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Abstract: Autofocus has attracted wide attention for unmanned aerial vehicle (UAV) synthetic
aperture radar (SAR) systems, because autofocus process is crucial and difficult when the phase error
is spatially dependent on both range and azimuth directions. In this paper, a novel two-dimensional
spatial-variant map-drift algorithm (2D-SVMDA) is developed to provide robust autofocusing
performance for UAV SAR imagery. This proposed algorithm combines two enhanced map-drift
kernels. On the one hand, based on the azimuth-dependent phase correction, a novel azimuth-variant
map-drift algorithm (AVMDA) is established to model the residual phase error as a linear function in
the azimuth direction. Then the model coefficients are efficiently estimated by a quadratic Newton
optimization with modified maximum cross-correlation. On the other hand, by concatenating
the existing range-dependent map-drift algorithm (RDMDA) and the proposed AVMDA in this paper,
a phase autofocus procedure of 2D-SVMDA is finally established. The proposed 2D-SVMDA can
handle spatial-variance problems induced by strong phase errors. Simulated and real measured
data are employed to demonstrate that the proposed algorithm compensates both the range- and
azimuth-variant phase errors effectively.

Keywords: synthetic aperture radar (SAR); motion compensation (MOCO); azimuth-variant map-drift
algorithm (AVMDA); two-dimensional spatial-variant map-drift algorithm (2D-SVMDA); autofocus

1. Introduction

The synthetic aperture radar (SAR) system performs well in both military and civilian fields
such as military reconnaissance, geographical mapping, and disaster warning for its all-weather and
all-time working capability of two-dimensional high-resolution imaging [1–5]. It has high azimuth
resolutions due to relative movement between antenna and target. However, this platform movement
also poses difficulties for accurate imaging [6], and hence motion compensation (MOCO) [7–9] is
an essential procedure for SAR imaging. Furthermore, for unmanned aerial vehicle (UAV) SAR
systems [10–12] working at a low altitude, their flight trajectory is usually disturbed by severe
atmospheric turbulence because of the small size and light weight of UAV platform [13], which
inevitably causes serious blurring and geometric distortion in SAR images. Normally a high-precision
inertial navigation system (INS) which consists of inertial measurement unit (IMU) and global position
system (GPS) is necessarily mounted on the UAV platform to record the real-time velocity and position
information. However, most UAV SAR platforms are only equipped with a medium- or low-accuracy
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INS to save costs and payload weight, which reduces the measurement accuracy. Therefore, autofocus
techniques [14] combined with different imaging models are commonly applied to compensate
the residual phase error after INS-based MOCO [15,16].

In practical applications, previous widely used autofocus algorithms include classical phase
gradient autofocus (PGA) [17], map-drift algorithm (MDA) [18,19] and image metric-based autofocus
algorithms, such as contrast or entropy optimization [20–24]. The PGA retrieves high-order terms of
phase error by exploiting the phase gradient of prominent scatters, so its performance is dependent on
the number of prominent scatters and is generally affected by noise and clutter. The MDA estimates
quadratic phase error (QPE) of raw data according to the displacement between different subaperture
images. Hence MDA is usually more robust than PGA when there is lack of prominent point
targets in the scene. In Samczynski et al. [19], a coherent MDA was investigated, which estimates
flight parameters more precisely for the low-contrast scene. Metric-based autofocus methods
usually produce superior restorations compared with the conventional ones [20]. An optimization
strategy is designed through maximizing (minimizing) a particular sharpness (entropy or sparsity)
metric to estimate phase error parameters [21–24]. All these algorithms above are designed for
compensating spatial-invariant phase errors in SAR imagery based on the hypothesis of narrow
beam [25], which neglects the spatial-variant components. Hence, the previous autofocus algorithms
are limited for high-precision UAV SAR imaging.

For low-altitude UAV SAR imaging, the residual phase error after INS-based MOCO would
be both range- and azimuth-variant [26]. To achieve range-variant autofocus, some extended PGA
and MDA kernels have been developed [27–32]. Earlier work in Thompson et al. [27] investigated
the spatial dependence of phase error on the radar incidence angle and developed the broadside
PGA. In Bezvesilniy et al. [28], conventional MDA was used to estimate the QPE factor of each range
sub-block, and then the range-variant phase error was represented by a double integration of the
estimated quadratic phase coefficients. In Zhang et al. [10] and Fan et al. [29], local maximum-likelihood
weighted PGA (LML-WPGA) was proposed, which also approximated the trajectory deviations by
range-variant phase error estimation. The LML-WPGA is further extended for highly squinted
SAR imaging in [30], integrating with the Omega-k algorithm for UAV SAR imagery. Without
the range blocking strategy, the range-dependent map-drift algorithm (RDMDA) was proposed
in Zhang et al. [32], which models the phase error as a linear function of the range coordinate and
estimates the constant and linear coefficients of QPE. It should be emphasized that in the above
approaches, the range-dependent phase error for UAV SAR imagery has been well investigated,
while the azimuth dependence is usually neglected and difficult to well represent.

On the other hand, given precise motion records with high-precision INS, numerous
azimuth-variant MOCO algorithms, such as subaperture topography and aperture (SATA) dependent
algorithm [33], precise topography and aperture dependent algorithm (PTA) [34,35], and the PTA
derivation algorithms [36,37], are developed based on accurate calculation of the residual
azimuth-variant phase error with INS records. However, the requirements are inapplicable for UAV
SAR imaging. As a result, the residual azimuth-variant phase error should also be compensated by
autofocus process. A few azimuth-variant autofocus algorithms have been proposed to deal with this
problem. A feasible way is to divide data into azimuth sub-blocks [38]. Then the azimuth-variance
factor is determined by the estimated local phase errors, and PGA or MDA kernels are modified to
increase the phase error estimation precision of each subaperture. A multiscale autofocus algorithm
was proposed in Cantalloube and Nahum [39] to derive the spatial-variant phase error with local
MDA, which requires the synthesis of many small SAR images. An azimuth-dependent PGA (APGA)
algorithm was proposed in Zhou et al. [40], in which a weighted squint phase gradient autofocus
(WSPGA) kernel was used to derive local phase error functions in each subaperture.

The principles of these algorithms above are very similar. Different azimuth blocking strategies
assume the spatial dependence in each azimuth block to be nominal and introduce conventional
autofocus approaches, such as MDA and PGA, within a small azimuth block. Then a set of phase
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errors are estimated from azimuth blocks and the azimuth dependence is represented by a parametric
model [41]. Generally, the azimuth blocking strategy has two fundamental problems in real UAV SAR
imagery. First, the phase functions of all subapertures should be combined carefully, which is not an
easy task. Second, applying MDA or PGA to a small-range block would lead to a large estimation bias
due to the insufficient integration gain using small block data. The underlying assumption would
also be critically problematic that the sub-block size should be small enough to ensure the spatial
invariance of the motion error within a block. Above all, it is usually a dilemma between selecting
an optimal block size and recovering the continuous phase error function effectively. Moreover,
the azimuth blocking strategy decreases the robustness and efficiency of autofocus approach for real
measured UAV SAR imaging. To replace the azimuth blocking strategy, an azimuth-variant autofocus
scheme was proposed in Pu et al. [42], which estimates the azimuth-variant Doppler coefficients
by applying a modified Wigner-Ville distribution (M-WVD). However, strictly dominant scattering
targets should be required to avoid easy estimation diverging. A modified spatial-variant phase error
matching MDA was proposed in Tang et al. [43], which retrieves the systematic azimuth-variant
phase error by a parametric strategy. However, it is incapable of handling azimuth-variant phase
errors. Semiparametric-based motion error model, such as Fourier coefficients model proposed
in Marston and Plotnick [44], relies on the calculation of image statistic metrics, but it requires
huge computational complexity. In addition, it is worth noting that in Torgrimsson et al. [45],
an efficient geometrical autofocus approach integrated in a fast-factorized back-projection (FFBP) [46]
was proposed. Six independent trajectory parameters are adopted to refocus the image affected by
spatial-variant motion errors by using a two-stage optimization approach. It is demonstrated that the
FFBP-based autofocus technique owes robust performance in SAR data processing, which is an efficient
spatial-variant autofocus algorithm. Based on the above research works, we believe that there is an
urgent need for a robust spatial-variant autofocus algorithm suitable for high-band UAV SAR imaging,
which motivates the work in this paper.

Aimed at solving the spatial-variant phase error problem, first we develop a novel azimuth-variant
map-drift algorithm (AVMDA) for autofocusing UAV SAR imagery. AVMDA is established based on
a parametric model, representing the azimuth dependence of the residual phase error. Different from
the standard MDA, AVMDA models the azimuth phase error by using a linear function in three main
steps. First, SAR data is primarily divided into two subapertures. Second, based on the linear
azimuth-variant phase model, chirp-z transform (CZT) [47] is employed instead of fast Fourier
transform (FFT) to generate the frequency spectrum of each subaperture. Third, according to
the criterion of maximum cross-correlation function, a modified quadratic Newton solver is designed
to estimate the coefficient of azimuth-variant phase error efficiently. Inheriting the image correlation
process of MDA, AVMDA provides enhanced robustness in dealing with UAV SAR data with severe
phase errors. To compensate both range- and azimuth-variant phase error in strip-map UAV SAR
imagery, RDMDA is integrated to estimate the range-variant component of phase error. By sequentially
combining RDMDA and AVMDA into a finite iterative flow, we can achieve two-dimensional
spatial-variant autofocusing, yielding well-focused UAV SAR imagery. We term the whole algorithm
as two-dimensional spatial-variant map-drift algorithm (2D-SVMDA). Extensive experiments with
simulated and real measured data are conducted to demonstrate its advanced performance.

The rest of this paper is organized as follows: Section 2 introduces the proposed AVMDA in detail,
as the first part of 2D-SVMDA. Section 3 extends the algorithm to compensate both the range- and
azimuth-variant phase error for strip-map UAV SAR imaging and introduces the proposed 2D-SVMDA.
In Section 4, we present the experimental results with simulated and real measured data sets in X-band
and Ka-band, respectively. Section 5 concludes the whole paper with major findings.
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2. Azimuth-Variant Map-Drift Algorithm (AVMDA)

2.1. SAR Imaging Geometry and Azimuth-Variant Motion Error

An illustration of SAR imaging geometry with real trajectory is shown in Figure 1. The geometry
is defined in a Cartesian coordinate system as O− XYZ, where O denotes the origin of the coordinate,
and X, Y, Z indicate the along-track direction, cross track, and height direction, respectively. In this
imaging model, the SAR sensor moves along a straight-line flight path with a constant velocity v
(the solid line along the track), and the synthetic aperture length is L. Due to the impact of atmospheric
turbulence, the real trajectory deviates away from the ideal one, shown as the dashed line across
the track. The cruising altitude is h, and the squint angle of the radar beam is ϕ. Symbol C denotes
the beam center which coordinate in along-track direction is x0, P stands for a target located on
the scene center line, and the distance between C and P is given by x. In ideal cases, there is no motion
error during the data acquisition process, so the slant ranges from the antenna phase center to C and P
are given by the following two expressions, respectively.

rci (X, r) =
√
(r cos ϕ)2 + (X− x0)

2 (1)

rpi (X, x, r) =
√
(r cos ϕ)2 + (X− x0 − x)2 (2)

where rci is the ideal slant range from C to antenna phase center, rpi is the ideal slant range from P to
the antenna phase center, and r is the reference slant range of scene center point, there is x0 = r sin ϕ.
X = v · t denotes the along-track position of SAR platform, and t represents the azimuth time.
In practical applications, distances from antenna phase center to C and P are represented by rc and rp

respectively. Therefore, the motion errors of C and P are

∆rc = rc − rci (3)

∆rp = rp − rpi (4)

Figure 1. An illustration of Synthetic Aperture Radar (SAR) imaging geometry.

Actually, for the different projection directions of C and P, ∆rc is unequal to ∆rp, which indicates
the azimuth-variance of motion errors. According to Zhang et al. [14], the signal expression after
conventional imaging and MOCO procedures is

st (X, x) = σ · exp
[
jKrcrpi (X, x)

]
· exp

(
jKrcδrp

)
(5)

where σ corresponds to the complex valued scattering amplitude of the point target. Krc = 4π/λ

denotes the wavenumber, λ is wavelength, and δrp is the residual azimuth-variant motion error.
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Substitute Equation (1) into Equation (5), and approximating the expression by Taylor expansion with
respect to X− x, Equation (5) is transformed to

st (X, x) = σ · exp (−jKrcr) · exp [−jKrc (X− x) sin ϕ]

· exp
[
−jKrc

cos2 ϕ
2r (X− x)2

]
· exp

(
−jKrcδrp

) (6)

By using the transformation X = v · t, Equation (6) can be rewritten with respect to azimuth
time t as

st (t, x) = σ · exp (−jφ0) · exp (−jφ1t) · exp
(
−jφ2t2

)
· exp

(
−jKrcδrp

)
(7)

where φ0 is the constant phase term, φ1 is the linear phase term, φ2 is the quadratic phase term.

φ0 = Krc

(
r− x sin ϕ +

cos2 ϕ

2r
x2
)

(8)

φ1 = Krc

(
v sin ϕ− cos2 ϕ

r
vx
)

(9)

φ2 = Krc
v2cos2 ϕ

2r
(10)

Phases in Equations (8)–(10) are known quantities that could be accurately calculated by imaging
parameters, while the residual azimuth-variant motion error δrp is left as a main factor that severely
affects azimuth focusing performance. Especially for a high frequency SAR system, such as a Ka
or Ku band, the imaging performance is more sensitive to the phase error. Hence, the residual
azimuth-variant phase error is required to be precisely compensated for finely focused imaging.
In the following sections, we are going to provide a modified azimuth-variant phase error model and
develop a novel azimuth-variant autofocus algorithm so that the azimuth-variant phase error can be
accurately estimated and compensated.

2.2. Azimuth-Variant Phase Error Model

Conventional MDA is commonly applied for UAV SAR data refocusing, which assumes
the residual QPE function of targets does not rely on the range and azimuth position. However,
in practical applications where UAV SAR works with wide swath under severe trajectory derivations,
the residual QPE after INS-based MOCO is both range- and azimuth-variant, which significantly
induces blurring in the final focused image. The azimuth-variant phase error usually becomes evident
in the case of highly squinted mode. In this subsection, the effect of azimuth-variant phase error is
discussed in detail, and the limitation of standard MDA is also presented. Like conventional MDA,
we assume the phase error to be a quadratic form within a coherent processing interval Ta.

st (t, α) = σ · exp (jαt) · exp
(

jkat2
)

, −Ta

2
≤ t <

Ta

2
(11)

where α represents an azimuth-variance factor with respect to the azimuth coordinate x of target and t
denotes the azimuth time. The azimuth-variant phase error is modeled by the coefficient ka, which is
a linear function of α.

ka = k · α (12)

Substitute Equation (12) into Equation (11), and we have

st (t, α) = σ · exp (jαt) · exp
(

jkαt2
)

(13)
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It is shown in Equation (13) that for targets with different azimuth coordinates, the QPE
coefficient ka is changing linearly with respect to α. To refocus the full-aperture image disturbed
with azimuth-variant QPE, it is necessary to estimate the linear coefficient k, , which is quite different
from conventional autofocus algorithms such as MDA.

According to the standard processing mode in MDA [32], the data is divided into two subapertures
shown as follows.

st1 (t; α) = st

(
t− Ta

4 ; α
)

= σ · exp
[

jα
(

t− Ta
4

)]
· exp

[
jkα
(

t− Ta
4

)2
]

= σ · exp
[

jα
(

t− Ta
4

)]
· exp

[
−j ·

(
k Ta

2

)
α · t

]
· exp

[
jkα
(

t2 + T2
a

16

)]
= σ · exp

[
j
(

1− k Ta
2

)
αt
]
· exp

[
jkα
(

t2 + T2
a

16

)]
· exp

(
−jα Ta

4

)
, − Ta

4 ≤ t < Ta
4 (14)

st2 (t; α) = st

(
t + Ta

4 ; α
)

= σ · exp
[

jα
(

t + Ta
4

)]
· exp

[
jkα
(

t + Ta
4

)2
]

= σ · exp
[

jα
(

t + Ta
4

)]
· exp

[
j
(

k Ta
2

)
α · t

]
· exp

[
jkα
(

t2 + T2
a

16

)]
= σ · exp

[
j
(

1 + k Ta
2

)
αt
]
· exp

[
jkα
(

t2 + T2
a

16

)]
· exp

(
jα Ta

4

)
, − Ta

4 ≤ t < Ta
4 (15)

It is clarified in Equations (14) and (15) that scale coefficients of the two subapertures are different.
For simplicity, we define them as γ1 =

(
1− k · Ta

2

)
and γ2 =

(
1 + k · Ta

2

)
, respectively. It is obvious

that the azimuth scale of subaperture images obtained by FFT changes with respect to the quadratic
azimuth-variant coefficient k. Shown in Figure 2, the diagram illustrates the scale difference between
subaperture images. By using the image correlation principle to estimate the quadratic phase coefficient,
the scaled Fourier transform (SFT) is applied to generate scaled subaperture images. Only when
the scale coefficients in SFT coincide with γ1 and γ2, the correlation coefficient between the subaperture
images will reach a maximum value. To achieve the azimuth-variant coefficient k, we develop a novel
solver to the modified maximum cross-correlation optimization in the SFT-based map-drift formation.

Figure 2. Illustration of scale change between subaperture images. FFT = Fast Fourier Transform.

2.3. Basic Principle of Proposal

Based on the above analysis of azimuth-variant QPE, the basic principle of the proposed AVMDA
is introduced in this subsection. After performing SFT to st1 (t; α) and st2 (t; α) with coefficients γ1

and γ2, we have the subaperture images shown as

s f 1 (w; k) =
Ta/4∫
−Ta/4

st1 (t; α) · exp (−jγ1wt)dt

=
Ta/4∫
−Ta/4

σ · exp [−jγ1 (w− α) t] · exp
[

jkα
(

t2 + T2
a

16

)]
dt · exp

(
−jα Ta

4

) (16)
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s f 2 (w; k) =
Ta/4∫
−Ta/4

st2 (t; α) · exp (−jγ2wt)dt

=
Ta/4∫
−Ta/4

σ · exp [−jγ2 (w− α) t] · exp
[

jkα
(

t2 + T2
a

16

)]
dt · exp

(
jα Ta

4

)
.

(17)

where, w represents the azimuth spectral function. The explicit expressions of Equations (16) and (17)
are given by

s f 1 (w; k) ≈ σ · rect
[

γ1 (w− α)

kαTa

]
· exp

[
−j

γ2
1(w− α)2

4kα

]
· exp

(
−jα

Ta

4

)
· exp

(
jkα

T2
a

16

)
(18)

s f 2 (w; k) ≈ σ · rect
[

γ2 (w− α)

kαTa

]
· exp

[
−j

γ2
2(w− α)2

4kα

]
· exp

(
jα

Ta

4

)
· exp

(
jkα

T2
a

16

)
. (19)

where, rect (·) represents rectangular window function, and the derivation process is given in
Appendix A. It is shown in Equations (18) and (19) that s f 1 (w; k) and s f 2 (w; k) have similar envelopes
along the Doppler frequency w axis, so we assume that∣∣∣s f 1 (w; k)

∣∣∣2 ≈ ∣∣∣s f 2 (w; k)
∣∣∣2 (20)

According to the analysis above, SFT can be performed by using scaling factors γ1 and γ2 for
a given azimuth-variant Doppler rate kα. If we use only the real-scaled coefficients, the subaperture

images s f 1 (w; k) and s f 2 (w; k) have an identical profile. The coherence between
∣∣∣s f 1 (w; k)

∣∣∣2
and

∣∣∣s f 2 (w; k)
∣∣∣2 can be measured by their cross-correlation coefficient, which is a function of unknown

variable k. Then it can be formulated as

Θ (k) =

∫ ∣∣∣s f 1 (w; k)
∣∣∣2 · ∣∣∣s f 2 (w; k)

∣∣∣2dω√∫ ∣∣∣s f 1 (w; k)
∣∣∣2 · ∣∣∣s f 1 (w; k)

∣∣∣2dω ·
√∫ ∣∣∣s f 2 (w; k)

∣∣∣2 · ∣∣∣s f 2 (w; k)
∣∣∣2dω

. (21)

One can see that the unknown azimuth-variant Doppler rate kα can be retrieved by maximizing
the cross-correlation coefficient function Θ (k). Equation (21) can be simplified as

Θ (k) =
∫ ∣∣∣s f 1 (w; k)

∣∣∣2 · ∣∣∣s f 2 (w; k)
∣∣∣2dω (22)

The estimation of the azimuth-variant coefficient k corresponds to the maximum of the
cross-correlation coefficient Θ.

k̂ = max
k

Θ (k) (23)

After estimating coefficient k̂, we can efficiently compensate the azimuth-variant phase error by
a nonlinear interpolation.

t = t′ − k̂t′2 (24)

By substituting Equation (24) into Equation (13), it can be rewritten as

st
(
t′, α

)
≈ σ · exp

(
jαt′
)
· exp

[
j
(

k− k̂
)

αt′2
]

(25)

So, the compensation precision depends on the precision of estimated k̂.
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The basic principle of AVMDA is illustrated in Figure 3. Inheriting the processing strategy of
conventional MDA, the disturbed raw data is processed by de-ramping to remove the bulk quadratic
phase coefficient first, and then segmented into two subaperture blocks expressed by st1 and st2.
In the following stages, we aim to estimate the azimuth-variant coefficient k, which is quite different
from MDA. In AVMDA, the subaperture data st1 and st2 are transformed to obtain a pair of
sub-images s f 1 and s f 2 by CZT, where the scaling factors γ1 and γ2 are calculated by the initial
azimuth-variant coefficient. We can subsequently calculate the cross-correlation coefficient Θ in
Equation (22), which is a function of coefficient k. Hence it is feasible to obtain the first-round
estimation k̂ by solving the optimization problem in Equation (23). After getting k̂ in the first-round
estimation, update azimuth-variant coefficient k by k̂ to compensate the de-ramped data. In this way,
the residual azimuth-variant error of de-ramped data gets smaller and smaller after iterations,
and the azimuth-variant error in the final data would be removed effectively. Please note that there
would be less than three iterations based on our experience. Next we will focus on how to solve the
maximum optimization problem in Equation (23).

Figure 3. Basic principle illustration of Azimuth-Variant Map-Drift Algorithm (AVMDA).
CZT = Chirp-Z Transform.

2.4. Maximum Optimization Solver

To implement an efficient solver to the estimation of k in Equation (23), we give the discrete
representation of the derivations in Equations (16) and (17) as follows

s f 1 (u) =
1
M

M−1

∑
m=0

exp
[
−j2π

um
M

(1− k∆T)
]
· st1 (m) (26)

s f 2 (u) =
1
M

M−1

∑
m=0

exp
[
−j2π

um
M

(1 + k∆T)
]
· st2 (m) (27)

where ∆T = Ta/2, M denotes the discrete Fourier transform (DFT) length, m denotes the discrete
time domain axis, u denotes the discrete frequency domain spectrum. According to Equation (22),
the cross-correlation coefficient of the two subaperture images can be calculated by

Θ (k) =
1
M

M−1

∑
u=0

∣∣∣s f 1 (u)
∣∣∣2 · ∣∣∣s f 2 (u)

∣∣∣2 =
1
M

M−1

∑
u=0

[
s f 1 (u) · s∗f 1

(u)
]
·
[
s f 2 (u) · s∗f 2

(u)
]

(28)

In practice, the one-dimensional searching method is an effective strategy to solve Equation (23).
This method approximates the extreme point of objective function step by step, so the searching
step is an important factor in determining the operational efficiency and reliability directly.
Newton optimization algorithm is one of the most widely used one-dimensional searching methods.
As the objective function is continuous and twice differentiable, according to the principle of matrix
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calculation in Zhang (2011) [48], the first-order and second-order partial derivatives of the objective
function are calculated to determine the searching step, which are shown as follows

∂Θ (k)
∂k

=
1
M

M−1

∑
u=0

∣∣∣s f 1 (u)
∣∣∣2 · ∂

[
s f 2 (u) · s∗f 2

(u)
]

∂k
+
∣∣∣s f 2 (u)

∣∣∣2 · ∂
[
s f 1 (u) · s∗f 1

(u)
]

∂k
(29)

∂2Θ (k)
∂2k

=
1
M

M−1

∑
u=0

 2
∂

[
s f 1(u)·s∗f 1

(u)
]

∂k ·
∂

[
s f 2(u)·s∗f 2

(u)
]

∂k +∣∣∣s f 1 (u)
∣∣∣2 · ∂2

[
s f 2(u)·s∗f 2

(u)
]

∂2k +
∣∣∣s f 2 (u)

∣∣∣2 · ∂2
[

s f 1(u)·s∗f 1
(u)
]

∂2k

 (30)

where the first-order partial derivative terms in Equations (29) and (30) are calculated by

∂
[
s f 1 (u) · s∗f 1

(u)
]

∂k
= 2 · Re

[
s∗

f 1
(u)

∂s f 1 (u)
∂k

]
(31)

∂
[
s f 2 (u) · s∗f 2

(u)
]

∂k
= 2 · Re

[
s∗

f 2
(u)

∂s f 2 (u)
∂k

]
(32)

The second-order partial derivatives in Equation (30) are calculated by

∂2
[
s f 1 (u) · s∗f 1

(u)
]

∂2k
= 2 · Re

[
∂s∗

f 1
(u)

∂k
·

∂s f 1 (u)
∂k

+ s∗
f 1
(u)

∂2s f 1 (u)
∂2k

]
(33)

∂2
[
s f 2 (u) · s∗f 2

(u)
]

∂2k
= 2 · Re

[
∂s∗

f 2
(u)

∂k
·

∂s f 2 (u)
∂k

+ s∗
f 2
(u)

∂2s f 2 (u)
∂2k

]
(34)

According to the sub-image discrete representations in Equations (26) and (27), the first-order
partial derivatives in Equations (33) and (34) are calculated by

∂s f 1 (u)
∂k

=
1
M

M−1

∑
m=0

j2π
um
M

∆T · exp
[
−j2π

um
M

(1− k∆T)
]
· st1 (m) (35)

∂s f 2 (u)
∂k

= − 1
M

M−1

∑
m=0

j2π
um
M

∆T · exp
[
−j2π

um
M

(1 + k∆T)
]
· st2 (m) (36)

The second-order partial derivatives in Equations (33) and (34) are calculated by

∂2s f 1 (u)
∂2k

=
1
M

M−1

∑
m=0

(
j2π

um
M

∆T
)2
· exp

[
−j2π

um
M

(1− k∆T)
]
· st1 (m) (37)

∂2s f 2 (u)
∂2k

=
1
M

M−1

∑
m=0

(
−j2π

um
M

∆T
)2
· exp

[
−j2π

um
M

(1 + k∆T)
]
· st2 (m) (38)

According to Newton optimization principle, the searching step ∆d is then calculated by

∆d =
∂Θ (k)

∂k

/∣∣∣∣∂2Θ (k)
∂2k

∣∣∣∣ (39)

where |·| denotes the absolute value operation, and ∆d determines the search direction.
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From the above analysis, we know that Newton optimization algorithm can approach the
extreme point gradually by iterative operation. However, it remains a significant problem in practical
applications that we cannot make sure the object function declining after each searching step, which
would cause convergence speed decreasing. Therefore, we need to optimize the searching step by
setting a condition to ensure the decline of the object function. Armijo step optimization [49] is an
effective strategy to select an appropriate searching step. According to the purpose, set the termination
condition as follows

Θ
(

k + ∆d(n)
)
> Θ (k) + τn−1∆d(0) · ∂Θ

/
∂k (40)

or
Θ
(

k + ∆d(n)
)
> Θ (k) (41)

where τ ∈ (0, 1) is a constant reduction factor, ∆d(0) denotes the initial searching step calculated
by Equation (39) and its sign represents the searching direction, and n denotes the judgment times.
As for the nth judgment, searching step ∆d(n) becomes τn−1 · ∆d(0). The judgment will continue until
reaching the termination condition.

Besides, since the computational burden of initial searching step ∆d(0) is considerable, we need to
calculate the first-order and second-order partial derivatives in each iteration, which is computationally
expensive and unacceptable for real-time data processing. By considering the termination condition
which is set to ensure the convergence property, it is possible to achieve a balance between the initial
searching step accuracy and processing efficiency. According to the principle of BFGS (Broyden,
Fletcher, Goldfard and Shanno) [50] algorithm, the second-order partial derivative matrix (Hessian
matrix) can be calculated approximately by an updated formula as follows.

∂2Θ(k)(n+1)

∂2k
=

∂2Θ(k)(n)

∂2k
+

∆ ∂Θ(k)(n)

∂k ·
[

∆ ∂Θ(k)(n)

∂k

]T

[
∆ ∂Θ(k)(n)

∂k

]T
· ∆k̂(n)

−
∂2Θ(k)(n)

∂2k · ∆k̂(n) ·
[
∆k̂(n)

]T
· ∂2Θ(k)(n)

∂2k[
∆k̂(n)

]T
· ∂2Θ(k)(n)

∂2k · ∆k̂(n)
(42)

where the superscript denotes the iteration times, and ∆ demotes the subtraction operation with
the last iteration result. For the problem of this paper, cross-correlation coefficient Θ is a scalar quantity,
so Equation (42) is degenerated to a one-dimensional expression.

∂2Θ(k)(n+1)

∂2k
= ∆

∂Θ(k)(n)

∂k

/
∆k̂(n) (43)

The flowchart of the proposed maximum optimization problem solver is provided in Figure 4,
which is implemented by a loop iteration. At the beginning of the procedure, an initial coefficient k is
determined. By using the processing strategy shown in Figure 3, two sub-images will be obtained in
order to calculate the first-order and second-order partial derivatives of objective function ∂Θ (k)

/
∂k

and ∂2Θ (k)
/

∂2k by Equations (29) and (30). Searching step ∆d is then calculated by Equation (39)
based on Newton optimization principle.

To improve the convergence performance of the quadratic Newton solver, searching step ∆d needs
to be optimized. Armijo step optimization method is introduced to set conditions for the searching step
so that the drooping characteristic in each iteration will be ensured. We calculate the cross-correlation
coefficient Θ with the current searching step, and then judge whether it satisfies the Armijo condition.
If not, update the searching step ∆d by multiplying a constant coefficient. This cycle judgment will not
stop until the Armijo termination condition is met. After finding a proper step, we can update the initial
coefficient k and enable a new loop iteration. The second-order derivative ∂2Θ (k)

/
∂2k can also be

efficiently calculated by BFGS in approximation during each iteration. The estimated azimuth-variant
coefficient k will barely shift after several iterations, and then the loop can be terminated.
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Figure 4. The procedure of proposed maximum optimization problem solver.

2.5. Procedure of Proposal

As a summary of this section, a concise procedure of AVMDA is provided in Table 1. The process
consists of the following steps:

(a) Input Data. After conventional processing such as range pulse compression, MOCO and
Range Cell Migration Correction (RCMC), the data disturbed with azimuth-variant phase error is
input in this step.

(b) De-ramping. By now, the data is ready for the application of AVMDA autofocus. De-ramping
is an essential process to remove the quadratic term in Equation (7), where the de-ramping reference
function for sample at coordinate r is expressed as

hre f (t, r) = exp
(

jKrc
v2cos2 ϕ

2r
· t2
)

(44)

Multiplying Equation (44) with hre f (t, r) on both sides of Equation (7) and neglecting the constant
phase, azimuth-invariant phase, and high-order phase terms, we have

st (X, r, x) ≈ σ · exp
(

j
Krcv · x

r
· t
)
· exp

[
−j∆k (r, α) t2

]
(45)

Please note that Equation (45) is similar to the model defined in Equation (11). In this case, we
have

α=
Krcv

r
· x (46)

(c) Initialize. The linear coefficient k of azimuth-variant phase error can be initialized to k = 0.
(d) Cyclic iterative estimation. The azimuth-variant coefficient k̂ would be successively achieved

by a finite iterative manner. In the steps of each iteration, the linear coefficient k obtained
from the previous step is used to calculate the correlation coefficient in Equation (22). Then,
use the optimization method given in Figure 4 to solve and update coefficient k until the convergence.
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(e) Output. The convergent linear coefficient k is output, and then the azimuth-variant phase
error is compensated easily by the interpolation process in Equations (24) and (25).

Table 1. Procedure of proposed AVMDA.

Algorithm: The proposed AVMDA

Input Data
De-ramping
Initialize k
Repeat

Calculation Θ (k) = 1
M

M−1
∑

u=0

[
s f 1 (u) · s∗f 1

(u)
]
·
[
s f 2 (u) · s∗f 2

(u)
]

Optimization k̂ = max Θ (k)
Update k
Until Convergence
Output k

However, it should be noted that in real UAV SAR imagery circumstances, MOCO with
low-precision IMU system would leave significant residual two-dimensional spatial-variant phase
errors. In this case, it is necessary to develop an effective strategy to ensure the focusing performance
of imagery.

3. Extending to Two-Dimensional Spatial-Variant Map-Drift Algorithm

3.1. Procedure of Proposal

In this section, we discuss how to embed AVMDA into the UAV SAR imaging procedure
and simultaneously achieve two-dimensional spatial-variant autofocus in both range and azimuth
directions. There are some novel MOCO strategies that can be applied to UAV SAR MOCO. However,
it is more important for UAV SAR imagery to deeply use available IMU data and reduce most motion
errors with coarse MOCO. After that, the residual phase error contains mixed components, including
variant and invariant components in range and azimuth directions, which are expected to be corrected
by an integrated autofocus technique. The block diagram of UAV SAR imaging by using an integrated
MOCO with RDMDA and AVMDA is shown in Figure 5. In the procedure above, the RDMDA
and AVMDA approaches are concatenate in the chirp-scaling processing with the “two-step”MOCO
strategy. Then the autofocus MOCO stage is named by 2D-SVMDA in this paper. According to the
block diagram, the UAV SAR processing algorithm has the following key steps:

(a) Coarse MOCO. In the beginning stage, a coarse MOCO is processed with assistant navigation
measurements such as airborne INS, so that most of motion errors could be compensated. The most
common coarse MOCO algorithm is “two-step” MOCO, which is divided into a bulk MOCO step and
a range-dependent MOCO step. However, due to the inadequate precision of INS equipped on UAV,
we need the autofocus algorithm to compensate the residual phase errors.

(b) RCMC. This step is known as the conventional processing of SAR imaging. According to
the block diagram in Figure 5, RCMC is implemented with chirp-scaling algorithm (CSA) in
the range-Doppler domain, and the range compression is achieved simultaneously. Please note
that other RCMC algorithms, such as range-Doppler algorithm (RDA) and Omega-k algorithm, are
also suitable for UAV SAR imagery.

(c) Azimuth blocking. For practical UAV SAR imaging, azimuth blocking operation is necessary
before using 2D-SVMDA. In contrast to conventional azimuth blocking strategies, we do not need to
segment data into many small blocks to make sure the invariance of phase error is within each
processing block. The azimuth block size can be enlarged and the azimuth-variant phase error in each
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sub-block would be estimated. This azimuth blocking enhances the efficiency and robustness of data
processing.

(d) RDMDA. During real UAV SAR imaging with wide swath, the range-dependence of motion
error is usually severe. In addition, due to the limited INS precision, the coarse MOCO step is not
able to compensate the range-variant motion error precisely. For this reason, RDMDA is introduced to
estimate the residual range-variant phase error. Suppose ∆k (r, α) in Equation (45) is expressed by

∆k (r, x) = a + b · r + k · α (47)

where a is the range- and azimuth-invariant QPE coefficient, b is the range-variant QPE coefficient,
and k is the azimuth-variant QPE coefficient. By applying RDMDA to the de-ramped data, we can
estimate both range-invariant and variant QPE coefficients â and b̂.

(e) AVMDA. Based on the introduction to AVMDA principle in Section 2, we mainly focus
on the azimuth-variant QPE coefficient k estimation in this step. After estimating the coefficient k̂,
according to Equations (45) and (46), we can compensate the azimuth-variant phase error by a nonlinear
interpolation shown in Equation (24).

Figure 5. The block diagram of the Unmanned Aerial Vehicle (UAV) SAR imaging with
Two-Dimensional Spatial-Variant Map-Drift Algorithm (2D-SVMDA). RCMC = Range Cell Migration
Correction, RDMDA = Range-Dependent Map-Drift Algorithm.

In the proposed 2D-SVMDA strategy, it should be emphasized that an iteration of estimation
and compensation loop is required to remove the residual range- and azimuth-variant phase for
full-aperture processing. When the processing data is polluted by strong noise or there are not
adequate prominent targets in the scene, it needs to non-coherently sum up the cross-correlation
functions of some prominent range bins to enhance the accuracy of QPE linear coefficient estimation.
Finally, after sequentially truncating and combining each azimuth sub-block, a well-focused UAV SAR
imagery would be obtained.

3.2. Application Hypothesis and Limitation

In practical applications, the method proposed in this paper needs to follow two assumptions.
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(a) The envelope error component can be corrected by using inertial navigation information and
“two-step” MOCO method. The proposed algorithm only aims at the estimation and compensation for
phase errors.

(b) The non-spatial variation error is the main component of the data, and the residual
spatial-variant error is a relatively minor component. When the spatial-variant error increases,
the number of iterations of 2D-SVMDA in Figure 5 will increase accordingly, which will affect
the efficiency of the algorithm.

In general, the assumptions above are satisfiable. Under these assumptions, the residual
spatial-variant motion error should not exceed one range bin. Otherwise, it will affect the calculation
accuracy of sub-image correlation coefficient. Assume a range bin is ∆r, the scene width in azimuth
direction is Lx, and the scene width in range direction is Lr. Then the limitation of linear coefficient of
azimuth-variant phase error kmax is

kmax =
4π∆r
λLa

(48)

Similarly, the limitation of linear coefficient of azimuth-variant phase error bmax is

bmax =
4π∆r
λLr

(49)

3.3. Computational Burden Analysis

In this subsection, we theoretically analyze the computational burden of the proposed
algorithm by computing the floating-point operations (FLOPs) caused by FFT/IFFT operation.
Assume the azimuth length of data is N, and M range bins with strong reflection are selected from
the data for error parameter estimation. According to the description in [32], there are 4M times
N/2-point FFT/IFFT in each iteration step of RDMDA. For the AVMDA proposed in this paper,
there are 2M times N/2-point CZT operations in each iteration step, and each CZT operation contains
3 times FFT/IFFT. One N-point FFT/IFFT operation contains 5Nlog2 (N) FLOPs, so for three iterations,
the computational burden of 2D-SVMDA is given by

C = 3×
[
4M · 5

2 Nlog2

(
N
2

)
+ 6M · 5

2 Nlog2

(
N
2

)]
= 75M · N · log2

(
N
2

) (50)

4. Simulated and Real Measured Data Experiments

To validate the effectiveness of the proposed AVMDA and 2D-SVMDA autofocus strategies,
four sets of experiments are performed with simulated and real measured X-band and Ka-band SAR
data in this section. In the simulation experiments, we artificially introduce azimuth-variant and
range-variant QPE into the simulated data. The introduced phase errors vary linearly in range and
azimuth directions, respectively, where the azimuth-variant QPE linear coefficient is indicated as k,
and the range-variant QPE linear coefficient is indicated as b.

The measured data are provided by the National Lab of Radar Signal Processing and Collaborative
Innovation Center of Information Sensing and Understanding of Xidian University. There is not
additional phase error artificially added into the measured data. Defocusing on imaging is mainly
caused by residual range and azimuth-variant phase errors after conventional “two-step” MOCO.
The imaging method used in experiments is based on RDA. The computer platform is Windows7
(Microsoft Corporation, Redmond, Washington, USA) 64-bit operating system, E5-2643@3.3 GHz CPU,
32 GB memory and MATLAB (MathWorks Corporation, Natick, Massachusetts, USA) Version R2014a.

4.1. X-Band Simulation Experiments

The main simulation parameters of the experiment on X-band are shown in Table 2.
A two-dimensional dot matrix is designed to simulate a scene with strong scatters. The size of



Remote Sens. 2019, 11, 340 15 of 27

simulated data is 8192 × 8192 (azimuth × range). In this subsection, the purpose of the first simulation
is to verify the performance of AVMDA. We presuppose azimuth-variant QPE linear coefficient k = 0.1,
and the data is processed with conventional MDA and AVMDA for comparison. Dot matrix imaging
results and their magnified sub-scenes are shown in Figure 6, in which (a) to (d) are ideal point image,
azimuth-variant error interfered image, conventional MDA processed image, and AVMDA processed
image, respectively. Three points named “A”, “B” and “C” are highlighted by yellow circles, and we
analyze their azimuth impulse response functions as shown in Figure 7. To quantitatively evaluate the
focused improvement of the proposed AVMDA compared with the other algorithms, three quantitative
metrics are introduced to measure the point impulse response functions, which are peak side-lobe ratio
(PSLR), integrated side-lobe ratio (ISLR), and impulse response width (IRW). The results are shown
in Table 3.

Table 2. X-Band simulation parameters.

Carrier frequency 9 GHz
Pulse repetition frequency 2000 Hz

Velocity 100 m/s
Pulse width 2 µs

Center closest slant range 4.5 km
Squint angle 0 degree

Grazing angle 45 degrees
Range resolution 1 m

Azimuth resolution 1 m

Figure 6. X-band point target simulation and magnified sub-scene. (a) Ideal point image.
(b) Azimuth-variant error interfered image. (c) Processed with conventional MDA. (d) Processed
with AVMDA.

Figure 7. Azimuth impulse response curve comparison of Point A, B, and C. (a) Point A. (b) Point B.
(c) Point C.
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Table 3. Statistical focus comparison of ideal, azimuth-variant error interfered, MDA processed, and
AVMDA processed simulated point targets.

Approach
Point A Point B Point C

PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m)

Ideal −13.1689 −10.7262 1.0750 −12.9831 −10.6136 0.9100 −13.2438 −10.6689 1.0860

Interfered −5.2130 −4.3508 2.3875 −4.8707 −3.5794 2.5200 −4.9914 −3.7235 2.4765

MDA −9.6775 −7.3409 1.1625 −8.0726 −5.9907 1.0415 −2.1579 −0.1272 2.8905

AVMDA −12.8934 −10.4524 1.0875 −12.7604 −10.2128 0.9100 −13.1371 −10.5467 1.0940

It can be seen that the azimuth-variant phase error severely defocuses the points. Due to
the weakness in dealing with the azimuth-variant phase error, conventional MDA is not able to
refocus all the defocused points. In contrast, by precisely estimating the linear azimuth-variant QPE
factor, the refocusing performances of points in AVMDA are very close to the ideally focused ones.

To verify the performance of 2D-SVMDA, a second experiment is designed by simultaneously
introducing range- and azimuth-variant QPE linear coefficients with b = 0.003 and k = 0.1.
By considering the impact of range- and azimuth-variant phase errors, it is difficult to remove all
the phase errors by conventional MDA or RDMDA. To compare the compensation performance of
different autofocus methods, point target simulation results and magnified sub-scenes are shown in
Figure 8, in which (a) to (d) are range- and azimuth-variant error interfered image, conventional MDA
processed image, RDMDA processed image, and 2D-SVMDA processed image, respectively. Azimuth
impulse response functions and corresponding quantitative results of Points A, B, and C (highlighted
in Figure 8) are shown in Figure 9 and Table 4.

It can be seen that the imaging result is blurred due to the range- and azimuth-variant phase errors.
Serious defocusing remains in conventional MDA processed and RDMDA processed results, only the
proposed 2D-SVMDA can refocus the whole scene in this situation. With the iterative application of
RDMDA and AVMDA, the induced range- and azimuth-variant phase errors decrease gradually so
that the performance of autofocus result processed by 2D-SVMDA is highly close to the ideal one.

Figure 8. X-band point target simulation and magnified sub-scene. (a) Range- and azimuth-variant
error interfered image. (b) Processed with conventional MDA. (c) Processed with RDMDA.
(d) Processed with 2D-SVMDA.
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Figure 9. Azimuth impulse response curve comparison of Point A, B, and C. (a) Point A. (b) Point B.
(c) Point C.

Table 4. Statistical focus comparison of ideal, 2D spatial-variant error interfered, MDA processed,
RDMDA processed, and 2D-SVMDA processed simulated point targets.

Approach
Point A Point B Point C

PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m)

Ideal −13.0574 −10.7079 1.1025 −13.3105 −10.7299 1.0915 −13.2438 −10.6689 1.0860

Interfered −0.0977 2.6361 4.8485 −5.2782 −3.8570 2.4415 −0.1151 3.8709 5.9295

MDA −0.1083 4.4114 6.1760 −1.5718 0.8941 3.0265 −0.0435 3.1508 4.6795

RDMDA −2.4122 −0.6264 2.9135 −5.1747 −3.7834 2.4525 −2.2886 −0.2107 2.8670

2D-SVMDA −12.7364 −10.3042 1.1140 −13.1904 −10.6469 1.0915 −13.1740 −10.2391 1.0940

4.2. Ka-Band Simulation Experiments

Similar to the X-band simulation experiments, Ka-band simulation experiments are designed to
verify the performance of processed AVMDA and 2D-SVMDA working at high frequencies, such as
the millimeter wave band. The main simulation parameters of experiments on Ka-band are shown
in Table 5. The size of simulated data is 8192 × 8192 (azimuth × range). In the first experiment,
azimuth-variant QPE linear coefficient k = 0.1 is introduced into the simulated data. Dot matrix
imaging results and their magnified sub-scenes are shown in Figure 10, in which (a) to (d) are
ideal point image, azimuth-variant error interfered image, conventional MDA processed image,
and AVMDA processed image, respectively. Azimuth impulse response functions and corresponding
quantitative results of Points A, B, and C (highlighted in Figure 10) are shown in Figure 11 and Table 6.
It is demonstrated that AVMDA performs well when dealing with azimuth-variant QPE for high
frequency band and high-resolution SAR imaging.

Table 5. Ka-Band simulation parameters.

Carrier frequency 35 GHz
Pulse repetition frequency 2000 Hz

Velocity 100 m/s
Pulse width 2 µs

Center closest slant range 4.5 km
Squint angle 0 degree

Grazing angle 45 degrees
Range resolution 0.3 m

Azimuth resolution 0.3 m
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Figure 10. Ka-band point target simulation and magnified sub-scene. (a) Ideal point image.
(b) Azimuth-variant error interfered image. (c) Processed with conventional MDA. (d) Processed
with AVMDA.

Figure 11. Azimuth impulse response curve comparison of Point A, B, and C. (a) Point A. (b) Point B.
(c) Point C.

Table 6. Statistical focus comparison of ideal, azimuth-variant error interfered, MDA processed, and
AVMDA processed simulated point targets.

Approach
Point A Point B Point C

PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m)

Ideal −13.2062 −10.7561 0.2970 −13.2443 −10.6704 0.2970 −13.2771 −10.8155 0.3125

Interfered −0.1938 5.2196 2.1250 −0.0778 9.6198 4.4530 −0.0490 9.6698 4.7815

MDA −0.0409 10.0784 4.3750 −0.0470 5.9256 2.1720 −0.0320 6.3589 2.3280

AVMDA −13.1125 −10.7103 0.2970 −11.4852 −9.4408 0.3125 −13.1375 −11.0655 0.3125

The second experiment is designed to verify the performance of the proposed 2D-SVMDA
working at Ka-band. The presupposed range- and azimuth-variant QPE linear coefficients are b = 0.003
and k = 0.1, respectively. The point target simulation results and magnified sub-scenes are shown
in Figure 12, in which (a) to (d) are range- and azimuth-variant error interfered image, conventional
MDA processed image, RDMDA processed image, and 2D-SVMDA processed image, respectively.
Azimuth impulse response functions and corresponding quantitative results of Point A, B, and C
(highlighted in Figure 12) are shown in Figure 13 and Table 7. As can be seen, 2D-SVMDA performs the
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best when dealing with range- and azimuth-variant QPE, because the two-dimensional space-variant
phase errors can be simultaneously compensated by the proposed 2D-SVMDA.

Figure 12. Ka-band point target simulation and magnified sub-scene. (a) Range- and azimuth-variant
error interfered image. (b) Processed with conventional MDA. (c) Processed with RDMDA.
(d) Processed with 2D-SVMDA.

Figure 13. Azimuth impulse response curve comparison of Point A, B, and C. (a) Point A. (b) Point B.
(c) Point C.

Table 7. Statistical focus comparison of ideal, 2D spatial-variant error interfered, MDA processed,
RDMDA processed and 2D-SVMDA processed simulated point targets.

Approach
Point A Point B Point C

PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m)

Ideal −13.2520 −10.7007 0.2970 −13.2360 −10.6795 0.3125 −13.3276 −10.7962 0.3125

Interfered −0.0153 10.1942 5.3440 −5.3242 −7.2027 0.6720 −0.2429 9.8641 5.0470

MDA −0.0222 10.1312 7.6565 −0.0440 7.7950 3.1405 −0.1581 3.9971 2.6565

RDMDA −0.0114 5.0664 2.1095 −0.0459 3.4940 1.7815 −0.1635 5.2516 2.2345

2D-SVMDA −13.0390 −10.5583 0.2970 −12.8603 −10.5048 0.3125 −12.7429 −10.5057 0.3280

4.3. X-Band Real Measured Data Experiments

In this subsection, an X-band real measured UAV SAR experiment is designed. The raw data
is collected by an experimental UAV SAR system. The main SAR system parameters are listed in
Table 8 with 16,384-point azimuth samples. The radar platform is equipped with a medium-accuracy
IMU and a GPS system whose output rate is 5 Hz. The altitude control is at an accuracy of 3 m,
and the IMU provides trajectory information at the velocity accuracy of 0.1 m/s in three dimensions.
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Due to the inaccuracy of INS, after a standard “two-step” MOCO with the INS data, residual range-
and azimuth-variant phase errors remain so that we need an autofocus algorithm to generate high
quality images.

Table 8. X-Band SAR system parameters.

Carrier frequency 9 GHz
Pulse repetition frequency 500 Hz

Velocity 60 m/s
Height 3000 m

Center closest slant range 10 km
Squint angle 0 degree

Range resolution 0.75 m
Azimuth resolution 0.75 m

An image block with the size of 900× 1800 (azimuth× range) is picked and processed by different
autofocus strategies for comparison. This image block contains three groups of calibration points at
the right side of scene. The refocused results are shown in Figure 14, in which (a) to (d) are processed
with INS-only-based “two-step” MOCO, conventional MDA, RDMDA, and the proposed 2D-SVMDA.
Apparently, the image generated by the INS-only MOCO is seriously blurred and distorted in geometry
due to the lack of accurate motion measurements. To compare the performance of different algorithms
more clearly, two sub-scenes with obvious characteristics are magnified, which are shown in Figures 15
and 16, respectively. In Figure 15, there is a man-made structure in this sub-scene. It is obvious that the
image is seriously defocused with INS-only MOCO, and partially defocused with conventional MDA
and RDMDA, while with 2D-SVMDA autofocus processing, the surface features are distinguishable
and focused. Figure 16 shows three groups of calibration points, and it is easier to compare the
performance of different autofocus algorithms. We can distinguish all the calibration points only in
2D-SVMDA autofocus processed image. To make a further comparison, two calibration points in
Figure 16 are sampled to analyze the azimuth pulse response function, which are shown in Figure 17.
The quantitative results of Point A and Point B are listed in Table 9. By precisely compensating the
range- and azimuth-variant phase errors, the observed points could be focused with high precision.
Finally, it can be concluded that the proposed 2D-SVMDA autofocus approach has robust performance
for the X-band UAV SAR imagery.

Figure 14. X-band UAV SAR Images processed by different autofocus strategies. (a) Processed with
INS-only MOCO. (b) Processed with conventional MDA. (c) Processed with RDMDA. (d) Processed
with 2D-SVMDA.
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Figure 15. Magnified sub-scene images 1. (a) Processed with INS-only MOCO. (b) Processed with
conventional MDA. (c) Processed with RDMDA. (d) Processed with 2D-SVMDA.

Figure 16. Magnified sub-scene images 2. (a) Processed with INS-only MOCO. (b) Processed with
conventional MDA. (c) Processed with RDMDA. (d) Processed with 2D-SVMDA.

Figure 17. Azimuth impulse response curve comparison of point-like targets. (a) Azimuth response of
Point A. (b) Azimuth response of Point B.

Table 9. Statistical focus comparison of Non-autofocus, MDA processed, RDMDA processed and
2D-SVMDA processed Point A and Point B.

Approach
Point A Point B

PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m)

Non-autofocus −0.2483 7.6671 7.9350 −0.1933 7.1009 10.5360

MDA −2.9363 −1.2629 3.4040 −3.5827 −5.1773 3.1650

RDMDA −4.6002 −3.7517 1.4730 −5.2905 −6.6090 1.9310

2D-SVMDA −11.8845 −8.4139 0.7165 −9.9091 −7.8774 0.7760
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4.4. Ka-Band Real Measured Data Experiments

In this subsection, we also provide a Ka-band measured SAR experiment, in which the raw
data is collected by a trial airborne SAR system. The main SAR system parameters are shown in
Table 10 with 16,384-point azimuth samples. Because the weather condition during the flight test is
unsatisfactory, the measured data is burred with heavy motion errors. After conventional “two-step”
MOCO, the residual azimuth-variant motion error is still so large that we need to remove it for accurate
imaging. In this paper, the main purpose is to remove the residual range- and azimuth-variant motion
errors by the proposed 2D-SVMDA autofocus approach, so we conduct the experiments with two-step
INS-only MOCO, conventional MDA, RDMDA, and the proposed 2D-SVMDA.

Table 10. Ka-Band SAR system parameters.

Carrier frequency 35 GHz
Pulse repetition frequency 1000 Hz

Velocity 70 m/s
Height 3000 m

Center closest slant range 4.5 km
Squint angle 0 degree

Range resolution 0.15 m
Azimuth resolution 0.15 m

An image block with the size of 2048 × 4096 (azimuth × range) is picked, which contains
manufactured constructions in this scene. The comparison results processed by different autofocus
strategies are shown in Figure 18. Two sub-scenes containing single construction and point-like targets
are highlighted by yellow rectangles in Figure 19, and they are magnified to compare the performance of
different autofocus algorithms more clearly in Figure 20. By considering the severe motion deviations,
the image processed by “two-step” INS-only MOCO is seriously blurred because of the residual
range- and azimuth-variant phase errors, while conventional MDA and RDMDA partly refocus the
image. As a contrast, assuming the residual range- and azimuth-variant phase errors is a linear
function with respect to the slow time, we obtain a well-focused image by applying the proposed
2D-SVMDA. Furthermore, in Figure 21, we compare the azimuth pulse response functions of the
two point-like targets marked in Figure 20. Statistical indicators including PSLR, ISLR, and IRW are
listed in Table 11 to measure the impulse response function performance numerically, which also
quantitatively illustrates the performance improvement of the proposed method.

Figure 18. Ka-band airborne SAR Images processed by different autofocus strategies. (a) Processed with
INS-only MOCO. (b) Processed with conventional MDA. (c) Processed with RDMDA. (d) Processed
with 2D-SVMDA.



Remote Sens. 2019, 11, 340 23 of 27

Figure 19. Magnified sub-scene images 1. (a) Processed with INS-only MOCO. (b) Processed with
conventional MDA. (c) Processed with RDMDA. (d) Processed with 2D-SVMDA.

Figure 20. Magnified sub-scene images 2. (a) Processed with INS-only MOCO. (b) Processed with
conventional MDA. (c) Processed with RDMDA. (d) Processed with 2D-SVMDA.

Figure 21. Azimuth impulse response curve comparison of point-like targets. (a) Azimuth response of
Point A. (b) Azimuth response of Point B.

Table 11. Statistical focus comparison of Non-autofocus, MDA processed, RDMDA processed,
and 2D-SVMDA processed Point A and Point.

Approach
Point A Point B

PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m)

Non-autofocus −0.5743 2.2061 1.1765 −2.4086 −5.7753 1.0740

MDA −0.1458 −0.7142 0.6930 −5.5834 −9.8353 0.6590

RDMDA −20.6877 −15.9165 0.3655 −17.5470 −12.9947 0.2925

2D-SVMDA −22.6232 −15.9397 0.1675 −19.1724 −13.0916 0.1850
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5. Conclusions

In this paper, a two-dimensional spatial-variant map-drift algorithm named 2D-SVMDA is
proposed for UAV SAR image autofocusing. First, a novel AVMDA is designed to estimate and
compensate the azimuth-variant phase error, in which the azimuth-variant phase error is re-modeled
as a linear function with respect to the azimuth coordinate. Then, by sequentially integrating RDMDA
and AVMDA into a finite iteration processing, 2D-SVMDA has been developed to retrieve the
residual range- and azimuth-variant phase errors for the UAV SAR imaging. A detailed flowchart of
the proposed method is given in this paper, and the applicable conditions, limitations as well as
computational burden are also analyzed. Both X-band and Ka-band simulated and real measured data
experiments demonstrate that the proposed 2D-SVMDA is a robust autofocus algorithm for UAV SAR
imaging compared with conventional MDA and RDMDA.

Author Contributions: G.W. and L.Z. conceived the study and designed the review. M.Z. derived the formula,
designed the experiments and did fund support. Y.H. did the literature review. All the authors contributed to
the writing and reviewing of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China under Grant 61303031,
Grant 61771372 and Grant 61771367 and the National Outstanding Youth Science Fund Project under
Grant 61525105.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable comments to
improve the paper quality.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Derivations from Equations (16) and (17) to Equations (18) and (19) are achieved by Principle of
Stationary Phase (PSP). Take Equation (16) as an example, we rewrite the integral expression as

s f 1 (w; k) =
∫ Ta/4

−Ta/4
σ · exp [−jγ1 (w− α) t] · exp

[
jkα

(
t2 +

T2
a

16

)]
dt · exp

(
−jα

Ta

4

)
(A1)

According to PSP, extract the phase term in Equation (A1), we have

Φ = exp [jψ (t)]

= exp
[
−jγ1 (w− α) t + jkα

(
t2 + T2

a
16

)
− jα Ta

4

] (A2)

where ψ denotes the stationary phase of Equation (A1). Make

dψ (t)
dt

= 0 (A3)

Then, the stationary phase point t∗ is given by

t∗ =
γ1 (w− α)

2kα
(A4)

Substitute (A4) into (A2), we have

Φ = exp

[
−j

γ2
1(w− α)2

4kα

]
· exp

(
−jα

Ta

4

)
· exp

(
jkα

T2
a

16

)
(A5)
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The integral range of the variable t is [−Ta/4, Ta/4]. According to Equation (A4), the range of
variables w is

[
−kαTa

/
2γ1 + α, kαTa

/
2γ1 + α

]
. Add the envelope terms, and we obtain the final

expression of Equation (A1) is

s f 1 (w; k) ≈ σ · rect
[

γ1 (w− α)

kαTa

]
· exp

[
−j

γ2
1(w− α)2

4kα

]
· exp

(
−jα

Ta

4

)
· exp

(
jkα

T2
a

16

)
(A6)

By the same logic, we get the derivation from Equation (17) to Equation (19).
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