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Abstract: To better classify remotely sensed hyperspectral imagery, we study hyperspectral signatures
from a different view, in which the discriminatory information is divided as reflectance features
and absorption features, respectively. Based on this categorization, we put forward an information
fusion approach, where the reflectance features and the absorption features are processed by different
algorithms. Their outputs are considered as initial decisions, and then fused by a decision-level
algorithm, where the entropy of the classification output is used to balance between the two decisions.
The final decision is reached by modifying the decision of the reflectance features via the results of the
absorption features. Simulations are carried out to assess the classification performance based on two
AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) hyperspectral datasets. The results show
that the proposed method increases the classification accuracy against the state-of-the-art methods.

Keywords: hyperspectral image; classification; decision-level fusion; multi-view learning

1. Introduction

In remote sensing, hyperspectral sensors [1,2] capture hundreds of contiguous bands with
a higher spectral resolution (e.g., 0.01µm). Using hyperspectral data, it is possible to reduce classes’
overlaps, and enhance the capability to differentiate subtle spectral differences. In recent years,
the hyperspectral image classification has been applied to many applications [3]. Typical techniques
applied to hyperspectral image classification include many traditional pattern recognition methods [4],
kernel based methods [5], and recently developed deep learning approaches, such as the transfer
learning [6] and the active learning [7], etc. Data fusion involves the combination of information from
different sources, either with differing textual or rich-media representations. Due to its capability of
reducing redundancy and uncertainty for decision-making, research has been carried out to apply data
fusion to remote sensing. For example, a fusion framework based on multi-scale transform and sparse
representation is proposed in Liu et al. [8] for image fusion. A review on different pixel-level fusion
schemes is given in Li et al. [9]. A decision level fusion is proposed in Waske et al. [10], in which two
Support Vector Machines (SVMs) are individually applied to two data sources and their outputs are
combined to reach a final decision. In Yang et al. [11], a fusion strategy is investigated to integrate the
results from a supervised classifier and an unsupervised classifier. The final decision is obtained by
a weighted majority voting rule. In Makarau et al. [12], factor graphs are used to combine the output of
multiple sensors. Similarly in Mahmoudi et al. [13], a context-sensitive object recognition method is
used to combine multi-view remotely sensed images by exploiting the scene contextual information.
In Chunsen et al. [14], a probabilistic weighted fusion framework is proposed to classify spectral-spatial
features from the hyperspectral data. In Polikar et al. [15], a review on various decision fusion
approaches is provided, and more fusion methods on remote sensing can be found in Luo et al. [16],
Stavrakoudis et al. [17], and Wu et al. [18].
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Extended from our early research on acoustic signals fusion [19] and hyperspectral image
classification [20,21], in this research we focus on decision fusion approaches from a broader choice
of fusion collections. Decision level fusion can be viewed as a procedure of choosing one hypothesis
from multiple hypotheses given multiple sources. Generally speaking, decision level fusion is used to
improve decision accuracy as well as reduce communication burden. Here, for the purpose of better
scene classification accuracy, we adopt the decision level fusion to obtain a new decision from one
single hyperspectral data source. One particular reason for such a choice is that in the decision level
fusion the fused information may or may not come from the identical sensors. In the first manner, the
decision fusion can combine the outputs of each classifier to make an overall decision. On the contrary,
the data-level and the feature-level fusion usually integrate multiple data source or multiple feature
sets. Thus, information fusion can be implemented, either by combining different sensors’ output (like
the traditional fusion), or by integrating different knowledge extractions (such as “experts’ different
views”). The latter fusion scheme actually compensates the deficiency inherited from a single view or a
single knowledge description. Thus, on a typical hyperspectral data-cube that is apparently acquired
from a single hyperspectral sensor, we are still able to explore many effective decision fusion strategies.
By this idea, we recover new opportunities to further improve the classification performance, especially
for the high-dimensional remotely sensed data such as the hyperspectral imagery that is rich in feature
representation and interpretation.

Following the aforementioned motivation, we propose a novel decision level fusion framework
for hyperspectral image classification. In the first step, we extract the spectra from every pixel, and use
them as holistic features. These features characterize the lighting interaction between the materials
and the incident sun light. In the second step, we define a series of valleys in a spectral reflectance
curve, and use them as local features. These features describe the spectral absorptions caused by the
materials. The set of absorption features is formed by marking an absorption vector with a positive
one at the position where absorption happens over the corresponding wavelength or band. Therefore,
the absorption feature vector records the bands where the incident light is absorbed by the material’s
components (e.g., the material’s atoms or molecules) contained in the pixel. This gives us a valuable
local-view regarding the material’s ingredients as well as its identity. Based on this assumption,
we propose a decision level fusion framework to exploit the two groups of or two views of features for
hyperspectral image classification.

By considering the nature of the local features and the holistic features, two groups of classifiers are
firstly chosen as the candidates to classify them. The first group of classifiers, used for the reflectance
features, consists of the nearest neighbor classifier (k-NN), the spectral angle mapping (SAM) and
the support vector machine (SVM). The second group of classifiers, used for the absorption features,
consists of the minimum Hamming distance (MHD) classifier and the diagnostic bands classifier (DBC).
Among them, the diagnostic bands classifier (DBC) is a new algorithm that we proposed in this research
to classify the absorption features, which will be discussed in Section 4.3. Next, a pairwise diversity
between every reflectance-feature classifiers and every absorption-feature classifiers is evaluated,
and the two classifiers with the greatest diversity are selected as the individually favored algorithms to
classify the reflectance and absorption features. Finally, by using an information entropy rule, which is
mediated by the entropy from the classification outputs of the reflectance features, a dual-decision
fusion method is developed to exploit the results from each of the individually favored classifiers.

Comparing to the traditional fusion methods in remotely sensed image classification, the proposed
approach looks at the hyperspectral data from different views and integrates multiple views of features
accordingly. The idea is different from those of conventional multi-source/multi-sensor data fusion
methods, which emphasize the problem of how to supplement information from different sensors.
However, the proposed approach and the traditional sensor fusion or classifiers combination share the
same fusion principle. The difference is that the proposed fusion framework is developed to exploit
the capabilities of different model assumptions. On the contrary, the conventional sensor fusion is
considered to correct the incompleteness by different observations.



Remote Sens. 2019, 11, 352 3 of 24

The rest of the paper is organized as follows. By a detailed discussion of absorption
features, we present the hyperspectral feature extraction by multiple views in Section 3. Then,
an entropy-mediated fusion scheme is presented in Section 4, as well as a discussion on classifier
selection. In Section 5, we carried out several experiments to evaluate the performance of the proposed
method. Finally, in Conclusions, we summarize the research and propose several future works.

2. Hyperspectral Data Sets

In this paper, three datasets are researched. The first one is AVIRIS 92AV3C hyperspectral data,
which is acquired by an AVIRIS sensor over the test site of Indian Pine in northwestern Indiana,
USA [22]. The sensor provides 224 bands of data, covering a wavelength range from 400 nm to
2500 nm. Four of the 224 bands contain only zeros, so they are usually discarded and the remaining
220 bands are formed as the 92AV3C dataset. The scene of the AVIRIS 92AV3C is 145× 145 pixels,
and a reference map is provided to indicate partial ground truth. Both the dataset and the reference
map can be downloaded from Website [23]. The AVIRIS 92AV3C dataset is mainly used to demonstrate
the problem of hyperspectral image analysis for land use survey. Thus, the pixels are labeled as
belonging to one of 16 classes of vegetation, including ‘Alfalfa’, ‘Corn’, ‘Corn(mintill)’, ‘Corn(notill)’,
‘Grass/trees’, ‘Grass/pasture(mowed)’, ‘Grass(pasture)’, ‘Hay(windrowed)’, ‘Oats’, ‘Soybean(clean)’,
‘Soybean(notill)’, ‘Soybean(mintill)’, ‘Wheat’, ‘Woods’, ‘Buildings/Grass/Trees/Drives’, and ‘Stone
Steel Towers’. In our research, pixels of the all 16 classes of vegetation are used in the simulation.

The second dataset is Salinas scene, which is also collected by the 224-band AVIRIS sensor over
Salinas Valley, California. This dataset is characterized by the higher spatial resolution (3.7-meter
pixels comparing to 92AV3C’s 20-meter pixels). The area covered comprises 512 lines by 217 samples.
As the same as the 92AV3C scene, the 20 water absorption bands are discarded. The pixels of the
Salinas scene are labeled as belonging to one of 16 classes, including ‘Brocoli_green_weeds (type1)’,
‘Brocoli_green_weeds (type2)’, ‘Fallow’, ‘Fallow (rough plow)’, ‘Fallow (smooth)’, ‘Stubble’, ‘Celery’,
‘Grapes (untrained)’, ‘Soil_vineyard (develop)’, ‘Corn (senesced green weeds)’, ‘Lettuce romaine (4wk)’,
‘Lettuce romaine (5wk)’, ‘Lettuce romaine (6wk)’, ‘Lettuce romaine (7wk)’, ‘Vineyard (untrained)’,
and ‘Vineyard (vertical trellis)’. In our research, pixels of the all 16 classes are used in the simulation.

The third dataset is used to analyze non-vegetation materials, which is recorded by an ASD
(a Visible, NIR and SWIR spectrometers) field spectrometer (see website [24]) with a spectrum range
from 350 nm to 2500 nm and with wavelength step 1 nm. The data was compared to a white reference
board and was normalized before processing. In this dataset, we focus more on mineral and man-made
materials, including ‘aluminum’, ‘polyester film’, ‘titanium’, ‘silicon dioxide’, etc.

3. Hyperspectral Features Extraction via Multiple Views

To classify hyperspectral images effectively, the first priority is to define appropriate features.
On the one hand, features should be extracted to characterize the intrinsic distinctness among materials.
On the other hand, it is desired that these features are robust to various interferences, such as the
atmospheric noise or neighboring pixels’ interference. One example of the hyperspectral features is
the complete spectra [5,25]. Other conventional hyperspectral features are the spectral bands [20],
the transformed features [22,26], etc. Considering the characteristics of the hyperspectral curves,
it is also useful to apply new transforms with the capability of local description, such as Wavelet
Transforms [27] and Shapelet Transform [28].

In this paper, rather than pursuing the competence of each single set of features like a lot of
previous research did, we are using the idea of the multi-view learning [29–31]. In image retrieval
research, the multi-view learning emphasizes the capability of exploiting different feature sets based
on a single image. In more detail, the multi-view learning uses multiple functions to describe different
views of the same input data and optimizes all the functions jointly by exploiting the redundancy or
complementary content among different views. This is a particularly useful idea for our hyperspectral
image classification for it gives us the opportunity to improve the learning performance without
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inputting other sensors’ data. Therefore, under the umbrella of information fusion, we can combine
the information that naturally corresponds to various views of the same hyperspectral data-cube.
This makes it possible to improve learning performance further.

Based on the multi-view’s idea, we consider the hyperspectral feature extraction from two distinct
views, namely the view of reflectance and the view of absorption. The corresponding two feature sets,
which we called the reflectance spectra and the absorption features, respectively, which are discussed
as follows.

3.1. Features from Reflectance View

In mass spectrometry, a material reflects incident light, and the intensity of the reflectance is
related to the specific chemistry or the molecular structure regarding the material. When the reflectance
was recorded for different wavelengths of the incident light, the output of the spectrometry will come
out as a special curve, which we may call as the reflectance spectra. These spectra are electromagnetic
reflectance of the material to the incident light, so they can be described as a function against the
different wavelengths or bands. Since materials may be classified or categorized by their constituent
atoms or molecules, the spectra can be considered as a special “spectral-signature”. Thus, by analyzing
spectra captured by hyperspectral sensors, we get an effective way to classify different materials.

Figure 1 shows the reflectance spectra of four classes of vegetation and one man-made object
extracted from the AVIRIS 92AV3C dataset. The x-axis shows wavelengths (nm), and the y-axis
shows the radiance value measured at different wavelengths. From Figure 1, it is seen that a different
substance indeed can be differentiated by their spectra, and the spectra can be used as the features to
classify the objects.
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Figure 1. Spectral curves of five classes of substances in the AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) 92AV3C dataset.

Using the reflectance as the features to separate materials is straightforward. However, we may
encounter one major obstacle in classification, i.e., the variability of the spectral curves, which may
take place both in the spatial-domain and the time-domain. Figure 2a depicts 10 samples’ spectral
reflectance for ‘corn’ and ‘wheat’. These pixels are extracted from the aforementioned AVIRIS
92AV3C hyperspectral imagery. The 10 samples are distributed randomly at different locations
in the surveyed yard. Considering the spatial resolution of 50 m and the scenery dimensionality of
145×145 pixels, the maximal distance between any two samples is less than

√
1452 + 1452 × 50 meters.

From Figure 2a, we clearly see the reflectance’s variability caused by the different sampling-locations,
i.e., the spatial-domain variability. Figure 2b illustrates three samples of spectral reflectance of polyester
film, acquired by an ASD field spectrometer at 5–8 minute intervals. From Figure 2b, we also find
substantial variability, which demonstrates that the severe variation may be made at different times of
sampling, i.e., the time-domain variability.
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Figure 2. Variability of the spectral curves.

Apparently, both types of the variability can bring out severe overlaps between classes, and this
will worsen the separability of the features. Considering that the separability measures the probability
of correct classification, we may expect that classification performance will be hampered by only
relying on the spectra features. To alleviate this problem, some methods have been considered, such as
band selection that avoids those less informative bands in the first place, or customized classifiers
that reduce the interference from the overlapped bands. In this paper, we cope with this problem
by the multi-view’s idea, i.e., to investigate the hyperspectral feature extraction from an additional
absorption-view.

3.2. View of Absorption

Absorptions can be seen as dips or ‘valleys’ that appear on the reflectance spectra. These
absorptions happen when the energy of the incident light was consumed by the material’s components,
such as its atoms or molecules. In [32], it is argued that the absorptions are associated with the
material’s constituents, surface roughness, etc. Thus, we can use absorptions as an alternative feature
of imaging spectroscopy for materials’ identification [33].

In our research, we extract the absorption features as follows. First, each of the hyperspectral
curves is normalized to the range of [0,1]. Then, based on the normalized spectra, we use a peak
detection method to find all absorption valleys. Next, to correct wrong absorption valleys, two criteria
are set up: (1) the absorption valley should show, at least, a certain level of intensity, i.e., the depth
of the absorption should be larger than a threshold η (it can be decided by empirical observations);
and (2) the absorption features should appear on more than half of the training spectra. By these two
criteria, the incorrect valleys can be removed and only the absorptions that do matter to the mass
identification have been retained. Finally, the absorption features are encoded as a binary vector or
a bit array.

Figure 3 shows a spectral curve extracted from a pixel in the AVIRIS AV923C dataset. All detected
absorption valleys are shown in Figure 3a, and the selected absorption features, filtered by the
aforementioned two criteria, are labeled as in Figure 3b. The corresponding binary vector is illustrated
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as in Figure 3c, where the dark blocks (represented by values ‘1’) are interpreted as the presence of
absorption and the white blocks (represented by value ‘0’) are interpreted as the absence of absorption.
It is seen that the binary vector in Figure 3c can be considered as a mapping from the spectral curve in
Figure 3a by the absorption detection algorithm in Figure 3b to values in a binary set {0, 1}.
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Figure 3. Absorption valley detection and the binary feature-vector.

To demonstrate the using of the absorption features for mass identification, we illustrate in
Figure 4 the absorption features of four types of mineral materials, including ‘aluminum’, ‘yellow
polyester film’, ‘titanium’ and ‘silicon dioxide’ ( (Figure 4a–d), respectively, which were recorded by
the ASD field spectrometer.

In Figure 4, to discover unique features for mass identification, the absorption valleys of one
type of material are compared against other three types of materials. Only the different absorptions
are retained as the material’s exclusive features, which can distinguish this material from the other
three. Figure 4a–d show the distinct absorption features as vertical lines for each of the four materials.
Another example is given in Figure 5, where the remotely sensed AVIRIS 92AV3C data are used.
Two types of vegetation, including corn (Figure 5a) and wheat (Figure 5b), are studied. It is seen that
no matter whether the four mineral materials are acquired by the field spectrometer ASD or the two
types of vegetation are acquired by remotely sensed AVIRIS sensor, they indeed can be identified
simply by checking their unique absorption features.

However, only using the absorption features in classification would encounter two major
problems. First, much information embedded in the hyperspectral data has not been used efficiently,
which may curb the hyperspectral data’s effectiveness. For example, to classify the four types of
materials in Figure 4, there is not a single absorption feature that can be found in the spectrum range
from 1000 nm–2500 nm (i.e., the shortwave infrared region). However, it is well known that the
shortwave bands indeed contain rich information for classification. For example, the four classes of
materials can be differentiated apparently by observing their amplitudes’ difference. Therefore, simply
using the absorption features in hyperspectral image classification may lose valuable information.
Second, when more materials are involved in identification, the absorption valleys detected in one
type of material have to be compared with more absorption valleys detected from other types of
materials. With the increase of the number of absorption valleys, the likelihood of finding a unique
absorption-feature goes down significantly. This may lead to failures of this approach. For example,
in the case of AVIRIS 92AV3C dataset, it is found that no unique absorption features can be detected to
identify any of the vegetation from the remaining 13 classes of vegetation.
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(a)

(b)

(c)

(d)

Figure 4. Spectral curves of four types of materials and their unique absorption features (labeled by
vertical lines). (a) aluminum; (b) polyester film (yellow); (c) titanium; (d) silicon dioxide.

(a)

Figure 5. Cont.
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(b)

Figure 5. Spectral curves of two types of vegetation and their unique absorption features (labeled by
vertical lines). (a) corn; (b) wheat.

3.3. Multi-View Feature Representation

Aiming at hyperspectral image classification, we have discussed two sets of features, namely
the reflectance spectra and the absorption features. Through observing the hyperspectral data from
two different sensors, i.e., the airborne AVIRIS sensor and the field ASD sensor, it is found that both
of the features have a certain capability to identify materials, but also with considerable limitations
or weakness. We believe that classification using only one feature set may lose useful information.
For example, each feature set is extracted based on a model, and every feature extraction models
have their intrinsic limitations due to model assumptions. On the other hand, by considering the
diversity of different views, classification based on multiple distinct feature sets may provide great
potential to improve classification accuracy, though these feature sets may be extracted based on
a single sensor’s input.

For hyperspectral data, because each of the spectra is actually a reflectance curve against
different wavelengths, we may consider the features that are based on the whole spectra or its various
transformations (e.g., Principal Component Analysis) as a feature-set from the global view. On the
contrary, the feature-set based on absorption is extracted by observing the dips or ‘valleys’ that are
located around certain narrow wavelengths or bands. Thus, we may consider the absorptions as
a feature-set as from the local views. Because the spectra feature-set is based on the reflectance values
and the ‘valley’ feature-set is based on absorption intensity to the incident light, the spectra feature-set
and the absorption feature-set are complementary in nature [34]. Moreover, these two feature-sets
describe the data from the global view and the local view, respectively, and therefore increase their
complementary capability further. Thus, combining these two feature-sets through information fusion
may improve classification accuracy, which we will discuss in the next section.

4. Decision Fusion

Based on the above discussion, we are considering using the information fusion to exploit the
two complementary feature-sets, i.e., the reflectance feature-set and the absorption feature-set.

4.1. Fusion Framework

We propose a fusion diagram, which is shown in Figure 6. The whole scheme is divided by two
dashed lines into three stages, including multi-view feature extraction, classification, and decision
fusion, respectively.
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Figure 6. Fusion diagram for two sets of hyperspectral features.

The first stage is the multi-view feature extraction. We use the global view to extract the reflectance
feature-set and use the local view to extract the absorption feature-set. Two sets of hyperspectral
features are generated correspondingly. In more detail, the upper branch of the features, extracted
from a global view, are the hyperspectral reflectance curves, which are given by

xr =
(

X1
r , X2

r , · · · , XL
r

)
,

where Xi
r stands for the ith band’s reflectance value, i = 1, 2, · · · , L, and L denotes the number of bands

in the dataset. The lower branch of features, extracted from a local view, are based on the absorption
valleys, and are encoded as a binary vector

xa =
(

X1
a , X2

a , · · · , XL
a

)
, (1)

where the binary variable Xi
a = 1 if an absorption valley is found at the ith band, and Xi

a = 0 if there is
no absorption at this band.

The second stage is the individual classification. Two feature-sets, i.e., the reflectance features
xr and the absorption features xa, are fed into the two individually favored classifier fr(·) and fa(·).
To get a better fusion performance, it is desired that the outputs of the two classifiers should be
complementary as much as possible. For this purpose, a diversity evaluation is carried out to select
two classifiers with the largest diversity from a group of candidates. Based on previous research,
three popular classifiers, i.e., the nearest neighbor classifier (k-NN), spectral angle mapping (SAM) and
the support vector machine (SVM), are chosen as the candidates of the reflectance features. Another
two classifiers, based on the nearest Hamming distance (HDC) and the diagnostic bands (DBC), are
chosen as the candidates to the absorption features. The diversity is evaluated based on training
samples, and the two candidates rated as the highest level of diversity will be selected as the classifiers
fr(·) and fa(·). More details on the classifiers selection and the diversity evaluation will be discussed
in Section 4.3.3.

The third stage is the decision fusion. In accordance with the above multi-view feature extraction,
we propose a fusion scheme where the results from fr(·) and fa(·) are combined by a dual-decision
fusion rule. Compared to the traditional decision level fusion, the fusion rule used in this scheme is
neither a hard-decision that takes on a fixed set of decision values (typically li ∈ {1, 2, · · · } standing for
class labels), nor a soft-decision that takes on a group of real numbers (typically pi ∈ [0, 1] standing for
posterior probabilities). However, it can be seen as a hybrid-decision fusion, where the hard outputs
from fr(·) and fa(·) are fused by a rule that is controlled or mediated by the soft output from fr(·).
The detailed fusion algorithm will be introduced in Section 4.4.
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4.2. Classification of Reflectance Features

In remote sensing areas, many algorithms are available to classify the features of reflectance
spectra. In this fusion framework, we consider three matured classification methods, which are either
the classical algorithms with proven performance in many pattern recognition applications or the
popular algorithms based on newly-developed machine learning theory.

4.2.1. Approach Based on Nearest Neighbors

The first method is the k-nearest neighbors algorithm (k-NN) [35]. The k-NN algorithm searches
for the k closest training examples of the input based on a similarity measure (e.g., Euclidean distance
functions), and assigns a class label to it by a majority vote from the k closest neighbors, i.e., to find
the class with the highest frequency among the k nearest neighbors. Although the k-NN method is
the simplest classifying approach, it still works pretty well if we can carefully address the problem of
unbalanced training examples and data representation. Actually, the theoretical evidence to guarantee
the performance of the k-NN algorithm can be shown by the following inequality [36]:

R∗ ≤ RkNN ≤ R∗
(

2− MR∗

M− 1

)
, (2)

where R∗ is the Bayes error rate (i.e., the minimal error probability possible), RkNN is the k-NN error
probability, and M is the number of classes. Recently, the k-NN algorithm has been found effective in
hyperspectral classification [37,38].

4.2.2. Approach Based on Spectral Angles

The second method is the spectral angle mapper classification (SAM) [39]. The SAM treats
hyperspectral data as vectors (e.g., x1 and x2) and then calculates the angle θ between them:

θ = arccos
x1 · x2

‖x1‖ ‖x2‖
. (3)

From Equation (3), it is seen that the spectral angle θ extracts only the vectors’ direction and not
the vectors’ length. Thus, the SAM is insensitive to the linearly scaled variations in spectra, such as
x1 = kx2 (k is a constant). Thus, the SAM can avoid the adverse effects from illumination change or
random shifts of the calibration coefficients, which are a quite common phenomenon in remote sensing.
This invariant nature makes SAM as a suitable candidate to measure the similarity of the overall shape
for the hyperspectral patterns. In hyperspectral classification, it is shown that the SAM works well in
the areas of homogeneous regions [40] and is often considered as the first choice classifier or to work
as a benchmark to other new-developed algorithms.

4.2.3. Approach Based on Support Vector Machine

The third method is the support vector machine (SVM) [41]. Support Vector Machines (SVMs)
have demonstrated superior performance in many applications, including hyperspectral image
classification [5]. Let xi (and x) be an N-dimensional hyperspectral data vector with subscript i
standing for the example number. The SVM-based classifier can be shown as follows:

f (x) = sgn

(
M

∑
i=1

yiαiK (xi, x) + b

)
, (4)

where yi ∈ {+1,−1} stands for the classification labels, α1, α2, · · · , αM are the Lagrange multipliers,
M denotes the number of examples, and b represents the threshold of the preceptor function.
In classifying Equation (4), K (x, x′) = Φ (x)T Φ (x′) represents a kernel function with a corresponding
inner product expansion Φ, which can map the original data into a high-dimensional space.
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The reasons for choosing the three methods above to classify the reflectance spectra can be
summarized as follows. First, the posterior probabilities are needed in our fusion scheme, which will
be used to mediate the dual-decision fusion rule (see Figure 6 and Section 4.4 for more details). All of
the three methods above can generate the necessary posterior probabilities. For examples, the SVMs’
output to probability can be modulated as the posterior probability as follows:

p (y|x) ≈ 1
1 + exp (A f (x) + B)

, (5)

where parameters A and B are found by minimizing the following cross-entropy error function:

argmin
A,B

[
−

T

∑
i=1

ti log (p (y|xi)) + (1− ti) log (1− p (y|xi))

]
, (6)

where ti =
yi+1

2 . The calculation of Equation (6) is discussed in [42,43].
Second, in our fusion scheme, the reflectance spectra are aimed at describing the hyperspectral

data holistically, and all three of the methods are capable of estimating the overall similarity based on
the whole hyperspectral curves. Other classification methods can also be chosen as the candidates’
classifier, as long as they meet the two objectives above as well.

4.3. Classification of Absorption Features

Unlike the conventional reflectance features, the absorption features are newly added in this
approach, and no matured classifiers are available to match them. Compared with the reflectance
features, the absorption features only record the spectral position in which significant absorption
occurs. They are binary vectors, and, generally speaking, are more compact in representation.
More importantly, the absorptions’ features are insensitive to the change of environmental lighting,
which is an valuable property in optical remote-sensing. Considering these characteristics, we propose
the following two classifiers that can take on binary vectors as input.

4.3.1. Approach Based on Hamming Distance

The first method is based on Hamming distance. Traditional distance measures, e.g., Euclidean
distance, Manhattan distance, and Minkowski distance, are only valid for continuous vectors. In the
case of binary absorption features, the Hamming distance is a more suitable choice. The Hamming
distance is a number used to measure the difference between two binary vectors, i.e., to calculate the
number of positions at which the corresponding bits are different, such as follows:

DH(x1, x2) = ∑
i
‖Xi

1 − Xi
2‖, (7)

where x1 =
(
X1

1 , X2
1 , · · · , XL

1
)
, x2 =

(
X1

2 , X2
2 , · · · , XL

2
)
, and Xi

j ∈ {0, 1}. In our case, the Hamming
distance measures how many absorption valleys are mismatched between two spectra. In other words,
it measures the similarity of two spectral data by matching their absorption positions. After calculating
the Hamming distance, we can use the nearest neighbor algorithm to classify the absorption features.

The effectiveness of the above Hamming-distance based classifier largely relies on how accurate
the absorption features can be recorded. It is mainly controlled by the calibration accuracy of
hyperspectral sensors. Unfortunately, in many cases, it is difficult for hyperspectral sensors to provide
sufficient accuracy of wavelength calibration for each of the hyperspectral bands, due to the random
shifts of apparatus’ coefficients. Moreover, some vegetation may have natural spectrum shifts due to
their different growing status. Figure 7 shows five samples of wheat in the AVIRIS 92AV3C dataset.
It is seen that the spectrum shifts significantly around the wavelength at 600 nm. To address the
problem, we consider an alternative approach based on multi-label learning, discussed as follows.
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Figure 7. Illustration of spectral peaks’ shift, wheat samples in AVIRIS 92AV3C dataset.

4.3.2. Approach Based on Diagnostic Band Matching

After detecting the absorption features, we may compare the absorption features of one class
against all those of the remaining classes. The unique absorption features can be named as the
diagnostic bands because they can be used to differentiate this class from all other classes. However,
when more classes are compared, it becomes difficult to find the unique absorption features for
materials identification. Figure 7 shows that many absorption features are shared by several classes,
and it is almost impossible to get a unique absorption feature for comparison, even when the number
of classes involved is beyond a medium level of 10. However, we may avoid this phenomenon by
searching for the diagnostic bands in a pair-by-pair manner. Based on a pairwise diagnostic bands
searching, we propose a new approach to match the absorption features, which is presented as follows.

Given an L-dimensional hyperspectral data vector si =
(
S1

i , S2
i , · · · , SL

i
)
, each of the components

Sj
i ∈ R represents the spectral reflectance value at the j-th band, where i = 1, 2, · · · , M and

j = 1, 2, · · · , L stand for the i-th samples and the j-th band, respectively. M stands for the number of the
training hyperspectral vectors and L stands for the number of the hyperspectral bands. For supervised
learning, the random variable yi = 1, 2, · · ·N is used as the class label of the i-th training pixel si,
where N represents the number of the classes set. Using the following absorption detection algorithm,

X j
i =

{
1, if Sl

i < Sl+1
i and Sl

i < Sl−1
i ,

0, otherwise.
(8)

We get a binary absorption feature vector xi =
(
X1

i , X2
i , · · · , XL

i
)
, where the element X j

i ∈ {0, 1} is
a binary variable, j = 1, 2, · · · , L.

Through the above absorption feature extraction, we have a group of revised training vectors xi
and the corresponding class labels yi, i = 1, 2, · · · , M. There are interferences, such as the noise in
the hyperspectral sensing systems, atmospheric scatter, water absorption, etc., which may generate
absorption as well. However, they are irrelevant to the intrinsic property of the materials and should
not be considered as the features for classification. To avoid them, we further define a representing
feature-vector fn from the training samples for each of the class n, such as

fn =
(

F1
n , F2

n , · · · , FL
n

)
,

where binary variable Fj
n ∈ {0, 1}, and j = 1, 2, · · · , L denote the band number. The representing

feature Fj
n is calculated as follows:

Fj
n =

{
1, if ∑j Xl

j/M
′ ≥ α,

0, otherwise,
(9)

where the variable M
′

is the number of the samples in the n-th class, and the parameter α ∈ [0, 1]
decides whether the band j can be considered as a representing absorption feature for the class n.
In more detail, only the bands at which the absorption can be found on more than α× 100 percentage
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of all samples are considered as the representing feature bands. Since the aforementioned noise and
interferences are randomly distributed on different samples, the noise features are averaged out by
using Equation (9). In this application, the parameter α is chosen in the range of [0.80, 0.90] to ensure
that the representing absorption band will appear in the majority of the samples.

Because many significant bands are shared by other irrelevant classes in the representing
feature-vectors, direct matching unknown samples with fn may not lead to satisfactory results. Figure 8
shows the representing feature-vector f for seven classes of materials listed in AVIRIS 92AV3C, namely
‘Alfalfa’, ‘Grass’, ‘Oats’, ‘Soybean’, ‘Wheat’, ‘Woods’ and ‘Stone-Towers’. It is seen that the absorption
feature at band 4 is detected for all vegetation classes and the representing feature at band 170 is
shared by four classes, including ‘Alfalfa’, ‘Oats’, ‘Soybean’, and ‘Stone-Towers’. Thus, the calculated
distance between two representing feature-vectors becomes quite trivial. To enhance the separability,
the following diagnostic bands are introduced based on each pair of the representing feature-vectors.

AVIRIS band number
20 40 60 80 100 120 140 160 180 200 220

Alfalfa

Grass

Oats

Soybean

Wheat

Woods

Stone−Towers

Band 4 Band 170

Figure 8. Illustration of the selected absorption features (black blocks), seven classes of vegetation in
AVIRIS 92AV3C dataset.

Given two representing feature-vectors fm and fn, the diagnostic bands are defined as:

em,n = {j|Fj
m = 1 and Fj

n = 0.}, j = 1, 2, · · · , L, (10)

where m and n are two class labels. From Equation (10), it is seen that any bands in em,n can be
seen as diagnostic features, which differentiates samples of the class n from that of m. For example,
if the diagnosis band l ∈ em,n, it is indicated that Fl

m = 1 and Fl
m = 0. Therefore, this sample

should be categorized as the class m rather than n. Algorithm 1 shows the calculation of the pairwise
diagnostic bands.

Algorithm 1: Calculating the pairwise diagnostic bands.
Input: fm,fn
Output: em,n

1: for each m ∈ [1, N] do
2: for each n ∈ [1, N] do

3: if find[(fm − fn) == 1] 6= ∅ then

4: em,n = find[(fm − fn) == 1]
5: end if
6: end for
7: end for
8: return em,n

The pairwise diagnostic bands em,n can be re-formulated as a matrix DN×L:

DN×L =

D1,1 · · · D1,L
...

. . .
...

DN,1 · · · DN,L

 , (11)
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where the Dn,l is the number of the diagnostic band l for the class n. This number is calculated from
the pairwise diagnostic bands em,n by summarizing all bands l that signifies the positive of the class n.
The calculation of the matrix D is given in Algorithm 2.

Algorithm 2: Calculating the diagnostic matrix.

Input: em,n = {l1, l2, · · · , lK} , 0 ≤ K ≤ L,
m, n = 1, 2, · · · , N.

Output: Dn,l
1: Dn,l = 0, n ∈ [1, L], l ∈ [1, L].
2: for each m ∈ [1, N] do

3: for each n ∈ [1, N] do

4: if em,n 6= ∅ then

5: for each k ∈ [1, K] do

6: l = lk
7: Dm,l = Dm,l + 1
8: end for
9: end if

10: end for
11: end for
12: return Dn,l

The matrix D can be further transformed into a probability matrix PN×L, such as follows.

PN×L =

 P1,1 · · · P1,L
...

. . .
...

PN,1 · · · PN,L

 , (12)

where the probability Pn,l is defined as:

Pn,l =
Dn,l

N
∑

i=1
Di,l

. (13)

In this way, the matrix PN×L can be seen as a decision matrix with the row as the number of class
and the column as the band number. Each of the components Pn,l can be considered as a conditional
probability, which describes the chance or likelihood when the sample x is categorized as the class n
given the condition that the absorption at the l-th band is found to be positive, i.e.,

Pn,l = Pr

(
y = n

∣∣∣Xl = 1
)

. (14)

Therefore, for an unknown absorption feature-vector xL×1 =
(
X1, X2, · · · , XL)>, classification

can be simply implemented by searching for the maximum of the resulting vector RN×1 =

(R1, R2, · · · , RN), such as:
Y = argmax

n
{R1, R2, · · · , Rn, · · · , RN} (15)

and
RN×1 = PN×L · xL×1. (16)

Since xL×1 is a binary absorption vector and the component Xl = 1 denotes that absorption
is detected at the l-th band, the multiplication in Equation (16) actually sums up the absorption
bands in xL×1, weighted by the class-depend probability of PN×L. Thus, the resulting vector RN×1 =
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(R1, R2, · · · , RN) records not only the hard evidence of how many absorption features are matched but
also the soft evidence of the matching given by the conditional probability matrix PN×L. In this sense,
the proposed method is more advantageous than the commonly used binary-matching approach,
such as the Hamming distance that only captures the number of hard matching.

4.3.3. Diversity Evaluation

The essence of decision fusion is to combine the outputs of each individual classifier in such a way
that the correct decisions are taken, and incorrect ones are neglected. To achieve this goal, it is essential
to keep the diversity of the classifiers as much as possible, especially for our dual-decision fusion
framework (see Figure 6). The diversity is a measurement regarding several classifiers with respect to
a group of data. It is bigger if the classifiers distribute their decisions more evenly or more diversely
among all the possible incorrect decisions when they make incorrect decisions for a given example [44].
In other words, if the outputs of a classifier that makes incorrect decisions do not coincide with those
of other classifiers, the diversity is greater. Intuitively, classifiers’ diversity makes it possible that the
errors caused by one classifier can be corrected by other classifiers according to the assumption that
different classifiers make different errors.

In this research, we consider the following three diversity measures [15]. Given two classifiers
fr and fa such as in Figure 6, Table 1 shows four notations, where the variable Pa,r is the probability
that the instances are classified correctly by both fa and fr, Pa,r̄ is the probability that the instances are
classified correctly by fa but incorrectly by fr, and so on. The first measures is the correlation diversity,
which is defined as

ρa,r =
Pa,rPā,r̄ − Pa,r̄Pā,r

(Pa,r + Pa,r̄) (Pā,r + Pā,r̄) (Pa,r + Pā,r̄) (Pa,r̄ + Pā,r̄)
. (17)

Table 1. Cases of classification results, two classifiers.

Class fr Is Correct fr Is Incorrect

fa is correct Pa,r Pa,r̄
fa is incorrect Pā,r Pā,r̄

The second diversity is the Q-Statistic, which is defined as

Qa,r =
Pa,rPā,r̄ − Pa,r̄Pā,r

Pa,r̄ + Pa,rPā,r̄
(18)

and the third diversity is the disagreement, which is defined as

Da,r = Pa,r̄ + Pā,r. (19)

In our dual-decision fusion diagram, the three measures of diversity above are used as the criteria
to select the best pair of classifiers fr and fa from the two groups of candidates k-NN, SAM, SVM and
HDC, DBC, respectively. The results of the diversity evaluation will be discussed in Section 5.

4.4. Entropy-Mediated Fusion Rule

In the proposed entropy-mediated fusion rule, we use fr to classify the reflectance feature-set xr

and fa to classify the absorption feature xa. As discussed in Section 5, we found that the classification
accuracy based on the reflectance feature-vector xr is superior to the classification accuracy based on
the absorption feature-vector xa. Thus, we design the following fusion rule based on the entropy to fit
his scenario particularly:

1. Choosing the classifier fr as the primary decision maker to the reflectance feature-vector xr.
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2. Taking the output from the classifier fr as an initial classification result, i.e., yr.
3. Choosing the classifier fa as the secondary decision maker to the absorption feature-vector xa.
4. Taking the output from the classifier fa, i.e., ya, as a complementary result to yr.
5. Predicting the classification accuracy of the initial result yr;
6. Arbitrating between the initial result yr and the complementary result ya:

• If the predicted accuracy of yr is higher than a threshold, the final decision is given by the
primary decision maker, i.e., y = yr, where the reflectance features xr is used;

• If the predicted accuracy of yr is lower than a threshold, the final decision is given by the
secondary decision maker, i.e., y = ya, where the absorption features xa is used.

In the above decision fusion rule, it is important to predict the classification accuracy based on
the output of the classifier fr. In this research, we predict the classification accuracy by measuring
the uncertainty of the probability outputs from fr, i.e., the uncertainty of p (y|xr). The higher the
uncertainty of the output is, the lower the accuracy of the classification could be. It is well known that
the uncertainty can be measured by entropy in information theory. Thus, we can assess the accuracy of
the classification result yr by calculating the entropy [45] of p (y|xr) such as follows:

H(Y|xr) = − ∑
y∈Y

p(y|xr) log p(y|xr). (20)

Based on the above discussion and Equation (20), we design a decision-level fusion rule, presented
as the following Algorithm 3, where the final decision is mediated by entropy between two possible
classifying outputs.

Algorithm 3: An entropy mediated decision level fusion.

Input: xr,xa, η
Output: y

1: yr ← classify xr based on the reflectance-feature classifier fr
2: ya ← classify xa based on the absorption-feature classifier fa
3: p (y|xr)← convert outputs of fr based on (1)
4: H(Y|xr))← calculate the entropy of p (y|xr) using
5: if H(Y|xr)) < η then

6: y← yr
7: else

8: y← ya
9: end if

In Algorithm 3, we use the threshold η to evaluate whether the accuracy of the classifier fr

is satisfactory. In our research, the specific value of η is decided by examining the training data.
In Section 5, we present a detailed procedure of obtaining a suitable threshold η.

5. Results

Experiments have been carried out to assess the classification performance of the proposed fusion
method on two hyperspectral datasets, i.e., the AVIRIS 92AV3C and Salinas, respectively. To implement
the proposed fusion method, first we select the best pair of the classifiers fr and fa (see Figure 6).
Using the aforementioned diversity measurements, we assess the complementary potentials of each
pair of the candidate classifiers. Results are shown in Table 2.
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Table 2. Diversities of each pair of classifiers.

Classifiers Combination Correlation Q-Statistic Disagreement

k-NN and HMD 0.3094 0.6297 0.6198
k-NN and DBC 0.1241 0.2852 0.4982
SAM and HMD 0.3187 0.6493 0.6229
SAM and DBC 0.1360 0.3146 0.5012
SVM and HMD 0.2455 0.6079 0.5956
SVM and DBC 0.0875 0.2409 0.4668

Note: k-NN: The nearest neighbor classifier; SAM: The spectral angle mapping; SVM: The support vector
machine; HMD: The minimum Hamming distance classifier; DBC: The diagnostic bands classifier.

From Table 2, it is seen that, in all three of the diversity standards, the classifiers combination
of SVM and DBC achieved the largest diversity. Thus, we use the classifier SVM as fr to classify the
reflectance feature xr, and the classifier DBC as fa to classify the reflectance feature xa.

In our algorithm, the threshold η is used to trigger the fusion processing and it is chosen by
examining the training data. In more detail, we first use a random variable Y to represent the output of
the classifier fr, and use two conditions yr = y and yr 6= y to represent correct decisions and incorrect
decisions, respectively. Then, we calculate the histograms of H(Y|yr = y) and H(Y|yr 6= y) from the
training examples. Next, by normalizing the above conditional probability distributions, we estimate
two conditional probability distributions, i.e., pt = P(H(Y|yr = y) and p f = P(H(Y|yr 6= y). Figure 9
shows the estimated distributions of entropies of H(Y|yr = y) and H(Y|yr 6= y). Based on Figure 9,
we choose the value of the threshold η, at which that the probability of the misclassification is just
above the probability of the correct classification, i.e., the solution of the following inequality:

η∗ = argmin
η

(∫ ∞

η
p f dH(Y) ≥

∫ ∞

η
pt dH(Y)

)
. (21)

By searching the two conditional probability distributions pt = P(H(Y|yr = y) and p f =

P(H(Y|yr 6= y) as in Equation (21), we found that to the AVIRIS dataset the best value of the threshold
η should be set as 0.625, where the number of the incorrect classification (313) is just above the number
of the correct classification (307).

Figure 9. Distributions of entropies, (a) H(Y|yr = y) and (b) H(Y|yr 6= y).
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To assess the performance of the proposed method, we design three sets of experiments. In the first
experiment, we compare the proposed fusion method with three classical hyperspectral classification
methods, i.e., the SVM [5] and the SAM [39], and the k-NN method, respectively. Moreover, a recently
developed method, i.e., the transfer learning (TL) based Convolutional Neural Network [46] is also
used to assess the performance of the proposed method against the state-of-the-art approaches [6,7].
For the TL method, the network we used is a Convolutional Neural Network (CNN) VGGNet-VD16
(see website [47]), which is already trained by a visual dataset ImageNet. The specific transfer strategy
is adopted from [46].

For accuracy assessment, we randomly chose 10% pixels from each class as the training dataset,
and the remaining 90% pixels from each class are chosen as the test set. Based on the training
dataset, a validation dataset is further formed by dividing the training samples evenly. All parameters
associated with each of the involved classifiers are obtained by a two-fold cross validation using only
the training samples:

K
(
x, x′

)
=
(

xTx′ + 1
)d

. (22)

Particularly, for the SVM classifier, the kernel function used is a heterogeneous polynomial.
The polynomial order d and the penalty parameter C are optimized by the aforementioned twofold
validation procedure using only training data. The searching ranges for the parameters d and C are
[1,10] and [10−3, 105], respectively. As for this AVIRIS training set, we found that the best values of the
polynomial order and the penalty parameter C are 4 and 1500, respectively, which are then applied to
the following testing stage.

The classification results are shown in Table 3, where the best results are in bold. By comparing
the individual classification accuracies in Table 3, it is seen that the proposed method achieved the
best results at 13 classes among all 16 classes. As for the overall accuracy, the proposed method
is also outperformed other competitive methods (89.92% versus 83.8% of the TL method, 81.50%
of the SVM-based method, 67.34% of the SAM method, and 67.63% of the k-NN). The Cohen’s
kappa coefficient measures statistic agreement for categorical items, so we also calculated the kappa
coefficient for each methods. It is found that the kappa coefficient of the proposed method is 0.88,
which is significantly higher than the TL method (0.81), the SVM-based method (0.79), the SAM method
(0.63), and the k-NN method (0.63).

Table 3. Comparison of classification performance, AVIRIS 92AV3 dataset, 10% training set.

Class
Performance Pixels in Accuracy (%) of Methods

Testing k-NN SAM SVM TL Proposed
1. Alfalfa 27 42.86 45.28 73.91 91.3 77.27
2. Corn (notill) 1285 54.83 53.59 76.94 82.07 87.84
3. Corn (min) 747 55.02 54.84 80.47 74.62 82.57
4. Corn 213 38.74 37.89 66.47 63.89 86.71
5. Grass & Pasture 435 79.69 83.18 93.83 91.3 95.05
6. Grass & trees 657 82.04 82.14 90.34 92.44 94.45
7. Grass & pasture 25 69.23 67.74 66.67 100 100
(mowed)
8. Hay (wind-rowed) 430 95 94.8 91.79 93.63 93.42
9. Oats 18 50 47.06 0 0 100
10. Soybeans (notill) 875 59.18 57.47 74.42 79.33 89.65
11. Soybeans (min) 2209 66.98 66.27 77.7 79.8 89.36
12. Soybean (clean) 534 45.66 46.6 78.44 85.56 86.65
13. Wheat 184 83.66 86 90.62 93.75 95.26
14. Woods 1138 88.83 89.19 91.07 92.21 94.4
15. Bldg & Grass 347 50.9 48.93 66.3 76.4 85.42
& Tree & Drives
16. Stone & steel towers 84 100 98.68 100 98.73 94.59

Overall accuracy (%) 67.63 67.34 81.50 83.8 89.92
Kappa coefficient 0.63 0.63 0.79 0.81 0.88

Note: Bldg: Building.
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In the above experiment, the training samples are randomly selected. To avoid sampling bias,
we repeat the testing ten times and Figure 10 shows the classification results. It is seen that the
proposed approach outperformed the SVM, the SAM, the k-NN and methods in all of the 10 tests.
Based on the ten times of random sampling, the average numbers for the above ten tests’ results and
the error in the random samplings are summarized in Table 4. By comparing the overall classification
accuracy and the Kappa coefficient, the proposed method is found to be better than other methods.
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Figure 10. Classification results of ten tests, from left to right: k-NN, SAM, SVM, TL and the proposed
method, AVIRIS 92AV3C dataset, 10% training set. Note: k-NN: The nearest neighbor classifier; SAM:
The spectral angle mapping; SVM: The support vector machine; TL: The transfer learning method.

Table 4. Comparison of averaged performance by 10 times of random sampling, AVIRIS 92AV3C
dataset, 16 classes, 10% training samples.

Methods
Performance Overall Accuracy Cohen’s Kappa

(% ± STD) Coefficient
k-NN method 67.64 ± 0.83 0.63
SAM method 67.94 ± 0.88 0.63
SVM method 81.63 ± 0.69 0.79
TL method 83.38 ± 0.82 0.81
Proposed fusion method 89.64 ± 0.56 0.88

We further compare the classification results of various methods by visual classification maps.
Figure 11 illustrates the ground truth of the AVIRIS 92AV3C (Figure 11a), the distribution maps of the
training samples (Figure 11b) and the testing samples (Figure 11c). Figure 12 shows the classification
maps of the SAM method (Figure 12a), the SVM method (Figure 12b), the TL method (Figure 12c),
and the proposed method (Figure 12d). We use three white boxes as the observing windows to see
if improvement of classification accuracy can be made by the proposed method. By comparing the
white windows at Figure 12 with Figure 11, it is seen that the proposed method indeed corrects some
classification errors which are made by the other methods (see the white boxes in Figure 12).

(a). Ground truth, AVIRIS 92AV3C
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Figure 11. Illustration of AVIRIS 92AV3C dataset: (a) ground truth; (b) distribution of training samples;
(c) distribution of testing samples.
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(a). SAM method
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Figure 12. Classification maps of (a) SAM method; (b) SVM method; (c) TL method, and (d) proposed
method, AVIRIS 92AV3C dataset, 16 classes, 10% training samples.

In the second experiment, we compare the proposed method with other popular fusion methods.
To be consistent with the experiment settings of [33], we choose seven classes of vegetation from
AVIRIS 92AV3C for classification test, including ‘Corn (notill)’, ‘Corn (mintill)’, ‘Grass&trees’, ‘Soybean
(notill)’, ‘Soybean (mintill)’, ‘Soybean (clean)’ and ‘Woods’. The sampling percentages are the same
as those in [33], i.e., about 5% of samples are used for training and the remaining 95% of samples are
used for evaluation. Two popular fusion methods, namely the Production-rule fusion method [15] and
the SAM+ABS (Absorption Based Scheme) fusion method [33] are compared with proposed method.
The results are shown in Table 5. It is seen that the overall accuracy of the proposed method is relatively
higher than the state-of-the-art fusion approach, i.e., the SAM+ABS fusion [33], and is significantly
higher than the classical Production-rule fusion.

Table 5. Performance comparison of the proposed fusion scheme with other fusion methods, AVIRIS
92AV3C dataset, seven classes, 5% training samples.

Fusion Methods Overall Accuracy (%) Standard Deviation

Production-rule Fusion 82.52 0.77
SAM+ABS fusion 83.84 0.74
Proposed fusion 85.38 1.07

To further evaluate the proposed fusion strategy, the third experiment is carried out on the Salinas
hyperspectral dataset. The data was collected over Salinas Valley, CA, USA by the same AVIRIS sensor.
The scene is 512 lines by 217 samples, and covers 16 classes materials, including vegetables, bare
soils, and vineyard fields (see Figure 13a). In the experiment, about 1% of samples (see Figure 13b)
were used as the training samples and the remaining 99% samples were used as the testing set (see
Figure 13c). Individual classification accuracies are listed in Table 6. It is seen that the proposed
method outperforms its competitors in nine classes out of all 16 classes. As for the overall accuracies,
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the proposed method is better than other methods (92.48% versus 88.72%, 89.47%, 84.43%, 83.81%).
The comparison of the Kappa coefficient also shows that the proposed method is superior to the
benchmarked approaches (0.92% versus 0.87%, 0.88%, 0.83%, 0.82%).
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Figure 13. Illustration of AVIRIS Salinas dataset: (a) ground truth; (b) distribution of training samples;
(c) distribution of testing samples.

Table 6. Performance comparison, AVIRIS Salinas dataset, 16 classes, 1% training samples.

Class
Performance Pixels in Accuracy (%) of Methods

Testing k-NN SAM SVM TL Fusion
Brocoli_green_weeds_1 1989 100 100 100 100 100
Brocoli_green_weeds_2 3689 98.56 99.13 98.97 99.11 98.11
Fallow 1956 91.26 89.2 94.08 89.28 93.99
Fallow_rough_plow 1380 97.03 97.24 97.99 97.7 99.93
Fallow_smooth 2651 96.06 96.28 98.15 98.28 93.89
Stubble 3919 99.95 99.54 99.97 99.92 100
Celery 3543 95.44 98 98.74 99.21 98.55
Grapes_untrained 11,158 68.46 69.12 75.16 76.33 86.25
Soil_vinyard_develop 6141 95.86 95.5 94.47 98.86 97.04
Corn_senesced_green_weeds 3245 84.23 86.74 89.63 89.26 91.57
Lettuce_romaine_4wk 1057 83.22 81.77 90.11 85.29 93.36
Lettuce_romaine_5wk 1908 93.89 93.67 95.39 95.47 96.87
Lettuce_romaine_6wk 907 89.95 89.62 92.01 95.04 96.01
Lettuce_romaine_7wk 1059 94.88 95.71 96.62 96.28 98.07
Vinyard_untrained 7195 54.33 55.28 79.41 69.49 81.16
Vinyard_vertical_trellis 1789 95.94 98.27 97.93 98.6 97.46

Overall accuracy (%) 83.81 84.43 89.47 88.72 92.48
Kappa coefficient 0.82 0.83 0.88 0.87 0.92

Visual comparison of classification results are shown in Figure 13 and Figure 14. Figure 13
illustrates the ground truth of the Salinas scene (Figure 13a), the distribution maps of the training
samples (Figure 13b) and the testing samples (Figure 13c). Figure 14 shows the classification results of
the k-NN method (Figure 14a), the SAM method (Figure 14b), the SVM method (Figure 14c), the TL
method (Figure 14d), and the proposed method (Figure 14e). Three white windows are labeled at
each of the classification maps (see Figure 14a,b), from which we can look at whether the misclassified
pixels can be corrected by the proposed method. By observing each white window at Figure 14 and
comparing with Figure 13, it is seen that the proposed method had a better classification accuracy and
can correct some classification errors made by other methods.
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Figure 14. Classification maps of (a) SAM method; (b) SVM method; (c) TL method, and (d) proposed
method, AVIRIS Salinas dataset, 16 classes, 1% training samples.

6. Conclusions

In this paper, we present a decision level fusion approach for hyperspectral image classification
based on multiple feature sets. Using the idea of multi-view, two feature sets, namely the reflectance
feature-set and the absorption feature-set, are extracted to characterize the spectral signature from
a global view and a local view. Considering that the absorption features are complementary to
the reflectance features in discriminative capability, we can expect to improve hyperspectral image
classification accuracy by combining the reflectance features and the absorption features. We argued
that this motivation is analogous to the idea of sensors fusion that has been discussed by much
previous fusion literature. We discussed the characteristics of each type of the feature sets, and
proposed a decision fusion rule, in which the final decision is mediated by entropy between the
two initial results obtained from the two feature sets individually. Several experiments have been
carried out based on two AVIRIS datasets, including the Indian Pine 92AV3C and the Salinas scene.
Experimental results show that the proposed method outperformed several state-of-the-art approaches,
such as the SVM-based method and the transfer learning based methods. It is also competitive in many
fusion approaches, such as the SVM+ABS fusion method. Future works will be carried out to further
investigate the nature of the spectral absorptions for hyperspectral sensors and to study classification
algorithms on the absorption features better.
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