeling methodology utilized for predicting
chlorophyll concentration (Chl a, Chl b or Chl total), the coefficients of determination reported in
the literature are usually high (R2

Val > 0.65) [10,41,48,54,55], which is coincident with the results
presented in this work. Interestingly, the higher R2

Val values that were obtained for the estimation of
Chl a/b values are also superior to those documented by other authors, which have been generated
either via predictive models or through the study of SRIs [56]. The chlorophyll a and b ratio (Chl a/b) is
a good indicator of stress in higher plants [57,58]. Stress conditions generate oxidative damage, causing
a decrease in the chlorophyll content due to degradation of chlorophylls, deficiency in chlorophyll
synthesis, and also because of changes in the thylakoid membrane structure [59]. Low values of Chl a/b
in leaves under drought conditions are caused by higher Chl a degradation rates compared to Chl b
due to the conversion of Chl a to Chl b by the oxidation of the methyl group on ring II to an aldehyde
group [60,61]. In this sense, using the same individuals assessed in the current study, [47] proved that
Chl a/b was relevant in identifying blueberry genotypes subjected to heat stress.

Due to the time involved in screening plant water status via pressure chambers, there has been
significant effort invested in estimating SWP by remote sensing technologies [19]. In this study, the R2

Val
values of the SWP under individual environmental conditions were, in general, lower than those
found in other species such as olives (R2

Val ~0.7) [19,62] or grapevines (0.71 < R2
Val < 0.84) [63–65].
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In general, most of the published studies combine more than one environmental condition, generating
higher R2

Val because of the forced dispersal of the data cloud along the x-axis [20], which would
explain the lower R2

Val values in this study. In addition, correlations could be influenced by the
particular blueberry root morphology and physiology; shallow fibrous roots, which are also very thin
and without root hairs, responding differently to the hydric deficit [66,67].

The prediction of leaf gas exchange variables using spectral data has been less studied. Most of
the literature has focused on relating some SRIs, usually the photochemical reflectance index (PRI),
with the state or activity of the photosynthetic apparatus [68–71]. The results of the present study are
similar to those found by [15] using the same proximal approach in wheat leaves, reporting R2

Val for A
and gs of 0.34 and 0.49, respectively. In olives, [17] described higher coefficients of determination at the
branch level for A (R2

Val = 0.81), gs (R2
Val = 0.78) and E (R2

Val = 0.81); however, the wide range of SWP
generated by olive trees under drought conditions could have influenced the higher coefficients of
determination. Indeed, the study of water availability in olive orchards generated a broader range of
potentials (−1.7 to −6.2 MPa) [72] than those reported by [47] using the same blueberry individuals
considered in the present study (−0.2 to −2.5 MPa).

In parallel with leaf gas exchange, several studies have attempted to estimate some chlorophyll a
fluorescence parameters using SRIs [73–77]; however, multivariate regression analyses of the spectral
signatures have not been described in the literature. The parameters derived from rapid light curves
are important for breeders because they would allow recognition of genotype behavior such as the
rate of electrons passing from PSII to PSI, the amount of light saturating the photosystems, and the
efficiency of electrons reaching the light-harvesting antenna for use in photosynthesis [78,79]. In this
regard, genotypes having high values of ETRmax, Alpha and IK should have a better photosynthetic
performance under stress conditions [47,80,81]. When drought or elevated temperatures are present,
the photoprotective capacity in leaves decreases and photo-oxidative damage of PSII occurs with
irreversible losses of reaction centers [82–84]. The results shown in the current work are relevant
because some of the most important parameters (ETRmax and IK), previously reported as being
key for discriminating between blueberry genotypes growing under water deficit conditions [47],
were estimated with relatively high coefficients of determination (ETRmax ≤ 0.60 and IK ≤ 0.59).

The classical comparison of the spectral signatures in each one of the four environments
(Figure 5a,c,e,g,i) did not identify substantial differences between environmental scenarios. A different
approach to characterize and interpret the environmental effects on the evaluated genotypes is to
analyze changes at the spectral signature level. As was previously mentioned, the spectral signature is
closely associated with the absorption of certain wavelengths, linked to specific characteristics or plant
conditions [8–11]. Consequently, the environmental differences that a genotype undergoes should be
translated into modifications at the reflectance level too.

When the averaged reflectances under the adverse conditions (at–WD, at+5–FI and at+5–WD) were
compared with that of the control (at–FI) (Figure 5), cultivars varied in their responses according to
the studied stress (drought, heat, or both). Besides the fact that there is variation in leaf anatomy
and cell structure between genotypes [3,17], differences within the same species (V. corymbosum) were
expected because blueberry breeders have incorporated genes from many species within the Vaccinium
genus through inter-specific hybridization [3]. For example, ‘Liberty’ (northern V. corymbosum) is 100%
V. corymbosum while ‘Star’ (southern V. corymbosum) is estimated to genetically comprise 78, 8, 7, 2, and
1 % V. corymbosum, V. angustifolium, V. darrowii, V. ashei, and V. tenellum, respectively. This inter-specific
hybridization confers useful characteristics to overcome environmental constraints. For example,
V. darrowii and V. ashei have been identified as species having a higher level of heat and drought
tolerance, respectively; both species were initially collected from the South East of North America [85].
Since both southern highbush ‘Bluecrisp‘ and ‘Star‘ have a proportion of V. darrowii in their pedigree,
it would be possible to hypothesize that the smaller distances between the overheated environments
(at+5–FI and at+5–WD), comparison lines (black and red in Figure 5f,h), could be due to a greater heat
tolerance. Rabbiteye (V. ashei) ‘Bonita’, from ~740 nm onwards, presented almost no differences from
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the control treatment, probably also associated with the drought tolerance characteristics of this species;
if this is true, it would mean that, in the case of ‘Bluegold‘, the similarity of the spectral signatures of
at–FI and at–WD (blue line in Figure 5b) could be due to a greater capacity to tolerate a lack of water.
These preliminary results would indicate that the presented methodology (changes relative to the
control), could be considered for the identification of tolerant/susceptible genotypes for a specific
environmental condition.

5. Conclusions and Future Perspectives

In general, PLS showed better results than MLR, regardless of the methodology used in the
selection of the wavelengths. Considering the low predictive values of MLR, with few exceptions,
there was an increase in trait estimation (R2

Val) using MC over GA for predictor selection. Chl a/b,
ETRmax and IK were among the variables with the highest coefficients of determination of validation,
which contrasted with the poor estimations reached for Alpha, qP, qN and Y(II). The results of this
study reaffirm that, by the modeling of the spectral reflectance, it is possible to assess some key traits
(e.g., Chl a/b, ETRmax and IK) that could begin to be used in blueberry breeding programs oriented to
adaptation to the new challenging environmental scenarios.

Even if it could be argued that it is disadvantageous to work with potted plants under controlled
environments and reflectance assessed by a proximal approach, as performed by other authors in
maize and wheat (Yendrek et al., 2017; Silva-Perez et al., 2018) [15,86], there are still some important
advantages to highlight: (i) the minimum spectral noise compared to a non-proximal measurement
helps to identify the potential of this technology in fruit breeding programs; (ii) under field conditions,
it is difficult to study spectral signature changes of isolated and combined environmental conditions
(drought and heat); (iii) in the case commercial blueberry production, an important part of the
southern highbush cultivars are grown in pots with peat moss and in greenhouses [87,88], primarily
subjected to high temperature conditions, so breeders are also programming crosses for these type
of environments; and (iv) assessments are considerably faster than the classic eco-physiological
measurements, allowing the screening of a much higher number of genotypes in a short period of
time [15,86]. The selected genotypes can then be tested in more sophisticated field trials as part of the
advanced variety selection [4,89].

For increasing measurement speed and to allow integration of a larger proportion of the canopy,
future efforts should consider a non-proximal approach. To the extent that the use of phenomics is
of major relevance and a greater number of seasons are available for modeling, the implementation
of a completely independent validation of calibration models should be undertaken. As proposed
by [20], a multivariate classification modeling approximation (e.g., PLS-DA) should also improve the
predictive capacity, at least for the group of elite genotypes.

The preliminary results from the study of the spectral signature with respect to the control
treatment could represent an easier and more direct way to evaluate the tolerance or susceptibility to
a specific environmental condition. In this sense, continuous measurements of the spectral signature
through periods of adverse conditions could help us gain better identification and hence understanding
of the wavelengths involved and the magnitudes associated with the particular condition.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/3/329/s1,
Table S1: Number of predictors after a wavelength selection process (W/O: no-wavelength selection; MC:
multicollinearity; GA: genetic algorithms; and their combination: MC+GA or GA+MC) for each trait and
environmental condition (at–FI: without water stress or heat stress; at–WD: only water stress; at+5–FI: only
heat stress; at+5–WD: with water stress and heat stress; and All: all environments combined), Table S2: Coefficients
of determination (R2) and root mean square error (RMSE) of calibration (Cal) and validation (Val) for each trait
in different environments (at–FI: without water stress or heat stress; at–WD: only water stress; at+5–FI: only
heat stress; at+5–WD: with water stress and heat stress; and All: all environments combined) and modeled by
partial least squares (PLS) and multiple linear regression (MLR), considering five wavelength selection methods:
without selection (W/O) or full spectrum, multicollinearity (MC), genetic algorithms (GA), and the combinations
MC+GA or GA+MC, Table S3: P-values of the analyses of variance (ANOVAs) for each cultivar and wavelength
(nm), for the averaged spectral signature under four contrasting environments: without water stress or heat
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stress, only water stress, only heat stress, and water and heat stress. For each cultivar, the ten scans per leaf
were averaged to generate the spectral signature of the replica. Then, the six replicates were again averaged,
constituting the spectral signature of the evaluated environment. P-values below 0.05 are in bold font. Figure
S1: Temperature records (11:00 and 17:00 h) in the ambient temperature (at) and elevated temperature (at+5)
greenhouses during the days of measurement. The solid line represents the temperature in at, while the line
with crosses represents the temperatures in at+5. The line with circles represents the differences between the
temperatures of the two greenhouses (at-at+5).

Author Contributions: A.E.-O., P.C. and G.A.L. contributed to the conception and design of the work. A.E.-O.,
C.P.-E., F.E., S.R.-B., L.G.-M. and M.G. performed acquisition, analysis, and interpretation of data for the work.
A.E.-O., G.A.L., A.d.P., C.P.-E. and J.G.-T. collaborated to generate and validate the version for publication.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the National Commission for Scientific and Technological
Research CONICYT (FONDECYT Nº1110678, FONDEF IDEA 14I10106 & 14I20106) and the Universidad
de Talca, Chile (research programs “Adaptation of Agriculture to Climate Change - A2C2” and “Núcleo
Científico Multidisciplinario”). We would like to express our gratitude to Genberries Ltda. for material and
equipment support.

Conflicts of Interest: The authors declare that the work and publication was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Moretti, C.L.; Mattos, L.M.; Calbo, A.G.; Sargent, S.A. Climate changes and potential impacts on postharvest
quality of fruit and vegetable crops: A review. Food Res. Int. 2010, 43, 1824–1832. [CrossRef]

2. Osborne, T.; Rose, G.; Wheeler, T. Variation in the global-scale impacts of climate change on crop productivity
due to climate model uncertainty and adaptation. Agric. For. Meteorol. 2013, 170, 183–194. [CrossRef]

3. Lobos, G.A.; Hancock, J.F. Breeding blueberries for a changing global environment: A review. Front. Plant Sci.
2015, 6. [CrossRef] [PubMed]

4. Camargo, A.; Lobos, G.A. Latin America: A development pole for phenomics. Front. Plant Sci. 2016, 7.
[CrossRef]

5. Passioura, J.B. Phenotyping for drought tolerance in grain crops: When is it useful to breeders?
Funct. Plant Biol. 2012, 39, 851–859. [CrossRef]

6. Araus, J.L.; Elazab, A.; Vergara, O.; Cabrera-Bosquet, L.; Serret, M.D.; Zaman-Allah, M.; Cairns, J.E.
New technologies for phenotyping. In Phenomics: How Next-Generation Phenotyping Is Revolutionizing Plant
Breeding; Fritsche-Neto, R., Borém, A., Eds.; Springer: New York, NY, USA, 2015; pp. 1–14.

7. Houle, D.; Govindaraju, D.R.; Omholt, S. Phenomics: The next challenge. Nat. Rev. Genet. 2010, 11, 855–866.
[CrossRef] [PubMed]

8. Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and
the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis.
Remote Sens. Environ. 2011, 115, 281–297. [CrossRef]

9. Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci.
2014, 19, 52–61. [CrossRef] [PubMed]

10. Garriga, M.; Retamales, J.B.; Romero-Bravo, S.; Caligari, P.D.; Lobos, G.A. Chlorophyll, anthocyanin, and gas
exchange changes assessed by spectroradiometry in Fragaria chiloensis under salt stress. J. Integr. Plant Biol.
2014, 56, 505–515. [CrossRef]

11. Hernandez, J.; Lobos, G.A.; Matus, I.; del Pozo, A.; Silva, P.; Galleguillos, M. Using ridge regression models
to estimate grain yield from field spectral data in bread wheat (Triticum aestivum L.) grown under three water
regimes. Remote Sens. 2015, 7, 2109–2126. [CrossRef]

12. Lopes, M.S.; Araus, J.L.; Van Heerden, P.D.R.; Foyer, C.H. Enhancing drought tolerance in C4 crops. J. Exp. Bot.
2011, 62, 3135–3153. [CrossRef]

13. Prasanna, B.M.; Araus, J.L.; Crossa, J.; Cairns, J.E.; Palacios, N.; Mahuku, G.; Das, B.; Magorokosho, C.
High-throughput and precision phenotyping in cereal breeding programs. In Cereal Genomics-II; Gupta, P.K.,
Varshney, R.K., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 341–374.

14. Cabrera-Bosquet, L.; Crossa, J.; von Zitzewitz, J.; Serret, M.D.; Araus, J.L. High-throughput phenotyping and
genomic selection: The frontiers of crop breeding converge. J. Integr. Plant Biol. 2012, 54, 312–320. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.foodres.2009.10.013
http://dx.doi.org/10.1016/j.agrformet.2012.07.006
http://dx.doi.org/10.3389/fpls.2015.00782
http://www.ncbi.nlm.nih.gov/pubmed/26483803
http://dx.doi.org/10.3389/fpls.2016.01729
http://dx.doi.org/10.1071/FP12079
http://dx.doi.org/10.1038/nrg2897
http://www.ncbi.nlm.nih.gov/pubmed/21085204
http://dx.doi.org/10.1016/j.rse.2010.08.023
http://dx.doi.org/10.1016/j.tplants.2013.09.008
http://www.ncbi.nlm.nih.gov/pubmed/24139902
http://dx.doi.org/10.1111/jipb.12193
http://dx.doi.org/10.3390/rs70202109
http://dx.doi.org/10.1093/jxb/err105
http://dx.doi.org/10.1111/j.1744-7909.2012.01116.x
http://www.ncbi.nlm.nih.gov/pubmed/22420640


Remote Sens. 2019, 11, 329 16 of 19

15. Silva-Perez, V.; Molero, G.; Serbin, S.P.; Condon, A.G.; Reynolds, M.P.; Furbank, R.T.; Evans, J.R. Hyperspectral
reflectance as a tool to measure biochemical and physiological traits in wheat. J. Exp. Bot. 2018, 69, 483–496.
[CrossRef] [PubMed]

16. Lobos, G.A.; Poblete-Echeverría, C.; Ahumada, L.; Zúñiga, M.; Romero, S.; Escobar, A.; Caligari, P.D.S.
Fast and non-destructive prediction of gas exchange in olive orchards (Olea europaea L.) under different soil
water conditions. Acta Hortic. 2014, 1057, 329–334. [CrossRef]

17. Lobos, G.A.; Matus, I.; Rodriguez, A.; Romero-Bravo, S.; Araus, J.L.; del Pozo, A. Wheat genotypic variability
in grain yield and carbon isotope discrimination under Mediterranean conditions assessed by spectral
reflectance. J. Integr. Plant Biol. 2014, 56, 470–479. [CrossRef] [PubMed]

18. Poblete-Echeverría, C.; Ortega-Farías, S.; Lobos, G.A.; Romero, S.; Ahumada, L.; Escobar, A.; Fuentes, S.
Non-invasive method to monitor plant water potential of an olive orchard using visible and near infrared
spectroscopy analysis. Acta Hortic. 2014, 1057, 363–368. [CrossRef]

19. Lobos, G.A.; Poblete-Echeverría, C. Spectral Knowledge (SK-UTALCA): Software for exploratory analysis of
high-resolution spectral reflectance data on plant breeding. Front. Plant Sci. 2017, 7. [CrossRef] [PubMed]

20. Garriga, M.; Romero-Bravo, S.; Estrada, F.; Escobar, A.; Matus, I.A.; del Pozo, A.; Astudillo, C.A.; Lobos, G.A.
Assessing wheat traits by spectral reflectance: Do we really need to focus on predicted trait-values or directly
identify the elite genotypes group? Front. Plant Sci. 2017, 8, 280. [CrossRef]

21. Leardi, R.; Seasholtz, M.B.; Pell, R.J. Variable selection for multivariate calibration using a genetic algorithm:
prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data.
Anal. Chim. Acta-Comp. 2002, 461, 189–200. [CrossRef]

22. Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with
agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [CrossRef]

23. Nguyen, H.T.; Lee, B.W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy
reflectance and partial least square regression. Eur. J. Agron. 2006, 24, 349–356. [CrossRef]

24. Hurvich, C.M.; Tsai, C.L. Regression and time series model selection in small samples. Biometrika 1989, 76,
297–307. [CrossRef]

25. Hawkins, D. The problem of overfitting. J. Chem. Inf. Comput. Sci. 1990, 44, 1–12. [CrossRef] [PubMed]
26. Norgaard, L.; Saudland, J.; Wagner, J.; Nielsen, J.P.; Munck, L.; Engelsen, S.B. Interval partial least-squares

regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy.
Appl. Spectrosc. 2000, 54, 413–419. [CrossRef]

27. Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab.
2001, 58, 109–130. [CrossRef]

28. Balabin, R.M.; Safieva, R.Z.; Lomakina, E.I. Comparison of linear and nonlinear calibration models based on
near infrared (NIR) spectroscopy data for gasoline properties prediction. Chemometr. Intell. Lab. 2007, 88,
183–188. [CrossRef]

29. Næs, T.; Mevik, B.H. Understanding the collinearity problem in regression and discriminant analysis.
J. Chemom. 2001, 15, 413–426. [CrossRef]

30. Wu, D.; Chen, J.; Lu, B.; Xiong, L.; He, Y.; Zhang, Y. Application of near infrared spectroscopy for the rapid
determination of antioxidant activity of bamboo leaf extract. Food Chem. 2012, 135, 2147–2156. [CrossRef]
[PubMed]

31. Jouan-Rimbaud, D.; Massart, D.L.; Leardi, R.; De Noord, O.E. Genetic algorithms as a tool for wavelength
selection in multivariate calibration. Anal. Chem. 1995, 67, 4295–4301. [CrossRef]

32. Leardi, R. Application of genetic algorithm-PLS for feature selection in spectral data sets. J. Chemom. 2000,
14, 643–655. [CrossRef]

33. Leardi, R.; Norgaard, L. Sequential application of backward interval partial least squares and genetic
algorithms for the selection of relevant spectral regions. J. Chemom. 2004, 18, 486–497. [CrossRef]

34. Li, L.; Ustin, S.L.; Riano, D. Retrieval of fresh leaf fuel moisture content using genetic algorithm partial least
squares (GA-PLS) modeling. IEEE Geosci. Remote Sens. Lett. 2007, 4, 216–220. [CrossRef]

35. Arakawa, M.; Yamashita, Y.; Funatsu, K. Genetic algorithm-based wavelength selection method for spectral
calibration. J. Chemometr. 2011, 25, 10–19. [CrossRef]

36. Sratthaphut, L.; Ruangwises, N. Genetic algorithms-based approach for wavelength selection in
spectrophotometric determination of vitamin B12 in pharmaceutical tablets by partial least-squares.
Procedia Eng. 2012, 32, 225–231. [CrossRef]

http://dx.doi.org/10.1093/jxb/erx421
http://www.ncbi.nlm.nih.gov/pubmed/29309611
http://dx.doi.org/10.17660/ActaHortic.2014.1057.38
http://dx.doi.org/10.1111/jipb.12114
http://www.ncbi.nlm.nih.gov/pubmed/24118723
http://dx.doi.org/10.17660/ActaHortic.2014.1057.43
http://dx.doi.org/10.3389/fpls.2016.01996
http://www.ncbi.nlm.nih.gov/pubmed/28119705
http://dx.doi.org/10.3389/fpls.2017.00280
http://dx.doi.org/10.1016/S0003-2670(02)00272-6
http://dx.doi.org/10.1016/S0034-4257(99)00067-X
http://dx.doi.org/10.1016/j.eja.2006.01.001
http://dx.doi.org/10.1093/biomet/76.2.297
http://dx.doi.org/10.1021/ci0342472
http://www.ncbi.nlm.nih.gov/pubmed/14741005
http://dx.doi.org/10.1366/0003702001949500
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/j.chemolab.2007.04.006
http://dx.doi.org/10.1002/cem.676
http://dx.doi.org/10.1016/j.foodchem.2012.07.011
http://www.ncbi.nlm.nih.gov/pubmed/22980783
http://dx.doi.org/10.1021/ac00119a015
http://dx.doi.org/10.1002/1099-128X(200009/12)14:5/6&lt;643::AID-CEM621&gt;3.0.CO;2-E
http://dx.doi.org/10.1002/cem.893
http://dx.doi.org/10.1109/LGRS.2006.888847
http://dx.doi.org/10.1002/cem.1339
http://dx.doi.org/10.1016/j.proeng.2012.01.1261


Remote Sens. 2019, 11, 329 17 of 19

37. Givianrad, M.H.; Saber-Tehrani, M.; Zarin, S. Genetic algorithm-based wavelength selection in
multicomponent spectrophotometric determinations by partial least square regression: Application to
a sulfamethoxazole and trimethoprim mixture in bovine milk. J. Serb. Chem. Soc. 2013, 78, 555–564. [CrossRef]

38. Goldberg, D.E.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99.
[CrossRef]

39. Goicoechea, H.C.; Olivieri, A.C. Wavelength selection for multivariate calibration using a genetic algorithm:
A novel initialization strategy. J. Chem. Inf. Comp. Sci. 2002, 42, 1146–1153. [CrossRef]

40. Li, Z.; Wang, J.; Xiong, Y.; Li, Z.; Feng, S. The determination of the fatty acid content of sea buckthorn seed oil
using near infrared spectroscopy and variable selection methods for multivariate calibration. Vib. Spectrosc.
2016, 84, 24–29. [CrossRef]

41. Zhang, J.; Liu, J.; Yang, C.; Du, S.; Yang, W. Photosynthetic performance of soybean plants to water deficit
under high and low light intensity. S. Afr. J. Bot. 2016, 105, 279–287. [CrossRef]

42. Fang, M.; Li, H.; Liu, Z.; Xian, X. Online evaluation of yellow peach quality by visible and near-infrared
spectroscopy. Adv. J. Food Sci. Technol. 2013, 5, 606–612. [CrossRef]

43. Bryla, D.R.; Strik, B.C. Effects of cultivar and plant spacing on the seasonal water requirements of highbush
blueberry. J. Am. Soc. Hortic. Sci. 2007, 132, 270–277. [CrossRef]

44. Lobos, G.A.; Retamales, J.B.; Hancock, J.F.; Flore, J.A.; Cobo, N.G.; del Pozo, A. Spectral irradiance, gas
exchange characteristics and leaf traits of Vaccinium corymbosum L. ‘Elliott’ grown under photo-selective nets.
Environ. Exp. Bot. 2012, 75, 142–149. [CrossRef]

45. Moran, R.; Porath, D. Chlorophyll determination in intact tissues using N,N-dimethylformamide.
Plant Physiol. 1980, 65, 478–479. [CrossRef] [PubMed]

46. Inskeep, W.P.; Bloom, P.R. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80%
acetone. Plant Physiol. 1985, 77, 483–485. [CrossRef] [PubMed]

47. Estrada, F.; Escobar, A.; Romero-Bravo, S.; González-Talice, J.; Poblete-Echeverría, C.; Caligari, P.D.;
Lobos, G.A. Fluorescence phenotyping in blueberry breeding for genotype selection under drought
conditions, with or without heat stress. Sci. Hortic. 2015, 181, 147–161. [CrossRef]

48. Atzberger, C.; Guérif, M.; Baret, F.; Werner, W. Comparative analysis of three chemometric techniques for the
spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electron. Agric. 2010,
73, 165–173. [CrossRef]

49. Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI assessment of wheat and
potato crops by VENUS and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [CrossRef]

50. Gredilla, A.; de Vallejuelo, S.F.O.; Elejoste, N.; de Diego, A.; Madariaga, J.M. Non-destructive spectroscopy
combined with chemometrics as a tool for green chemical analysis of environmental samples: A review.
Trends Anal. Chem. 2016, 76, 30–39. [CrossRef]

51. Reynolds, M.; Langridge, P. Physiological breeding. Curr. Opin. Plant. Biol. 2016, 31, 162–171. [CrossRef]
52. Gitelson, A.A.; Merzlyak, M.N. Non-destructive assessment of chlorophyll carotenoid and anthocyanin

content in higher plant leaves: principles and algorithms. Pap. Nat. Resour. 2004, 263, 78–94.
53. Vergara-Díaz, O.; Zaman-Allah, M.A.; Masuka, B.; Hornero, A.; Zarco-Tejada, P.; Prasanna, B.M.; Araus, J.L.

A novel remote sensing approach for prediction of maize yield under different conditions of nitrogen
fertilization. Front. Plant Sci. 2016, 7. [CrossRef] [PubMed]

54. Tumbo, S.D.; Wagner, D.G.; Heinemann, P.H. Hyperspectral based neural network for predicting chlorophyll
status in corn. Trans. ASABE 2002, 45, 825–832. [CrossRef]

55. Doughty, C.E.; Asner, G.P.; Martin, R.E. Predicting tropical plant physiology from leaf and canopy
spectroscopy. Oecologia 2011, 165, 289–299. [CrossRef]

56. Nyongesah, M.J.; Wang, Q.; Li, P. Effectiveness of photochemical reflectance index to trace vertical and
seasonal chlorophyll a/b ratio in Haloxylon ammodendron. Acta Physiol. Plant. 2015, 37, 1–11. [CrossRef]

57. Camejo, D.; Rodríguez, P.; Morales, M.A.; Dell’Amico, J.M.; Torrecillas, A.; Alarcón, J.J. High temperature
effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant. Physiol.
2005, 162, 281–289. [CrossRef] [PubMed]

58. Bacelar, E.A.; Santos, D.L.; Moutinho-Pereira, J.M.; Lopes, J.I.; Gonçalves, B.C.; Ferreira, T.C.; Correia, C.M.
Physiological behaviour, oxidative damage and antioxidative protection of olive trees grown under different
irrigation regimes. Plant Soil 2007, 292, 1–12. [CrossRef]

http://dx.doi.org/10.2298/JSC120303080G
http://dx.doi.org/10.1023/A:1022602019183
http://dx.doi.org/10.1021/ci0255228
http://dx.doi.org/10.1016/j.vibspec.2016.02.008
http://dx.doi.org/10.1016/j.sajb.2016.04.011
http://dx.doi.org/10.19026/ajfst.5.3135
http://dx.doi.org/10.21273/JASHS.132.2.270
http://dx.doi.org/10.1016/j.envexpbot.2011.09.006
http://dx.doi.org/10.1104/pp.65.3.478
http://www.ncbi.nlm.nih.gov/pubmed/16661217
http://dx.doi.org/10.1104/pp.77.2.483
http://www.ncbi.nlm.nih.gov/pubmed/16664080
http://dx.doi.org/10.1016/j.scienta.2014.11.004
http://dx.doi.org/10.1016/j.compag.2010.05.006
http://dx.doi.org/10.1016/j.rse.2011.04.018
http://dx.doi.org/10.1016/j.trac.2015.11.011
http://dx.doi.org/10.1016/j.pbi.2016.04.005
http://dx.doi.org/10.3389/fpls.2016.00666
http://www.ncbi.nlm.nih.gov/pubmed/27242867
http://dx.doi.org/10.13031/2013.8857
http://dx.doi.org/10.1007/s00442-010-1800-4
http://dx.doi.org/10.1007/s11738-014-1747-x
http://dx.doi.org/10.1016/j.jplph.2004.07.014
http://www.ncbi.nlm.nih.gov/pubmed/15832680
http://dx.doi.org/10.1007/s11104-006-9088-1


Remote Sens. 2019, 11, 329 18 of 19

59. Smirnoff, N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol.
1993, 125, 27–58. [CrossRef]

60. Fang, Z.; Bouwkamp, J.C.; Solomos, T. Chlorophyllase activities and chlorophyll degradation during leaf
senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. J. Exp. Bot. 1998, 49, 503–510.
[CrossRef]

61. Evans, J.R. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. I Canopy
characteristics. Aust. J. Plant. Physiol. 1993, 20, 55–67. [CrossRef]

62. Gutiérrez, S.; Tardaguila, J.; Fernández-Novales, J.; Diago, M.P. Data mining and NIR spectroscopy in
viticulture: Applications for plant phenotyping under field conditions. Sensors 2016, 16, 236. [CrossRef]

63. Santos, A.O.; Kaye, O. Grapevine leaf water potential based upon near infrared spectroscopy. Sci. Agric.
2009, 66, 287–292. [CrossRef]

64. De Bei, R.; Cozzolino, D.; Sullivan, W.; Cynkar, W.; Fuentes, S.; Dambergs, R.; Tyerman, S. Non-destructive
measurement of grapevine water potential using near infrared spectroscopy. Aust. J. Grape Wine R. 2011, 17,
62–71. [CrossRef]

65. Vila, H.; Hugalde, I.; Di Filippo, M. Estimación de potencial hídrico en vid por medio de medidas
termográficas y espectrales. Rev. Inv. Agropec. 2011, 37, 46–52.

66. Valenzuela-Estrada, L.R.; Vera-Caraballo, V.; Ruth, L.E.; Eissenstat, D.M. Root anatomy, morphology, and
longevity among root orders in Vaccinium corymbosum (Ericaceae). Am. J. Bot. 2008, 95, 1506–1514. [CrossRef]

67. Valenzuela-Estrada, L.R.; Richards, J.H.; Diaz, A.; Eissensat, D.M. Patterns of nocturnal rehydration in
root tissues of Vaccinium corymbosum L. under severe drought conditions. J. Exp. Bot. 2009, 60, 1241–1247.
[CrossRef] [PubMed]

68. Marino, G.; Pallozzi, E.; Cocozza, C.; Tognetti, R.; Giovannelli, A.; Cantini, C.; Centritto, M. Assessing gas
exchange, sap flow and water relations using tree canopy spectral reflectance indices in irrigated and rainfed
Olea europaea L. Environ. Exp. Bot. 2014, 99, 43–52. [CrossRef]

69. Tsonev, T.; Wahbi, S.; Sun, P.; Sorrentino, G.; Centritto, M. Gas exchange, water relations and their
relationships with photochemical reflectance index in Quercus ilex plants during water stress and recovery.
Int. J. Agric. Biol. 2014, 16, 335–341.

70. Fréchette, E.; Wong, C.Y.; Junker, L.V.; Chang, C.Y.Y.; Ensminger, I. Zeaxanthin-independent energy
quenching and alternative electron sinks cause a decoupling of the relationship between the photochemical
reflectance index (PRI) and photosynthesis in an evergreen conifer during spring. J. Exp. Bot. 2015, 66,
7309–7323. [CrossRef]

71. Fréchette, E.; Chang, C.Y.Y.; Ensminger, I. Photoperiod and temperature constraints on the relationship
between the photochemical reflectance index and the light use efficiency of photosynthesis in Pinus strobus.
Tree Physiol. 2016, 36, 311–324. [CrossRef]

72. Poblete-Echeverría, C.; Sepulveda-Reyes, D.; Ortega-Farias, S.; Zuñiga, M.; Fuentes, S. Plant water stress
detection based on aerial and terrestrial infrared thermography: A study case from vineyard and olive
orchard. Acta Hortic. 2016, 1112, 141–146. [CrossRef]

73. Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L. Chlorophyll fluorescence effects on vegetation
apparent reflectance: I. Leaf-level measurements and model simulation. Remote Sens. Environ. 2000, 74,
582–595. [CrossRef]

74. Zarco-Tejada, P.; Miller, J.; Mohammed, G.; Noland, T.; Sampson, P. Estimation of chlorophyll fluorescence
under natural illumination from hyperspectral data. Int. J. Appl. Earth Obs. 2001, 3, 321–327. [CrossRef]

75. Zarco-Tejada, P.; Pushnik, J.C.; Dobrowski, S.; Ustin, S.L. Steady-state chlorophyll a fluorescence detection
from canopy derivative reflectance and double-peak red-edge effects. Remote Sens. Environ. 2003, 84, 283–294.
[CrossRef]

76. Meroni, M.; Rossini, M.; Picchi, V.; Panigada, C.; Cogliati, S.; Nali, C.; Colombo, R. Assessing steady-state
fluorescence and PRI from hyperspectral proximal sensing as early indicators of plant stress: The case of
ozone exposure. Sensors 2008, 8, 1740–1754. [CrossRef] [PubMed]

77. Zhang, H.; Zhua, L.; Hu, H.; Zhen, K.; Jina, Q. Monitoring leaf chlorophyll fluorescence with spectral
reflectance in rice (Oryza sativa L.). Procedia Eng. 2011, 15, 4403–4408. [CrossRef]

78. Ralph, P.J.; Gademann, R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot.
2005, 82, 222–237. [CrossRef]

http://dx.doi.org/10.1111/j.1469-8137.1993.tb03863.x
http://dx.doi.org/10.1093/jxb/49.320.503
http://dx.doi.org/10.1071/PP9930055
http://dx.doi.org/10.3390/s16020236
http://dx.doi.org/10.1590/S0103-90162009000300001
http://dx.doi.org/10.1111/j.1755-0238.2010.00117.x
http://dx.doi.org/10.3732/ajb.0800092
http://dx.doi.org/10.1093/jxb/ern367
http://www.ncbi.nlm.nih.gov/pubmed/19188275
http://dx.doi.org/10.1016/j.envexpbot.2013.10.008
http://dx.doi.org/10.1093/jxb/erv427
http://dx.doi.org/10.1093/treephys/tpv143
http://dx.doi.org/10.17660/ActaHortic.2016.1112.20
http://dx.doi.org/10.1016/S0034-4257(00)00148-6
http://dx.doi.org/10.1016/S0303-2434(01)85039-X
http://dx.doi.org/10.1016/S0034-4257(02)00113-X
http://dx.doi.org/10.3390/s8031740
http://www.ncbi.nlm.nih.gov/pubmed/27879790
http://dx.doi.org/10.1016/j.proeng.2011.08.827
http://dx.doi.org/10.1016/j.aquabot.2005.02.006


Remote Sens. 2019, 11, 329 19 of 19

79. Klughammer, C.; Schreiber, U. Complementary PS II quantum yields calculated from simple fluorescence
parameters measured by PAM fluorometry and the saturation pulse method. PAM Appl. Notes 2008, 1, 27–35.

80. Deeba, F.; Pandey, A.K.; Ranjan, S.; Mishra, A.; Singh, R.; Sharma, Y.K.; Pandey, V. Physiological and
proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol. Biochem. 2012, 53,
6–18. [CrossRef]

81. Lideman, L.; Nishihara, G.N.; Noro, T.; Terada, R. Effect of temperature and light on the photosynthesis as
measured by chlorophyll fluorescence of cultured Eucheuma denticulatum and Kappaphycus sp. (Sumba strain)
from Indonesia. J. Appl. Phycol. 2013, 25, 399–406. [CrossRef]

82. Percival, D.C.; Sharpe, S.; Maqbool, R.; Zaman, Q. Narrow band reflectance measurements can be
used to estimate leaf area index, flower number, fruit set and berry yield of the wild blueberry
(Vaccinium angustifolium Ait.). Acta Hortic. 2012, 926, 363–369. [CrossRef]

83. Glass, V.M.; Percival, D.C.; Proctor, J.T.A. Tolerance of lowbush blueberries (Vaccinium angustifolium Ait.) to
drought stress. I. Soil water and yield component analysis. Can. J. Plant Sci. 2005, 85, 911–917. [CrossRef]

84. Rho, H.; Yu, D.J.; Kim, S.J.; Lee, H.J. Limitation factors for photosynthesis in ‘Bluecrop’ highbush blueberry
(Vaccinium corymbosum) leaves in response to moderate water stress. J. Plant Biol. 2012, 55, 450–457. [CrossRef]

85. Hancock, J.F.; Lyrene, P.; Finn, C.E.; Vorsa, N.; Lobos, G.A. Blueberry and cranberry. In Temperate
Fruit Crop Breeding: Germplasm to Genomics; Hancock, J.F., Ed.; Kluwer Academic Publishers: Dordrecht,
The Netherlands, 2008; pp. 115–149.

86. Yendrek, C.R.; Tomaz, T.; Montes, C.M.; Cao, Y.; Morse, A.M.; Brown, P.J.; McIntyre, L.M.; Leakey, A.D.B.;
Ainsworth, E.A. High-throughput phenotyping of maize leaf physiological and biochemical traits using
hyperspectral reflectance. Plant Physiol. 2017, 173, 614. [CrossRef] [PubMed]

87. Voogt, W.; van Dijk, P.; Douven, F.; van der Maas, R. Development of a soilless growing system for blueberries
(Vaccinium corymbosum): Nutrient demand and nutrient solution. Acta Hortic. 2014, 1017, 215–221. [CrossRef]

88. Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B. Suitability of sphagnum moss, coir, and douglas fir bark as
soilless substrates for container production of highbush blueberry. HortScience 2017, 52, 1692–1699. [CrossRef]

89. Lobos, G.A.; Camargo, A.; del Pozo, A.; Araus, J.L.; Ortiz, R.; Doonan, J.H. Editorial: Plant phenotyping and
phenomics for plant breeding. Front. Plant Sci. 2017, 8, 2181. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.plaphy.2012.01.002
http://dx.doi.org/10.1007/s10811-012-9874-5
http://dx.doi.org/10.17660/ActaHortic.2012.926.51
http://dx.doi.org/10.4141/P03-027
http://dx.doi.org/10.1007/s12374-012-0261-1
http://dx.doi.org/10.1104/pp.16.01447
http://www.ncbi.nlm.nih.gov/pubmed/28049858
http://dx.doi.org/10.17660/ActaHortic.2014.1017.27
http://dx.doi.org/10.21273/HORTSCI12374-17
http://dx.doi.org/10.3389/fpls.2017.02181
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Trial and Plant Material 
	Measurements 
	SWP 
	Chl Content 
	Leaf Gas Exchange 
	Modulated Chlorophyll Fluorescence: 
	Spectral reflectance 

	Modeling Analysis 
	Determining the Environmental Effects in the Leaf Spectral Signature 

	Results 
	Stem Water Potential (SWP) 
	Chlorophyll Content (Chl a, Chl b, Chl total, and Chl a/b) 
	Leaf gas Exchange (A, gs, E, and Ci) 
	Modulated Chlorophyll a Fluorescence [Y(II), qN, qP, ETRmax, IK, and Alpha] 
	Determining the Environmental Effects in the Leaf Spectral Signature 

	Discussion 
	Conclusions and Future Perspectives 
	References

