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Abstract: A new morphological attribute building index (MABI) and shadow index (MASI) are
proposed here for automatically extracting building features from very high-resolution (VHR)
remote sensing satellite images. By investigating the associated attributes in morphological attribute
filters (AFs), the proposed method establishes a relationship between AFs and the characteristics of
buildings/shadows in VHR images (e.g., high local contrast, internal homogeneity, shape, and size).
In the pre-processing step of the proposed work, attribute filtering was conducted on the original
VHR spectral reflectance data to obtain the input, which has a high homogeneity, and to suppress
elongated objects (potential non-buildings). Then, the MABI and MASI were calculated by taking
the obtained input as a base image. The dark buildings were considered separately in the MABI to
reduce the omission of the dark roofs. To better detect buildings from the MABI feature image, an
object-oriented analysis and building-shadow concurrence relationships were utilized to further filter
out non-building land covers, such as roads and bare ground, that are confused for buildings. Three
VHR datasets from two satellite sensors, i.e., Worldview-2 and QuickBird, were tested to determine
the detection performance. In view of both the visual inspection and quantitative assessment, the
results of the proposed work are superior to recent automatic building index and supervised binary
classification approach results.

Keywords: building detection; building index; feature extraction; mathematical morphology;
morphological attribute filter; morphological profile

1. Introduction

Buildings are one of the most important types of artificial targets in the urban environment. Due
to the high frequency of changes in buildings, understanding their current distribution is important
for urban planning, change detection, urban environmental investigations, and urban monitoring
applications [1]. The use of a new generation of very high spatial resolution sensors, such as Ikonos,
QuickBird, and Worldview, has broadened the application of remote sensing technology [2]. A great
amount of spatial and thematic information on land cover at local and national scales is contained
in VHR data [3], and this information clearly gives buildings identifiable shape and texture features.
In view of this, VHR images are suitable for building feature extraction tasks. However, the high
intra-class variance and the low inter-class variances in the spectral statistics of VHR images greatly
reduce the distinguishing ability of small land-cover areas in these images [4]. To address this problem,
numerous studies have focused on the extraction of spatial and structural information in images
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and the use of this information as a supplement to improve the recognition ability [5]. Researchers
have indicated that importing spatial features significantly improves the accuracy of VHR image
classification [6-8]. For building feature extraction applications, current works mainly use supervised
machine-learning approaches [9-13]. However, such methods require a large number of training
samples and a high time cost in the sample selection stage. In recent years, some automatic building
detection methods for high-resolution satellite imagery have been proposed. Different strategies,
such as automatic building boundary extraction [14], automatic building feature extraction combined
with an existing geodatabase [15], and the use of LiDAR data [16], have been employed in these
studies. In addition, a number of building feature indexes have been proposed to characterize potential
buildings [17] or exclude confused non-building features, such as vegetation [18], water [19], and
shadows [20].

In recent years, a combination of the morphological building index (MBI) [21] with the
morphological shadow index (MSI) [22] has been proposed to automatically detect buildings in
VHR images. By modeling the local contrast, building-directivity, and granulometry with a series
of multiscale morphological profiles (MPs) [23], the MBI and its variants [24-26] have proven to be
effective tools for building detection tasks. However, MPs do not fully exploit spectral information,
which restricts the extraction performance to some extent.

Concerning the above restriction, morphology attribute profiles (APs) [27] are proposed as an
extension of MPs. As a more flexible way than MPs to model information from high-resolution
images, the transformations in APs can extract features based on either the geometrical or spectral
characteristics of objects. According to the different attributes considered in the morphological attribute
transformation, different features can be obtained from a VHR image. Classification [28], building
feature extraction [29], and change detection task [30] results have suggested that the use of APs is
an effective way to model spatial information from VHR images. However, instead of acting as an
automatic image-processing index, APs often work as ancillary features of the spectral characteristics in
supervised learning. That is, the intrinsic land-cover recognition ability of APs may be underestimated,
prompting researchers to continue to study it.

In this paper, a novel morphological attribute building index (MABI), as well as the morphological
attribute shadow index (MASI), are proposed, and the study contributions can be summarized
as follows:

(1) In the pre-processing step, APs were used to maintain the homogeneity of the original image.
In addition, a new strategy to eliminate bright narrow and long non-building artificial objects, such as
bright paths, road and narrow open ground, is proposed.

(2) A new building feature index based on APs, the MAB], is proposed for automatic building
feature extraction. By the sequential application of attribute filters (AFs), multilevel characterization
of the VHR image was obtained to model the structural information of buildings. Considering the
different reflectance characteristics of buildings in the VHR image, features of bright buildings and
dark buildings were extracted separately in the MABI to reduce the omission rate caused by the
absence of dark roofs.

(3) Furthermore, in the post-processing step, the MASI, which is derived from the MAB]I, is
proposed for the automatic shadow detection task. With the aid of the spatial co-occurrence between
buildings and shadows, some confused flat features, such as regular bare land and open ground, could
be filtered out.

The rest of this article is organized as follows. Section 2 introduces the morphological attribute
building and shadow index. The experimental analysis and comparison results, are presented in
Section 3. The parameter analysis is in Section 4. Section 5 concludes the paper.

2. Morphological Attribute Building Index

The flowchart of the proposed framework is shown in Figure 1. There are three main parts
contained in the proposed framework: pre-processing, building feature extraction, and post-processing.
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Before jumping into the steps in detail, the APs, the basic mathematical foundation, are presented
at first (Section 2.1). The pre-processing step is then presented (Section 2.2). The proposed building
and shadow indexes, MABI and MAS]I, are calculated to obtain the building and shadow features
(Sections 2.3 and 2.4, respectively). To better detect buildings from the obtained feature images, a
post-processing framework is designed (SubSection 2.5). The variable notations used in this article are
defined in Table 1.

Image 4% Pre-processing ‘

________ \ S i ~
MAB Iwigy: scemeniaion || High MABI i
: : Low MABL Dual-
:| Aps by Attribute Id |- threshold
: ! difference e filtering Result
I dar
T
. S
i| Closing profiles by |\ . Post- ‘
. 3 Y ®— Y }—»
¢ Attribute Id P M processing

Figure 1. Flowchart of the proposed framework.

Table 1. Notations used in this paper.

Notation Description
f=A{by,by..., bn} The n bands of image f
Y/v/ @ Opening/thinning/closing operator

The differential attribute profile (DAP) obtained by the opening/closing

7-DAP/¢_DAP profile in the attribute profile (APs)
Y_EAP The stack of thinning profiles in EAP (the extension of the APs)
T={t,tp,...,tm} Ordered set of m criteria/attributes
Yoirr ! O'assy/ DAPY,,, The opening profile/closing profile/ DAP obtained by Attr with ¢
AAstr The filter parameter of attribute Attr

2.1. Attribute Profiles

APs are multi-scale features obtained by conducting the sequential application of AFs. AFs [31]
are morphologically connected filters that act on the image by merging the connected components that
compose the image according to the filter criterion. The connected components represent the regions
that are composed of the spatially connected isointensity pixels in the image. According to the filter
criterion of AFs, the transformation evaluates the value measured for each connected component in the
image of an arbitrary attribute against a given filter parameter. For example, the filter criterion: means
that, given the attribute Attr, the attribute value calculated on the connected component C is compared
against the given reference value. The merging rule of AF is as follows: The regions that fulfill the given
criterion remain unaltered, while the regions that do not fulfill the criterion are merged with darker
or brighter (according to the grayscale value) adjacent regions corresponding to the extensive (i.e.,
thickening) or anti-extensive (i.e., thinning) transformation, respectively. These two transformations
can be further subdivided into increasing (for the increasing criteria, one connected component satisfies
the criterion and the subset components also meet this condition) and non-increasing categories
according to the attribute selected in the filtering criterion. The non-increasing operation is not
uniquely defined when dealing with grayscale images because it obtains different results according to
the selected filter criterion [32]. For the non-increasing criterion, the basic operators are thinning and
thickening, while the operators for the increasing criterion correspond to opening and closing. As two
basic AF operators, multiscale thinning (or opening) and thickening (or closing) transformations can
detect dark and bright objects, respectively.
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For the grayscale image b, the APs obtained according to a sequence of ordered criteria with m
attributes are defined as

APs(b) = {@m(b), pm-1(b), ..., @1(b),b,v1(b), ..., Ym-1(b), Ym(b)} 1)

where ¢, and 7, are the m attribute closing and attribute opening operators according to criterion T,
respectively. The EAPs are the extension of the APs in multi-band images. The EAPs obtained from
the multi-band image f can be defined as

EAPs(f) = {AP(by), AP(by) ..., AP(b,)} ?)

where b, is the nth band of image f.

Progressive filtering residuals at multiple scales can be used for describing the structural
composition of image contents [33]. Each obtained profile is associated with a specific scale. By
computing the derivative of the profiles, a differential attribute profile (DAP) generated by an ordered
set of criteria T = {t1,fp,...,tm} is

_ . Ai =D, i1, Vi€ [1,m]
DAP(f) = {Al : < A = A%_m,vl' c [erl,ZWl] ®

where A, and A, are the differential closing and opening profiles, respectively. To better understanding
the multiscale DAP, we took the attribute named the diagonal of the minimum enclosing rectangle
(Id), a measure of the object size, as an instance to describe the multiscale approach, where five scales
with size T = {10,30,50,70,90}. Given a grayscale image, as shown in Figure 2j, opening profiles on Id
at each elements are presented in Figure 2a—e in sequence. Furthermore, the different operation of
APs between adjacent scales was computed to capture the components in the range of specific scales.
Differences between each profile are shown in Figure 2f-i.

Figure 2. The attribute profiles (APs) and differential attribute profiles (DAPs) obtained by attribute Id
on threshold 10,30,50,70, and 90. The example grayscale image is in Figure 4j. (a—e) are the opening
profiles obtained on threshold 10,30,50,70, and 90, respectively. (f-i) are the DAPs obtained between
adjacent scales.

To enhance the efficiency of attribute filtering, an effective data structure named max-tree [34]
is used in building APs. The image filtering processing comprises three procedures: First, the image
is represented by a hierarchical tree. For the grayscale image, the depth of the tree represents the
number of gray levels of the image after threshold decomposition. The number of nodes is associated
with the number of connected components of the binary image on the current graylevel. The tree is
then pruned by evaluating the reference value A at each node. The filtering process is performed by
removing the nodes that do not satisfy the filtering criterion. Finally, the pruned tree is converted back
into an image. The max-tree is particularly applicable for the computation of multiple filtering, e.g.,
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profiles and granulometries, because the structure completes filtering with different criteria by creating
the tree only once. The attribute values are calculated for all regions in the image before the image
filtering step, and the filters then prune the tree according to the defined criterion.

In this paper, every EAP feature is calculated using Profattran software, which was kindly
provided by the authors of the article [35].

2.2. Pre-Processing

Pre-processing consists of two steps: image denoising and elongated non-building object detection.
The entire pre-processing flow chart is shown in Figure 3.

Figure 3. Pre-processing flowchart.

2.2.1. Image Denoising

The diverse materials of building roofs in a VHR image show different reflectivities, while the
interior of building rooftops usually presents as a region with high spectral homogeneity. In view of
this, the high contrast between the interior homogeneous section and its surroundings is often utilized
as a basic principle of morphological operator-based building feature extraction strategies. However,
variations in the bright image of VHR, which is calculated as the maximum value of each spectral
band and acts as the basic unit for MBI-like processing, may lead to the incomplete extraction of
building features. To maintain homogeneity and remove the small amount of dark noise inside bright
homogeneous regions, an image denoising process based on AFs is applied to the original spectral
reflectance image. This step corresponds to Box (D in Figure 3.

The standard deviation of the pixels belonging to each region (denoted by sd) is chosen as
the filtering attribute in the image denoising task. This attribute is used to measure the spectral
homogeneity of the intensity values of the pixels in the region. Equation (1) shows that APs are
generated by a sequence of closing and opening profiles. For the APs built on a region (a set of pixels
treated as a basic unit of the filters), all pixels in the region are located in either the closing or opening
profiles. In fact, dark regions are obtained in the closing profiles and bright regions are obtained
in the opening profiles. To keep the bright homogeneous regions and remove the small amount of
dark noise, the opening operator is employed. Since sd is a non-increasing attribute, the opening
operator corresponding to sd is attribute thinning. The stack of thinning profiles built on sd by the
criterion T(C) = sd(C) > A4y from the multispectral image f is obtained according to Equation (2). The
maximum value of corresponding pixels in each obtained thinning profiles is then calculated, denoted
by v_EAP,;. After image denoising, bright regions with high homogeneity in the original image
remain in the maximum result, and the small dark structures are filtered out. It should be noted that
AFs only process the image by suppressing the regions that do not meet the criterion without edge blur.
With the virtue of maintaining edges for following building geometrical characteristic descriptions, AF
is an effective tool, as a pre-processing step following building detection. By calculating the maximum
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values of each profile, the obtained regions with high reflectivity and homogeneity correspond to
potential buildings.

2.2.2. Elongated Non-Building Object Detection

Buildings in dense urban areas are often easily confused with adjacent non-building landcovers,
such as open parking lots, bare soil, roads, and small paths. This confusion is mostly attributed to
the similar spectral characteristics of these land covers to buildings in the VHR image. Since these
non-building land-covers may result in false alarms in the building feature extraction results, it is
necessary to identify them independently. By analyzing the shape characteristics of roads and open
areas surrounding buildings, it was found that these features generally present as elongated and
curve-shaped regions. In this study, these objects are named elongated non-building objects. The
elongated non-building object detection strategy is shown in Box (2) of Figure 3 and is divided into
two steps: a) elongated feature extraction and b) elongated feature segmentation.

(a) Elongated Feature Extraction

Despite the varying shape of buildings, the compactness of buildings is generally higher than
that of roads and paths. Therefore, the attribute that measures the compactness of objects is considered
able to separate building and non-building objects. In this part of the paper, a geometric attribute, i.e.,
the first moment invariant of Hu [36], denoted by Hu, is considered the filter attribute in the attribute
filters. This attribute describes the ductility of a region relative to its centroid, which indicates the
degree of non-compactness of an object, and the indexes in Hu are invariant to translation, rotation,
and scaling [37]. The value of Hu is small for the compact region and gradually increases for the
elongated regions. Since Hu is a non-increasing attribute, the thinning profiles filtered by Hu are used
to detect bright and elongated non-building objects.

The elongated feature is calculated by the following steps: First, the stack of the thinning profiles
is obtained by conducting a thinning operation on each profile in y_EAP,4, which is obtained in the
previous image denoising step, with attribute Hu according to criterion Ayy,. To detect structures with
a high reflectance, the maximum of the profiles obtained in the first step is then calculated and acts as
the input in the next segmentation step.

(b) Elongated Feature Segmentation

Since buildings also show elongated shape characteristics to some extent, object-oriented analysis
is carried out to prevent potential buildings from being missed. Meanshift [38] segmentation is
employed to obtain the image objects. To better identify buildings from the other landcovers, an
over-segmentation strategy is preferred here. Because the main difference between building and
non-building objects in the elongated feature image lies in the different degree of the object that
approximates to the rectangle, the rectangular fit (RcFit), which is calculated by the ratio of the area of
the object to the area of the smallest circumscribed rectangle of the object, is employed to filter out
potential building objects. Objects with a high RcFit value are more likely than objects with a low RcFit
value to be buildings. Giving the threshold Ag.rj;, the objects satisfying RcFit(obj) < Agr are reserved
to compose the resulting map.

Finally, by removing the obtained objects in Box () from the result in Box O (shown as Step 3
in Figure 3), a new basic image, denoted as I, is obtained. I acts as the input image in the following
building feature extraction steps.

2.3. Morphological Attribute Building Index

Since buildings in high-resolution images are variable in size and orientation, a multiscale strategy
is performed in the building detection task. Considering the regular shape of buildings, the length
of the diagonal of the minimum enclosing rectangle, referred to as Id, is used to measure the scale
characteristic of the objects. Both the attribute area and Id in attribute filtering can be used to measure
the scale of objects. The Id rather than the area is chosen because attribute opening using Id retains more
grain boundary segments than that using area [31]. In addition, the rectangular shape of buildings
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makes Id more suitable than area to measure the scale characteristics in the building detection task. The
DAP can be built with an increasing criterion of attribute Id to obtain scale information.

In a VHR image, building roofs can be divided into two parts according to the difference in
their spectral contrast with surrounding regions: local bright buildings and local dark buildings. To
reduce the omission rate caused by dark roofs, these two types of buildings are detected separately
in the MABI. The bright and dark building features in the MABI are recorded as MABIyign; and
MABI 4.k, respectively.

The procedures for calculating MABIpigp,; from I are as follows. Since Id is an increasing
attribute, the opening profiles obtained from I by attribute Id according to criterion ¢ is denoted
by 7},. Considering the complex spatial patterns of the building, granulometry is conducted by
building the DAP of the opening profiles obtained by attribute Id with an ordered set of criteria
T = {tmn,. ., t..., 1M}, and the MABlygh is calculated as

Y_DAPy = {y_DAPS",...,7_DAP,,...,y_DAPS™}
MABIyighe = max(y_DAPy), where v_DAP!, = )%;Af _ %td‘ 4)
gmin < ¢ < pmax

where At is the interval of threshold T, and max represents the max value of the corresponding pixels
in all profiles. Through the above steps, the spectral characteristics (homogeneity and contrast) and
spatial characteristics (size and shape) are addressed.
The procedures presented above are straightforwardly extended to MABI4,,x by replacing the
opening profiles with closing ¢ in Equation (4), and the MABI 4,y is calculated as
9_DAP, = {g_DAPS",...,9_DAP,, ..., g_DAP;™}
MABI g, = max(¢_DAPy), where ¢_DAP!, = ‘(P;&-At - qud’ (5)
tmin < t < pmax

Since shadows also present as relatively dark regions in VHR images, some shadows may be
contained in MABI4,,k. To remove potential shadows, the spectral value of the pixels in the original
image is considered. Because of the low reflectivity of the shadow in each visible band of the original
image, the bright image is calculated by the max value of the pixels in all visible bands. The pixels
in MABl g,k that satisfy bright > Ay, are saved as MABl g, With regard to the characteristics of
buildings as homogeneous and continuous areas, pixels with high MABI values are more likely than
those with low MABI values to be buildings.

2.4. Morphological Attribute Shadow Index

The spectral and geometrical characteristics of shadows are opposite and similar, respectively,
to the corresponding characteristics of adjacent buildings. A shadow presents as a homogeneous
dark area with geometrical characteristics similar to those of the adjacent building. Considering the
high homogeneity, low spectral reflectance, and shape characteristics of shadows, the procedures for
building the MASI are similar to those for building the MABI 4, to obtain the dark structures in I.
Furthermore, considering the different scale characteristics between buildings and shadows in the
satellite image, the threshold value of Id in shadow detection is smaller than that in dark building
feature extraction.

Due to the low spectral reflectance of shadows, the MASI is calculated by transforming the max
operator in Equation (5) into the average value of the DAP feature:

MASI = mean(¢_DAP) (6)

The pixels with large values are more likely than those with small values to be shadows in the
MASIL. Finally, the pixels that satisfy the conditions bright < Apign,, NDVI < Anpyr, and MASI >
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Trmasy are treated as shadows, where Anpy, Tpasr indicate the threshold of the vegetation index
(NDVI) and the MAS]I, respectively. The threshold of brightness is used to remove structures that have
a high reflectance but are darker than the surrounding structures.

2.5. Building Extraction Framework of the Proposed Method

Extracting buildings by the dual threshold segmentation of the MABI may cause high commission
errors (CEs) and omission errors (OEs). The CEs mainly come from the land covers that have similar
characteristics with buildings, such as bare soil and roads, while the OEs are often related to dark
roofs. To address these problems, a building feature extraction framework is conducted via the
following steps.

First, the MABIy,ig: image is divided into two parts: Given a threshold Tviapi, the high-MABI
and low-MABI regions are separated. Pixels that satisfy the Ty1ap; in each part are assigned a value of
one, and other pixels are assigned a value of zero. Object-oriented analysis can be performed on the
obtained binary image. The objects belonging to the high-MABI region are analyzed with a relatively
low shape threshold to prevent the bright irregular buildings from being missed, while objects in the
low-MABI and MABI,, regions are analyzed by more strict geometric constraints. The RcFit and
shape index (SI) values are utilized to measure the shape characteristics of objects. The SI is calculated
by the boundary length of an object divided by four times the square root of its area. SI measures the
smoothness of the object boundary, and more fragmented objects tend to have a high SI value.

According to [22], the distance between shadows and buildings is considered to suppress
non-building objects. Different distance thresholds are set to objects in the high-MABI and
low-MABIcategories, respectively. The thresholds on MABIy,« are the same as the low-MABI
thresholds. To present the entire processing flow more intuitively, a small region acting as an instance
is shown in Figure 4.
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Figure 4. Example showing the steps of the proposed strategy: (a) example image; (b) the image

obtained after image denoising; (c) the input image I; (d,e) the building maps obtained from MABI,jgp
and MABI 4, respectively; (f) MASI feature image; (g) overlay image of the obtained buildings and
shadows, with high-MABI in yellow, low-MABI and MABI 4, in blue, and shadows in red; (h) the
final results of the proposed method.

Bright bare soil, roads, and small paths are easily confused with buildings. Figure 4b,c are images
resulting from the two steps in the pre-processing step, respectively. (b) is the image obtained after
image denoising, and (c) is the input image I. The two images show that, although the bright roads at
the top of the image have spectral properties similar to those of the surrounding buildings, these roads
and buildings are separated by their different shape characteristics in the elongated object detection
step. After removing non-building objects, the false alarms in the input image I are reduced; for
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example, the bright open ground and small paths in the top left corner of (b) are removed in (c). The
building maps obtained from MABIjgn and MABI, are presented in (d) and (e), and the MASI
feature image is displayed in (f). The parameter setting in this dataset is the same as the datasets in the
experiment section. A detailed analysis is provided in the following parameter analysis section. (g) is
the overlapping image of the buildings and shadows obtained by the proposed method. Buildings
in the high-MABI part are colored in yellow, and the low-MABI and MABI,, parts are colored in
blue; shadows are colored in red. The building feature extraction result obtained by measuring the
distance between the shadows and buildings is shown in (h). (h) shows that the buildings are retained
and backgrounds are removed in comparison with (g).

3. Building Feature Extraction Experiments
3.1. Datasets and Experimental Strategy

3.1.1. Dataset Description

The proposed building feature extraction framework was applied to three high-resolution remote
sensing images, which are radiometrically and geometrically calibrated in this section. These VHR
images and the corresponding reference images are displayed in Figure 5. The ground truth images
were manually delineated by field investigation and visual interpretation. Some representative
subgraphs, which are marked with red (Images I1, I3, and I5) and blue (Images 12, I4, and 16) rectangular
boxes in Figure 5, were chosen for detailed comparison and analysis. The basic information of the
three datasets is listed in Table 2.

2710 114° by ¥ 114°27'10"E

14
200 1000m

30°30'10"N

114°22'40"E 114°23'10"E
500 1000m
_— (b)

ol !
114°24'407E 114°25'10"E |4

T30 E 1192400 EL 20 119°2400°E,

Figure 5. Three test datasets and the corresponding ground truth maps: (a) Dataset 1 and Subgraphs I1
(in the red box) and I2 (in blue box); (b) Dataset 2 and Subgraphs I3(in the red box) and I4 (in the blue
box); (¢) Dataset 3 and Subgraphs I5 (in the red box) and 16 (in the blue box).
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Table 2. Details of the test datasets.

Dataset Sensor Resolution Size Major Land Cover Types
Building: 428,674 pixels. Background
Dataset 1 WorldView-2 2.0 2000 x 2000 (vegetation, road, baresoil, path):

3,571,326 pixels.
Building: 290,403pixels. Background
Dataset 2 QuickBird 24 1100 x 1100 (vegetation, road, baresoil, path,
water): 919,597pixels.
Building: 184,034 pixels. Background
Dataset 3 QuickBird 24 1060 x 1600 (vegetation, asphalt road, bare soil,
open area): 1,511,966 pixels.

3.1.2. Experimental Set-Up

A comparative study between the MABI and MBI was performed to investigate the effectiveness
of the proposed method. The recommended values in [22] were selected as the thresholds for the MBI.
To obtain a fair comparison result, the same NDVI threshold and object-oriented analysis processes
were conducted on both the MABI and MBI. The effectiveness of the pre-processing and shadow
verification step in the proposed framework was explored by comparing the results obtained by the
MABI and MBI under different conditions.

To further verify the effectiveness of the proposed algorithm, two widely used classifiers including
support vector machines (SVM) [39] and random forest (RF) [40] were also used for comparison. In
addition to the original spectral information of the image, there are two spatial characteristics used
for classification in the above two supervised classifiers. The first comprises the multiscale and
multidirectional DMPs that are used to compute the MBI. By feeding spectral bands and the DMPs
into the SVM and RF, the binary classifiers DMP-SVM [41] and DMP-RF divide the test image into
buildings and non-buildings. The second is the object-oriented SVM and the object-oriented RF.
Employing object-based methods on VHR images can generate spectral and shape information to
improve the accuracy of building feature extraction. In this study, the meanshift algorithm was used
for segmentation. The spectral features of the object employed in the object-oriented SVM were
the brightness and the spectral standard deviation of the object, and the spatial features were the
length—width ratio, area, border length, RcFit, and SI. The parameters for the SVM and RF were
set according to specific suggestions [39,40]. The number of training and test samples used in the
supervised classification algorithms of each dataset is reported in Table 3. In this study, an SVM, which
was implemented with the help of the LibSVM package, was used as a supervised binary classification
to label each pixel in a high spatial resolution image as building/non-building (i.e., background). The
nonlinear SVM with radial basis kernel was used and is abbreviated as SVM in the revised manuscript.
All parameters in this SVM were tuned by five-fold cross validation. Except for the SVM-related work,
which was implemented with the help of the LibSVM package using C++, processes were performed
using MATLAB R2014a on a computer with a single i5-24003.10 GHz processer and 8.0 Gb of RAM.

Table 3. Training and test samples for the three datasets.

Dataset 1 Dataset 2 Dataset 3
N(.)' .Of No. of Test N(.)' .Of No. of Test N(.)' .Of No. of test
Methods Training Samples Training Samples Training Samples
Samples P Samples P Samples P
Building 858 427,816 1,275 289,128 1,147 182,887
Background 1,184 3,570,142 1,835 917,762 1,562 1,510,404

The parameters used in the proposed method and their suggested range are summarized in
Table 4. The parameter sensitivity is further analyzed in the discussion section, and several issues
should be noted. First, appropriate ranges of parameters for the proposed framework were analyzed
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in this study. Second, most of the parameters could be kept the same for different datasets, and the
parameters were fixed for all three datasets in this paper. The accuracy statistics were calculated
according to the correctly classified pixels in the building feature extraction map of each method. The
building detection accuracy was evaluated by the following four statistical measures: overall accuracy
(OA), Kappa coefficient (Kc), omission errors (OEs), and omission errors (CEs) [42]. The first two
indexes were computed based on the confusion matrix [43], and the remaining two indexes measure
the accuracies of classification.

Table 4. Parameters and the suggested range of the proposed method.

Feature Extraction Parameters Parameters in Post-Processing
. Fixed Value in Suggested . . . . Suggested

Variables This Study Range Variables Fixed Value in This Study Range

Abright 0.35 [0.1,0.5] teq 7 [5,8]
NDVI 0.58 [0.1,0.6] tHu 0.7 [0.7,0.9]
RcFit 0.7 [0.5,0.7] TMABI 0.25 [0.1,0.4]
SI 1.1 [1,1.5] TMASI 04 [0.1,0.4]

. 0in high-MABI, 0 in high-MAB]I, . . .

Dist 10in low-MABIL 10 in low-MABI 1d in MABI From 10 to 100, interval is 5 [10,200]

1d in MASI From 4 to 28, interval is 4 [2,50]

30°29'10"N

E 114°26'10"E 114°26'40”E 114°27'10"E  114°2:

L N
114°25'40”E 114°26'10"E 114°; "] o Wy 0" 2 996/ 114°2710"E

(g) (h) (i) 0 500 1000m
Figure 6. Building feature extraction results for Dataset 1: (a,b) the RGB image and the ground
truth map; (c) the building detection resultof the MBI; (d—f) the building maps with the results of

the pixel-based SVM, DMP-SVM, and object-oriented SVM, respectively; (g,h) the building detection
results of DMP-RF and object-oriented RF; (i) the results of the proposed framework.
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3.2. Experimental Results

3.2.1. General Results and Analysis of the Datasets

The building detection results of the three datasets are given in Figures 6-8, respectively, in which
the detected buildings are in white pixels, and the background is in black pixels. Three datasets
of urban areas have their own characteristics. There is a dense road network in Dataset 1. The
difficulty of this dataset lies in the similarity between the spectral characteristics of roads and buildings.
Compared with the buildings in Dataset 1, Dataset 2 has a high-density urban area. The varying
spectral characteristics of building roofs and the existence of certain building groups increase the
difficulty of analyzing Dataset 2. To carry out a comprehensive experiment, an image containing a
large number of non-buildings was chosen as Dataset 3. This image has a large area of bare ground
and vegetation, which poses a challenge to the building feature extraction task.
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’ s . "i-"" ,
°©22'40”E 114°2

-~
R

10”"E 114°23'40"E114°22'40”E 114

30°30'10”"N 30°30'40”N 30°31'10”"N

L :

114°2240"E 114°23'10°E 114°23'40"E114°22'40"E 114°23'10°E 114°23'40"E 114°22'40"E 114°23'10°E 114°23'40"E
(8 (h) (i) Q500 1000m
=

Figure 7. Building feature extraction results for Dataset 2: (a,b) the RGB image and the ground truth
map; (c) the building detection result of the MBI (d—f) the building maps with the results of the
pixel-based SVM, DMP-SVM, and object-oriented SVM, respectively; (gh) the building detection
results of DMP-RF and object-oriented RF; (i) the results of the proposed framework.



Remote Sens. 2019, 11, 337 13 of 24

114°2510"E 114°23'40"E 114°2410"E  114°24'40"E 114°25"10"E 114°23'40"E 114°24'10"E  114°24'40"E 114°25'10"F

Lt N\ o
114°2 114°24°407E 114°25'107E 114°23'40"E 114°24'10"1 114°24'40"E 114°25'10"F

(® » (h) (i) e wom

Figure 8. Building feature extraction results for Dataset 3: (a,b) the RGB image and the ground truth
map; (c) the building detection result of the MBI; (d—f) the building maps with the results of the
pixel-based SVM, DMP-SVM, and object-oriented SVM, respectively; (gh) the building detection
results of DMP-RF and object-oriented RF; (i) the results of the proposed framework.

The quantitative results of the different algorithms are reported in Table 5. The statistical accuracy
and the visual inspection ((d) in Figures 6-8) show that the pixel-based SVM leads to unreliable results
in the three datasets. This inferior performance is mainly due to the poor discriminatory ability of
using only the spectral value of the original image. By joining the spatial information, the remaining
algorithms obtain more acceptable results according to the statistical values in Table 5. Furthermore, in
most cases, the proposed framework obtains competitive results. Detailed analysis of the results of
the MBI, DMP-SVM, DMP-REF, object-oriented SVM, object-oriented RE, and the proposed method are
as follows.

Table 5. Building detection accuracies of the test datasets.

Dataset 1 Dataset 2 Dataset 3

Method
OA OE CE Kc OA OE CE Kc OA OE CE Kc
MBI 88.81 49.56 52.09 0.62 81.56 5754 31.24 0.61 89.60 35.83 48.34 0.66
Pixel-Based SVM 71.07 19.3 75.64 0.51 62.38 1111 62.1 051 7643 161 70.56 0.56
DMP-SVM 85.81 459 61.53 0.59 7714 4717 4717 056 87.08 53.55 5853 0.59
Object-Oriented SVM 88.32 21.89 5273 0.66 7258 19.13 54.04 0.58 89.45 51.85 48.54 0.63
DMP-RF 85.03 1525 5948 0.64 78.34 30.16 46.25 0.62 84.11 20.81 61.34 0.62
Object-OrientedRF 89.91 4992 4822 0.63 80.51 13.99 43.87 0.66 85.17 7.57 58.27 0.65
Proposed 90.27 26.52  46.65 0.69 8453 36.32 30.67 0.68 91.13 27.09 4290 0.70

The MBI performed well for all three datasets. The OA of the MBI was second only to that of
the proposed method in most cases, according to Table 5. Compared to the MBI OA, the OA of the
proposed method increased by 1.46%, 2.97%, and 1.53% for the three datasets. The Kappa coefficient,
increased from 0.62, 0.61, and 0.66 to 0.69, 0.68, and 0.7, respectively. The MBI was subject to a high CE
rate in Datasets 1 and 3 due to the misclassification of non-buildings in the scenes. Regarding both
the OE and CE, the proposed method obtainedbetter results than the MBI. For example, the OE and
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CE decreased by 23.04% and 5.44%, respectively, in Dataset 1 and by 8.74% and 5.44%, respectively,
in Dataset 3. The improvement of the CE in the proposed framework can be ascribed to the removal
of non-buildings in the input image. In Datasets 1 and 3, there were many building blocks that were
darker than the surrounding backgrounds. These buildings were excluded from the MBI results,
causing the increase in the OE. The proposed MABI compensated for the missing buildings by a
separate consideration of dark buildings.

The analysis of the outcomes of the DMP-SVM, DMP-RE, object-oriented SVM, and object-oriented
RF demonstrates that, with the introduction of supervised machine learning, the two algorithms
obtained competitive results. In particular, the OA of the two object-oriented methods for Datasets 1
and 3 is comparable to that ofthe proposed framework. Table 5 shows that the object-oriented SVM and
RF obtained the lowest OE but were subject to severe omission problems. This problem wasparticularly
noticeable in the dense building area in Dataset 2. A large area of asphalt roads that have similar
spectral characteristics as the buildings in Datasets 1 and 3 caused an increase in false alarms in the
results of the object-oriented classifiers. Although the object-oriented methods increased the efficiency
and identification ability of the supervised classifier, the accuracy was dependent on the choice of
representative training samples. The same problem also existed in the DMP- SVM and DMP-RFE. The
OA of these two methods in Dataset 2was obvious lower than that in Datasets 1 and 3. However, from
the result in Datasets 1 and 3, it was found that the discrimination power of the SVM was obviously
increased by feeding the multi-scales and the multidirectional DMP feature. Compared with the
pixel-based SVM that used only the spectral features of the image, the OA significantly increased in the
three datasets. Nevertheless, supervised classification algorithms are time-consuming. An analysis of
the above experiment results shows that the proposed MABI is more suitable than the other methods
for the feature extraction of buildings in large and complex urban areas.

The running times of the different algorithms are reported in Table 6. The pixel-based SVM
and MBI were the most efficient, followed by the proposed method. The other supervised methods
still had a much higher cost than these two unsupervised ones, except for the cost of the training
sample collection. Regarding the two unsupervised methods, in view of the detection superiority of
the proposed work over MBI, it was considered that the proposed one is generally preferable.

Table 6. Running time (second) of all building detection methods used in this study.

Method Dataset 1 Dataset 2 Dataset 3
MBI 146.35 55.34 7291
Pixel-Based SVM 130.57 45.46 66.97
DMP-SVM 624.85 145.53 193.65
Object-Oriented
SVM 1434.39 184.59 241.93
DMP-RF 1648.25 413.67 579.21
Object-Oriented RF 1581.41 185.42 252.43
Proposed 217.72 101.58 132.09

3.2.2. Visual Comparisons of the Representative Patches

The results of the representative patches in each test image are reported in Figure 9 (show Images
I1 and 12), Figure 10 (show Images I3 and 14), and Figure 11 (show Images I5 and 16), respectively.
The results obtained by the proposed framework are the most complete and precise in most scenes.
The object-oriented SVM was subject to false alarms in the dense urban area, and the DMP-SVM was
affected by the omission phenomenon, especially for heterogeneous buildings. The results of each
representative patch are discussed as follows.
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Figure 9. Building detection results of Test Patches I1 and 12. (a) RGB image; (b) MBI results;

(c—e) the building maps with the results of the pixel-based SVM, DMP-SVM, and object-oriented

SVM, respectively; (f,g) DMP-RF and object-oriented RF results; (h) the proposed method results.

The buildings in I1 and 12 in Figure 9 are surrounded by vegetation and bare soil. All detectors
filtered out most of the vegetation, but, except for the proposed method, some bare soil and open
ground information (yellow rectangles in I1 and I2) was incorrectly extracted. Some buildings with
poor internal homogeneity (green rectangles in I1) were excluded by the MBI and DMP-SVM. The
two object-oriented classifiers and the proposed MABI correctly extracted these building features by
increasing the internal homogeneity of image objects before the building feature extraction step via
segmentation and the proposed image denoising step, respectively. Patches I3 and 14 in Figure 10 show
dense building areas, and the paths adjacent to buildings (green rectangle in I3 and yellow rectangle in
16 in Figure 11) were detected as buildings in the MBI and all supervised methods. As for the proposed
framework, the paths were detected and removed in the pre-processing step. The bare ground (yellow
rectangle in I3 and 14 in Figure 10), which was well removed with the constraint of shadows in both
the MBI and the proposed method, was wrongly identified by all supervised methods. In the green
rectangle in I4, the similarity between the spectral characteristics of buildings and the surrounding
backgrounds made it difficult to identify buildings while excluding the backgrounds. A large number
of buildings in this region were missed in most result maps, but the proposed method still identified the
highest number of correct buildings. Patch I5 in Figure 11 shows a building block with low reflectivity
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and internal homogeneity. The heterogeneity of building roofs led to some omission phenomena in
the results of the MBI and DMP-SVM. The DMP-SVM and object-oriented RF extracted the building
features completely, but was still subject to under- and overestimation, respectively. The false alarms,
such as the roads with spectral characteristics similar to those of the surrounding buildings were
extracted in the object-oriented RE. Because the attribute filtering in the proposed method smooths
the image while keeping the original boundaries, the buildings in the results of the proposed method
had a more precise outline than those in the object-oriented RF. In summary, the results of these
representative patches show that the proposed framework obtains better results than the comparison

algorithms in different types of scenes.

Image I3

Image 14

Figure 10. Building detection results of Test Patches I3 and I4. (a) RGB image; (b) MBI results;
(c—e) the building maps with the results of the pixel-based SVM, DMP-SVM, and object-oriented SVM,
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Figure 11. Building detection results of Test Patches I5 and 16. (a) RGB image; (b) MBI results;
(c—e) the building maps with the results of the pixel-based SVM, DMP-SVM, and object-oriented SVM,
respectively; (f,g) DMP-RF and object-oriented RF results; (h) the proposed method results.

4. Discussion

In this section, we first discuss the role of each step of the proposed method and then conduct
parameter sensitivity analysis to verify the relative robustness of the proposed method.

4.1. Step Analysis of the Proposed Work

4.1.1. Effects of Denoising in Preprocessing: Analysis on MBI and MABI

To show the efficiencyof image denoising in the pre-processing step, denoting the image obtained
after image denoising step as I’, the MBI and MABI features were calculated based on the bright image
(marked as MBI and MABI (bright) in Figure 12) and I’ (marked as MBI(I') and MABI in Figure 12).
Each statistical result table in Figure 12a—c is composed of 320,000 randomly selected pixels from all
datasets. The diagram displays the classification accuracy of the building and background areas in
MBI, MABI (bright), MBI(I’), and MABI. To ensure a fair comparison, the MABI feature considered here
is the high-MABI part calculated by the application of binary segmentation on the MABI according to
the TMABI given in Table 4. The thresholds in the MBI are set according to values suggested in [21].
The classification accuracy is a statistic from the results without the shadow constraint.

As shown in Figure 12, both the MBI and MABI can extract most of the building features from
the bright image and I’, respectively, but the proposed method extracts the most accurate building
information while filtering out false alarms. The OA of the buildings in the three tables is slightly
improved from left to right. Specifically, after replacing the input image from the bright image to I’, the
increase in the OA of the MBI is more obvious than that of the MABI in tables (a) and (c). Due to the
improvement in both the MBI and MABI, I’ is more suitable than the bright image as the input image
for building feature extraction. Furthermore, the observable increase in the correct backgrounds in the
results based on I” also shows the good effect of I” on suppressing background noise in the building
detection task.
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Figure 12. The OA of the building feature detection results of the MBI and MABI based on different
input images: the bright image and I'. (a—c) are the statistical results of Dataset 1, Dataset 2, and Dataset
3, respectively.

A representative patch I5 is chosen for further comparisons. Again, the results displayed in
Figure 13 confirm that using I” as the input image can effectively suppress false alarms in the building
feature extraction results. For example, the highlighted vegetation and inhomogeneous bare land in
the green box and the roads in the yellow box were removed by changing the input image from a bright
image to I’. The improvement in the building feature extraction accuracy is attributed to the increase
in the homogeneity of image I’; in addition, both statistical tables and images show that the MABI
obtained a more accurate result than the MBI under identical conditions. For both the bright image
and I’, the proposed MABI achieves more accurate results than the MBI, and the most appropriate
combination is the proposed one.

® ®
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Figure 13. The MBI and MABI feature results based on the bright image and I’ for Patches I1 and I5:
(a) bright image; (b) results of the MBI based on the bright image; (c) results of the MABI based on
bright image; (d) image I'. (e f) are the results of MBI and MABI, respectively, based on I'.

4.1.2. Functions of Elongated Non-Building Object Detection and Dark Building Feature Extraction

The first step was utilized to reduce the non-building objects in the input image I before building
feature extraction. The dark building feature extraction step was conducted to account for missing
dark roofs. To illustrate the role of these two processes, the quantitativeresults for each step of the three
datasets in Table 7 and three patches of a dense urban area in Figure 14 were utilized for statistical and
visual comparisons, respectively.
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Table 7. Accuracies of the building feature extraction results for each step of the proposed framework.

Dataset 1 Dataset 2 Dataset 3
OA OE CE Kc OA OE CE Kc OA OE CE Kc

MABIyigne(I) ~ 81.07 3295 68.15 057 71.82 39.51 55.96 054 86.33 3422 5826 0.62
MABIpigne(I) 8971 31.64 4837 0.66 8211 37.48 3824 0.65 9094 3379 4247 0.68
MABI 90.6 2618 4592 0.68 83.72 3555 3322 0.67 9022 2651 4278  0.68
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Figure 14. Building feature extraction results of Patches I3, I4, and I5 for step analysis of the proposed
method: (a) ground truth image; (b) result of MABIyigh without non-building object detection;
(c) result of MABIpign¢(I); (d) result of the MABI without shadow constraint. The red and green regions
emphasize the performance for elongated objects and dark building, respectively.

The values in Line 2 of the MABI,g,; of the proposed methodhavean obviously lower CE
compared with the results of the MABIpright feature without eliminating the elongated objects for the
three datasets. This improvement reflects that removing easily confused non-building objects in the
input image can effectively reduce the false alarms in the final result. The red regions in Figure 14b
show that the regular road in I3, the open ground in 14, and the small paths in I5 are filtered out in
(c). This improvement demonstrates that detecting these objects is necessary to reduce false alarms
that cannot be recognized in post-processing. Line 3 of Table 7 represents the accuracy of the MABI
that combines the results of MABIpign: and MABIy,,x before shadow constraint. For Datasets 1 and 2,
the four MABI statistics are better than the results in Line 2. As for Dataset 3, due to the large area of
dark backgrounds, the CE in Line 3 is slightly increased compared to that in Line 2 after the feature
extraction of dark buildings, which also led to a slight decrease in the OA. Nevertheless, the decrease
in the OE of Dataset 3 was the largest of the three data sets. This result can be viewed visually in Patch
I5 of Figure 14. The missing buildings in the green region in (c) were supplemented in (d). Moreover, a
slight increase in the CE is acceptable when compared with a substantial decrease in the OE, and false
alarms can be further removed with the shadow constraint.
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4.1.3. The Usage of Proposed Shadow Detection: Analysis on MSI and MASI

Shadow constraint was used to filter out the non-buildings from the obtained building map in
the post-processing step. Since the omission of shadow should lead to an increase in the OE value,
and the false-positive shadows may cause an increase in the CE value, the accuracy of four results
from a pairwise combination of two shadow detection and two building feature extraction results
(MBI and MAB]I) are given in Table 8 to compare the shadow detection results of the MSI and the
proposed MASI. Lines 1 and 2 in Table 8 are the building detection results of the MBI with the shadow
constraints of the MSI and MASI, respectively. Line 3 lists the building detection results of the MABI
with the shadow results of the MSI. The combination of building maps with the proposed MASI (in
Lines 2 and 4) obtained a higher OA than that with MSI (in Lines 1 and 3) for the three datasets. The
reduction in CE and OE values also proves the effectiveness of the MASI. The comparison of these
results shows that the most accurate combination is the proposed work.

Table 8. Accuracy of the building detection results with different shadow constraints.

Dataset 1 Dataset 2 Dataset 3
Method
OA OE CE Kc OA OE CE Kc OA OE CE Kc
MBI 88.81 4856 52.09 0.62 8156 5754 3124 0.61 89.6 35.83 48.34 0.66

MBI+MASI 89.1 48.18 50.88 0.63 81.6 5736 3117 061 89.65 35.12 48.07 0.66
MABI+MSI  90.17 2731 45.06 0.68 8423 3631 31.66 0.68 9111 27.89 417 0.7
Proposed 91.02 2644 4471 0.7 84.54 362 3067 0.68 9113 27.09 41.7 0.7

4.2. Parameter Analysis

In this section, the values of some important parameters of the proposed method are discussed.

4.2.1. Pre-Processing Parameters

The thresholds for the attributes sd and Hu used in the pre-processing step are analyzed here.
Attribute sd was employed to increase the homogeneity of the original image. A high value of sd
corresponds to a high object homogeneity. Analyzing the gray histogram of the filtering results with
different thresholds shows that, when the threshold value is greater than 20, most objects in the
complex urban image are removed after filtering, and the effect of the AF is not obvious when the
threshold is below 5. Therefore, the threshold values in [5,20] are discussed here. Figure 15a,b show the
relationship between the value of sd and the building feature extraction precision of Dataset 2. The OE
and CE are more balanced when the threshold is between 5 and 8, and a satisfactory and stable OA and
Kappa coefficient rate are also obtained in this interval. When the proposed framework was applied to
images with a high, medium, and low building density, the threshold value of sd in [5,8] possessed
good generality and stability for the different scenes. Furthermore, a relatively small threshold is
recommended for dense building areas, and a relatively large threshold can be selected for images
containing a high amount of background. The suggested threshold for attribute sd in shadow detection
is the same as that of the parameters in building feature extraction since shadows and the surrounding
buildings have similar characteristics.

The Hu attribute was used to detect the elongated non-building objects in the pre-processing step.
Hu indicates the non-compactness degree of the objects and ranges from 0 to 1. The value is gradually
increased from compact to elongated objects. Since buildings are compact objects in the image, a small
value of Hu can filter out some buildings, so Hu values below 0.5 are not considered here. Figure 15¢,d
show the relationship between the accuracies of building detection and the threshold value of Hu at
[0.5,0.9] of Dataset 2. The four statistical values show an improvement as the value of Hu increases
from 0.7 to 0.9. In general, when the threshold is in the interval of 0.7-0.9, the proposed framework
achieves a more accurate result. Since Hu is only related to the geometrical characteristics of objects,
the thresholds can be safely applied to different images.
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Figure 15. Relationship between building detection accuracies and the thresholds of attributes sd and
Hu for Dataset 2.

4.2.2. Parameters in the Building Feature Extraction Steps

Threshold values of attribute Id in the MABI were arbitrarily selected in terms of the scale of
the buildings. The OA of the building detection results (calculated from the MABI, i) of Dataset
2 obtained by different intervals of Id is visualized in Figure 16. The vertical axis represents the OA
values, and the horizontal axis represents the Id intervals. Id intervals less than 10 are 2,6,10, with a step
of 5 after 10. The OA is obviously decreased after the upper limit of Id exceeds 200 and the minimum
lower limit is 20. The accuracies decrease slowly when the upper limit of /d is in the interval [100,200].
According to Equation (4), the value of Id is selected based on the building scale; therefore, an Id value
in the interval of [2,100] is suggested for the VHR image of the urban area.
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Figure 16. Relationship between overall accuracies of building detection and the thresholds of attribute
ld in Dataset 2.

In the proposed framework, many non-building objects are removed in the pre-processing step,
so a small threshold value of the high and low MABI is recommended to prevent the removal of some
dark roofs. As the MABI ranges from 0 to 1, the suggested threshold is within the range of 0.1-0.4,
where the quality scores are stable.

For the threshold value of the distance between buildings and shadows, the NDVI, building area,
and SI have been discussed in detail in [22]. The value of the RcFit ranges from O to 1, and the larger
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the value, the more the object approximates the rectangle. For objects in the high MABI region, the
RcFit value is between 0.5 and 0.6, while the RcFit value for objects in the low MABI region is between
0.6 and 0.7.

5. Conclusions

In this paper, a new building index, i.e., the MABI, and a new shadow index, i.e., the MASI, are
proposed based on morphological attribute operators. An analysis of the existing MBI showed that
the building feature extraction algorithm based on morphological operators is subject to some OEs
and CEs. The OEs occur when the extraction misses some dark roofs and due to noise in building
objects, and the CEs are caused by certain types of land cover, such as roads, bare ground, and open
ground, which have spectral and shape characteristics similar to those of buildings. Our work aimed
at improving these issues, and the contributions of this study are as follows: First, a thinning operator
based on the attribute standard deviation was conducted to increase the homogeneity of the original
image. Then, elongated non-building objects were detected to decrease the effect of interference objects
in the input image before the building detection process. In the building feature extraction step, dark
buildings were considered independently with the MABI to further reduce the OE. By jointly using
the MABI and MASI in an object-oriented framework, false alarms were further reduced.

The proposed method was conducted on three VHR images. A comparison of the building
detection results of the proposed framework with those of the MBI, DMP-SVM, pixel- and object-based
SVM, DMP-RF, and object-oriented RF shows that the proposed method is the most effective at
increasing the OA and reducing the OE and CE, especially for images with few buildings and large
path and bare ground areas. The parameters of the proposed framework were analyzed, and the
threshold selection conclusions can be summarized as follows: sd is used to remove small dark
structures and to increase the homogeneity of an image. To maintain the details in the image, the choice
of a small threshold is recommended, especially for dense urban areas. The attribute Hu is employed
to measure the elongated degree of objects; therefore, a large value of Hu is recommended to better
indicate non-building objects. The MABI threshold was used to distinguish buildings from other land
cover types. Since a large number of easily confused objects were removed in the pre-processing step
in the proposed framework, a small threshold value is recommended to avoid the erroneous removal
of buildings.

In future studies, more attributes will be considered to better model the spectral and structural
information of scenes for building feature extraction tasks, and automatic threshold selection research
is also planned.
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