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Abstract: Hyperspectral image classification is a challenging and significant domain in the field
of remote sensing with numerous applications in agriculture, environmental science, mineralogy,
and surveillance. In the past years, a growing number of advanced hyperspectral remote sensing
image classification techniques based on manifold learning, sparse representation and deep learning
have been proposed and reported a good performance in accuracy and efficiency on state-of-the-art
public datasets. However, most existing methods still face challenges in dealing with large-scale
hyperspectral image datasets due to their high computational complexity. In this work, we propose
an improved spectral clustering method for large-scale hyperspectral image classification without
any prior information. The proposed algorithm introduces two efficient approximation techniques
based on Nyström extension and anchor-based graph to construct the affinity matrix. We also
propose an effective solution to solve the eigenvalue decomposition problem by multiplicative
update optimization. Experiments on both the synthetic datasets and the hyperspectral image
datasets were conducted to demonstrate the efficiency and effectiveness of the proposed algorithm.

Keywords: spectral clustering; hyperspectral image classification; remote sensing; manifold learning;
unsupervised learning

1. Introduction

Hyperspectral images (HSIs) contain information on hundreds of continuous narrow spectral
wavelengths, which are collected by aircrafts, satellites, and unmanned aerial vehicles in each
HSI pixel [1–4]. Since HSIs reflect rich spectral and spatial resolution, they offer the potential to
discriminate more detailed classes and provide even broader applications for land-over classification
and clustering [5–8]. To a certain extent, dealing with HSIs is difficult because the numerous spectral
bands significantly increase the computational complexity and the noise in HSIs can badly influence the
classification accuracy [9,10]. The existing work reported by most scholars can be roughly divided into
two categories according to whether a certain number of training samples are required, as demonstrated
in [11,12]: (1) supervised learning named HSI classification; and (2) unsupervised learning named
HSI clustering. In the literature, many HSI classification algorithms have been proposed and they
have achieved excellent performances. One popular method for HSI classification is to first use
dimension reduction and then follow a classifier such as support vector machines [13,14]. Due to the
noises and redundancy among spectral bands, many feature extraction, band selection and dimension
reduction techniques have been developed in the past years. Some representative work, such as
principle component analysis [15] and feature-selection algorithm [16,17], are also widely applied in
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HSI classification. Kernel-based algorithms such as SVM and its variants [14] have been shown to
improve performance [18]. Sparse representation [19] has also been introduced to the task of HSI
classification. Newly raised deep learning techniques [20] have proved to be useful for supervised
HSI classification.

HSI classification based on supervised methods provides excellent performance on standard
datasets (e.g., more than 95% of the overall accuracy) [21]. However, the reported HSI classification
algorithms require a certain number of high quality samples to obtain an optimal model. Recently,
many researchers noticed that it is expensive or even impossible to collect enough labeled training
data in some cases, and some recent work pay more attention to the problem of “small sample
size” and present encouraging results, e.g., semi-supervised learning [22], active learning [23],
domain adaptation [24], and tensor learning [25]. Although these methods could achieve similar
classification results as supervised ones while using fewer training samples, they are still supervised
methods that require high quality training samples to learn the classification model. On the contrary,
clustering-based techniques require little prior knowledge and can be considered as data preprocessing
methods to provide necessary reference information regarding supervised classification, target
detection, or spectral unmixing. Therefore, unsupervised HSI classification is an extremely important
techniques and has attracted significant attention in recent years. Wang et al. [26] illustrated that
the existing algorithms can be coarsely divided into the following four categories: (1) Centroid-based
clustering methods, such as k-mean [27] and fuzzy c-means [28], minimize the within cluster sample
distance, but are sensitive to initialization and noise, and cannot provide a robust performance.
(2) Density-based methods include the clustering by fast search and find the density peak algorithm [29],
the density-based spatial clustering of applications with noise [30], and the clustering-in-quest
method [31], which are not suitable for HSIs as it is difficult to get the density peak in the sparse feature
space. (3) Biological clustering methods include the artificial immune networks for unsupervised
remote sensing image classification [32] and the automatic fuzzy clustering method based on adaptive
multiobjective differential evolution [33]. Their results are not always satisfactory because biological
models do not always exactly fit the characteristics of HSIs. (4) Graph-based methods, such as spectral
clustering [34,35], perform well in the task of unsupervised HSI classification but most of them take
too much time on the eigenvalue decomposition and the affinity matrix.

In general, the accuracy of the existing unsupervised HSI classification algorithms are far from
satisfactory compared to the supervised techniques due to the uniform data distribution caused by the
large spectral variability. In this paper, we focus on the family of graph-based clustering algorithms
(i.e., spectral clustering algorithms) [36,37]. Compared with other clustering techniques, spectral
clustering has good performance in dealing with irregularly-shaped clusters and gradual variation
within groups. In general, spectral clustering performs a low-dimension embedding of the affinity
matrix followed by a k-means clustering in the low-dimensional space [38]. The utilization of graph
model and manifold information makes it possible to process the data with complicated structure.
Accordingly, algorithms based on spectral clustering have been widely applied and shown their
effectiveness in the task of HSI processing. Although the spectral clustering methods have performed
well, it would be too expensive to calculate the pairwise distance of enormous samples and difficult to
provide an optimal approximation for eigenvalue decomposition in dealing with a large affinity matrix.
In the clustering process, the complexity mainly arises from two aspects. First, the storage complexity
of the affinity matrix is O(n2) and the corresponding time complexity is O(n2d). The second is the
eigenvalue decomposition of Laplacian matrix, which is O(n2c) time complexity. Note that n, d, and c
are the number of pixels, feature dimensions, and classes of HSI, respectively. It is obvious that high
spatial resolution (i.e., number of pixels n) is a major constraint to apply spectral clustering to real-life
HSI applications. In our experiments, spectral clustering techniques can be applied to small-scale
HSI datasets such as Samson, Jasper, SalinasA, and India Pines, as these datasets contain only about
10,000 pixels. However, along with the increase of spatial resolution of HSIs, it could be unacceptable
for the large-scale HSI datasets including Salinas, Pavia University, Kennedy Space Center, and Urban,
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which contain about 100,000 pixels, because of the rapid growth of the storage and time complexity of
affinity matrix construction and eigenvalue decomposition of Laplacian matrix.

To alleviate the above problem, several improved spectral clustering methods have been proposed
for large-scale HSIs with high spatial resolution. An efficient way to get low-rank matrix approximation
based on Nyström extension has been widely applied in many kernel based clustering task [39,40],
and recent studies have shown good performance in the task of HSI processing [41,42]. Another
method proposed by Nie et al. [43,44] constructs anchor-based affinity matrix with balanced k-means
based hierarchical k-means algorithm. Wang et al. [26] improved the anchor-based affinity matrix
by incorporating the spatial information. Meanwhile, Nonnegative Matrix Factorization (NMF)
technique [45,46] and its variants also provide an efficient solution for HSI classification. Motivated
by the existing approaches, we propose an improved spectral clustering based on multiplicative
update algorithm and two efficient methods for affinity matrix approximation. In general, the spectral
clustering problem can be solved by the standard trace minimization of the objective function and we
propose an efficient resolution though multiplicative update optimization according to the derivative
of the objective function. Meanwhile, the nonnegative constraint and the orthonormal constraint
provide a better indicator matrix and this makes it easier to get a robust clustering result by the
later processing such as k-means. Furthermore, the anchor-based graph and the Nyström extension
are introduced to improve the computational complexity by affinity matrix approximation for the
large-scale HSIs. There are three main contributions of this work:

1. An novel multiplicative update optimization for eigenvalue decomposition is proposed for
large-scale unsupervised HSIs classification. It is worth noting that the proposed method can be
easily portable to the variants of spectral clustering methods with different regularization items
only if the constraints are convex functions.

2. Two affinity matrix approximation techniques, namely the anchor-based graph and the Nyström
extension, are introduced to improve the affinity matrix by sampling limited samples (i.e., pixels
or anchors).

3. Comprehensive experiments on the HSI datasets illustrated that the proposed method achieved a
good result in terms of efficiency and effectiveness, and the combination of multiplicative update
method and affinity matrix approximation provided a better performance.

The rest of this paper is organized as follows. Section 2 provides notations and a brief view
of the general spectral clustering algorithm. Next, we present the motivation and formulate the
proposed multiplicative update algorithm. Furthermore, an effective multiplicative update method for
eigenvalue decomposition is presented in Section 3. To further improve the computational complexity
of affinity matrix, we introduce two efficient approximated techniques in Section 4. The experimental
results including performance analyses, computational complicity and parameter determination are
given in Section 5. Section 6 concludes this paper.

2. Overview

We begin by reviewing the classical spectral clustering algorithm, and before going into the details,
we firstly introduce the notation.

2.1. Notation

In this part, we define some notation to make sure that the mathematical meaning of the proposed
method can be formulated clearly. The pixels of HSIs can be considered as {xi ∈ Rd, i = 1, 2, ..., n}
where d is the dimensionality (i.e., the number of spectral bands). Let {y1, y1, ..., yc} ⊂ Rc be the
indicator vectors of the pixels {x1, x1, ..., xn}, respectively. Here, yi = [yi1, yi2, ..., yic], where c is the
predefined number of clusters, and the indicator vectors yij = 1 if and only if xi belongs to the jth
cluster and yij = 0 otherwise. Denote Y = [yT

1 , yT
2 , ..., yT

n ]
T ∈ Rn×c, and Y ≥ 0 indicates that the

whole elements of Y are nonnegative. The affinity matrix is denoted by W and the Laplacian matrix
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is denoted by L. The corresponding trace can be denoted by Tr(W) and the Frobenius norm of W is
denoted by ||W||F. The detailed notations are summarized in Table 1 and we explain the meaning of
each term when it is first used.

Table 1. Notation.

W Affinity (or similarity) matrix
D Diagonal matrix
L Laplacian matrix
Y Cluster indicator matrix
y Cluster indicator
x Pixels (or data points)
I Identity matrix
n Number of pixels
m Number of chosen pixels (or anchors)
d Number of spectral bands
c Number of classes

2.2. Normalized Cuts Revisit

A set of samples (i.e., pixels) {x1, x2, ..., xn} can be considered as an undirected graph
G = {Vertices, Edges}. Each vertex represents a sample xi and the edge is aligned by their similarity.
In general, the corresponding affinity (or similarity) matrix W can be denoted as

Wij = e
−||xi−xj ||

2
2

2σ2 , i, j = 1, 2, ..., n, (1)

where σ is the width of the neighbors, W is a symmetric matrix and Wij is the affinity of samples xi and
xj. Let A and B represent a bipartition of Vertices, where A∪ B = Vertices and A∩ B = ∅. Let cut(A, B)
denotes the sum of the weights between A and B as cut(A, B) = ∑i∈A,j∈B Wij. The volume of a set is
defined as the sum of the degrees within that set: vol(A) = ∑i∈A Dii and vol(B) = ∑i∈B Dii, where
Dii = ∑j Wij. The normalized cut between A and B can be considered as follows:

NCut(A, B) =
cut(A, B)

vol(A)
+

cut(A, B)
vol(B)

=
2cut(A, B)

vol(A)||vol(B)
, (2)

where || is the harmonic mean. According to [47], an optimal resolution of NCut(A, B) can be provided
by solving the minimization of the following equation

min
yT(D−W)y

yTDy
= min yTD−

1
2 (D−W)D−

1
2 y, (3)

where D is the diagonal matrix with elements Dii = ∑j Wij. y is the indicator vector, where yij = 1 if
and only if xi belongs to the jth cluster and yij = 0 otherwise.

According to spectral graph theory, an approximate resolution of Equation (3) can be considered
as thresholding the eigenvector corresponding to the second smallest eigenvalues of the normalized
Laplacian L as follows:

L = D−
1
2 (D−W)D−

1
2 = I−D−

1
2 WD−

1
2 . (4)

Shi and Malik [47] illustrated that the normalized Laplacian matrix L is positive semidefinite even
when W is indefinite. Its second smallest eigenvalue lies on the interval [0, 2] so the corresponding
eigenvalues of D−

1
2 WD−

1
2 are confined to lie inside [−1, 1]. Considering the case of multiple group

clustering where c > 2, Equation (3) can be rewritten as

min Tr(YTLY), (5)
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where YTY = I and Y is the indicator matrix. This can be solved by the standard trace minimization
problem according to the normalized spectral clustering proposed in [47]. The solution Y consists of
the top c eigenvectors of the normalized Laplacian matrix L as columns.

However, there are two tough problems to get an efficient and effective solution by using the
classical spectral clustering technique: one is the eigenvalue decomposition of the Laplacian matrix
L, which takes O(n2c) time complexity, and the other one is the storage and time complexity of
the affinity matrix, which are O(n2) and O(n2d), respectively. It is obvious that either of the above
problems can be an unbearable burden with the increasing of the number of samples. To alleviate
the above problem, motivated by the recent work such as Nyström extension, anchor-based graph
and nonnegative matrix factorization, we propose a novel approach to solving the large-scale and
high-dimensional HSI clustering (or unsupervised HSI classification), and the detailed demonstration
are presented in the following sections.

3. Improved Spectral Clustering with Multiplicative Update Algorithm

In this section, we propose an multiplicative update algorithm to get an efficient resolution
of the eigenvalue decomposition of the Laplacian matrix L. We firstly present the formulation and
our motivation, and then a novel resolution for spectral clustering based on multiplicative update
algorithm is proposed in Section 3.2.

3.1. Formulation and Motivation

In general, a multigroup spectral clustering problem (i.e., c > 2) can be considered as a
minimization of the following equation:

min Tr(YTLY) + λ||YTY− I||2F, (6)

where λ > 0 is the Lagrangian multiplier and ||YTY − I||2F is the item for orthonormal constraint.
However, Equation (6) is still a non-smooth objective function, thus it is difficult to obtain an efficient
resolution by solving the eigenvalue decomposition of the Laplacian matrix L. Motivated by NMF,
which has excellent performance in dealing with clustering by relaxation technique, we relax the
discreteness condition and propose an multiplicative update optimization to solve the eigenvalue
decomposition, the details of which are illustrated in the next section.

3.2. Multiplicative Update Optimization

Spectral clustering cannot provide an efficient resolution since it would be too expensive to get
an optimal approximation for eigenvalue decomposition in deal with large-scale datasets. Motivated
by the recent work on NMF, we introduce the nonnegative constraint for indicator matrix as Y
where Yij > 0. Moreover, the traditional spectral relation approaches relax the indicator matrix Y
to orthonormal constraint as YTY = I. According to a recent work [48], if the indicator matrix Y is
orthonormal and nonnegative simultaneously, only one element is positive and the others are zeros in
each row of Y. Note that we can get an ideal indicator matrix Y as defined in Section 2.1 by considering
the above two constraints: Y > 0 and YTY = I. The above constraints are significant, which can help
us to solve the eigenvalue decomposition in a more efficient way and this is also easy to implement.

By relaxing the discreteness condition and considering the above two constraints, Equation (6)
can be rewritten as

min Tr(YTLY) + λ(YTY− I) = min Tr(YTLY) + λTr((YTY− I)T(YTY− I)), (7)

where Y > 0. Equation (7) can be considered as the cost function and we try to find an optimal
resolution of minimization. The derivation of Equation (7) is

LY + 2λYYTY− 2λY, (8)
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where L = I−D−
1
2 WD−

1
2 and Equation (8) can be rewritten as

(I−D−
1
2 WD−

1
2 )Y + 2λYYTY− 2λY

=Y−D−
1
2 WD−

1
2 Y + 2λYYTY− 2λY

=(Y + 2λYYTY)− (2λY + D−
1
2 WD−

1
2 Y).

(9)

In this case, the derivation of Equation (7) is divided into two parts. Both Y + 2λYYTY and
2λY + D−

1
2 WD−

1
2 Y are nonnegative matrices since Y > 0, D > 0, and W ≥ 0. For convenience,

we denote the former factor as Q = Y + 2λYYTY and the latter factor as P = 2λY + D−
1
2 WD−

1
2 Y.

According the multiplication update rule for standard NMF algorithm [49], we can get the minimization
of the cost function in Equation (7) by updating Y as follows:

Y← Y ◦ P�Q, (10)

where ◦ and � denote Hadamard product and Hadamard division (i.e., element-wise multiplication
and division), respectively, and Yij ← Yij · Pij/Qij. Then, we can get a optimal resolution until the cost
function converge and the implement details are presented in Algorithm 1. Since only one element is
positive and the others approximate zero in each row of the indicator matrix Y, it can be considered as
a nearly perfect indicator matrix for clustering representation.

Algorithm 1: Algorithm to solve the problem in Equation (6).

Input: Hyperspectral image datasets X.
Output: Indicator matrices Y and clustering result S.
Initialize indicator matrix randomly such that Y > 0.
Choose m samples in X:
(a). If using Nyström extension, calculate the matrices A and B by Equation (17).
(b). If using anchor-based graph, calculate the matrix Z according to Equation (26).
while Equation (6) not converge do

1. Update numerator matrix P and denominator matrix Q:
(a). If using Nyström extension, update P and Q with A and B by Equation (19).
(b). If using anchor-based graph, update P and Q with Z by Equation (28).

2. Update the indicator matrix Y according to Equation (10):

Yij = Yij

√
Pij
Qij

.

end
Input Y to k-means to get the clustering result S.

4. Approximated Affinity Matrix

To further improve the time and storage complexity of computing affinity matrix to make the
spectral clustering algorithm available for large-scale datasets such as HSIs, we introduce anchor-based
graph and Nyström extension to approximate the original affinity matrix with limited samples.

4.1. Affinity Matrix with Nyström Extension

The Nyström extension is a technique for finding numerical approximations to eigenfunction
problems and the detailed illustration can be found in [50]. It allows us to extend an eigenvector
computed for a set of sample points to arbitrary samples x with the interpolation weights.
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Inspired by [47], the affinity matrix considers both the brightness value of the pixels and their
spatial location, and we can define the similarity of two samples xi and xj as

Wij = e
−||li−lj ||

2
2

2σ2
l · e

−||xi−xj ||
2
2

2σ2
x , (11)

where li and lj are the spatial locations of the HSI’s pixels. σl and σx are the bandwidth of neighboring
pixels and these parameters are sensitive to different HSIs. To alleviate this problem, Zhao et al. [35]
introduced an adaptive parameter and we can define σ̄l and σ̄x as

σ̄2
l =

1
n2

n

∑
i=1

n

∑
j=1
||li − lj||22,

σ̄2
x =

1
n2

n

∑
i=1

n

∑
j=1
||xi − xj||22.

(12)

and Equation (11) can be presented as

Wij = e
−||li−lj ||

2
2

2ασ̄2
l · e

−||xi−xj ||
2
2

2ασ̄2
x . (13)

where the parameter α controls the neighbor of affinity matrix.
For uniformity in notation, the affinity matrix A is similarity defined by Equation (11) of m chosen

samples. The affinity matrix of the remaining n−m samples and the chosen samples are denoted as B.
C is the affinity matrix for the remaining samples. The affinity matrix W can be rewritten as

W =

[
A B
BT C

]
, (14)

where A ∈ Rm×m, B ∈ Rm×(n−m) and C ∈ R(n−m)×(n−m). According to the Nyström extension, C can
be denoted by C = BTA−1B and the approximated affinity matrix W can be formulated as

Ŵ =

[
A B
BT BTA−1B

]
=

[
A
BT

]
A−1

[
A B

]
. (15)

We can find that the size of this norm is governed by the extent to which C is spanned by the
rows of B, and the Nyström extension provides an approximation to the entire affinity matrix with
only a subset of rows or columns.

To extend the above matrix form of Nyström method to NCut, we need to calculate the row sum
of matrix Ŵ. However, it is possible without explicitly evaluating the sub-matrix BTA−1B since

d = Ŵ1 =

[
A1m + B1n

BT1m + BTA−1B1n

]
, (16)

where A1m and B1n are the row sum of matrix A and A and BT1m is the column sum of matrix B.
Then, the matrix A and B can be formulated as

Aij ←
Aij√
didj

,

Bij ←
Bij√

didj+m

,
(17)
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and we can get the normalized affinity matrix D−
1
2 ŴD−

1
2 (refer to Equation (15)) as before; thus,

we can get

D−
1
2 ŴD−

1
2 =

[
A
BT

]
A−1

[
A B

]
, (18)

where A and B are from Equation (17). However, the elements of D−
1
2 ŴD−

1
2 can be negative since

the matrix A−1 may contain negative elements. However, we have to keep D−
1
2 ŴD−

1
2 ≥ 0 to

satisfy the constraints of the proposed multiplicative update algorithm. Because of this, we denote
A+ = (|A|+ A)./2 and A− = (|A| −A)./2, where we can find that A+ is the positive part of A and
A− is the negative part of A. Note that both A+ and A− are negative matrix and P and Q can be
formulated as

P =

[
A
BT

]
A+

[
A B

]
Y + 2λY,

Q =

[
A
BT

]
A−

[
A B

]
+ Y + 2λYYTY.

(19)

4.2. Affinity Matrix with Anchor-Based Graph

The anchor-based graph was proposed by Zhu et al. [43] for large-scale data clustering problem.
It makes the label prediction function a weighted average of the labels on a subset of anchor samples.
If one can infer the labels of other unlabeled samples, they are easily obtained by a simple linear
combination. As such, the label prediction function f (·) can be represented by a subset A = {aj}m

j=1 ⊂
RD in which each aj acts as an anchor sample,

f (xi) =
m

∑
j=1

Zij f (aj), (20)

where Z is the data-adaptive weight matrix which measures the similarity between samples and
anchors. We define two vectors F = [ f (x1), f (x2), ..., f (xn)]T and Fa = [ f (a1), f (a2), ..., f (an)]T ,
thus Equation (20) can be rewritten as

F = ZFa, Z ∈ Rn×m, m� n. (21)

This formula reduces the solution space of unknown labels from large F to smaller Fa.
The first problem of anchor-based graph construction is how to choose the anchors. In general,

the anchors can be considered as random samples or representative samples such as k-means clustering
centers. Random selection chooses m anchors by random sampling from samples with computational
complexity O(1). However, the randomly chosen samples cannot guarantee that the approximated
affinity matrix is always robust. Liu et al. [51] suggested using k-means clustering centers as anchors
instead of randomly chosen samples since the k-means clustering centers have a robust representation
power to adequately cover the whole data. However, the computational complexity of k-means is
O(ndmt), where t is the number of iterations.

The second problem is how to design a regression matrix Z that measure the underlying
relationship between the whole samples and the chosen anchors. Liu et al. [51] proposed a method
named Local Anchor Embedding (LAE) to reconstruct the regression matrix, where {a1, a2, ..., am}
denote the chosen anchors and K(·) is a given kernel function with bandwidth parameters:

Zij =
K(xi, aj)

∑k∈Φi
K(xi, ak)

, ∀j ∈ Φi (22)
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The notation Φi ⊂ [1, 2, ..., m] is the set saving the indexes of s nearest neighbors of xi in A, and the
Gaussian kernel K(xi, aj) = exp(−||xi − aj||22/2σ2) is adopted for the kernel regression. However,
the kernel-based methods need an extra parameter (i.e., bandwidth σ). Nie et al. [27] adopted a
parameter-free yet effective neighbor assignment strategy and they obtained the ith row of Z by
solving following problem:

min
ZT

i 1=1,Zi≥0

m

∑
j=1
||xi − aj||22Zij + γZ2

ij, (23)

where ZT
i denotes the ith row of Z and γ is the regularization parameter. Note that Equation (23) does

not consider the spatial information of HSIs, which may result in some isolated pixels appearing in the
clustering HSI due to the existence of noise, outliers, or mixed pixels. Recent studies incorporate the
spatial information by directly modifying the cost function in Equation (23) as follows:

min
ZT

i 1=1,Zi≥0

m

∑
j=1
||xi − aj||22Zij + β||x̄i − aj||22Zij + γZ2

ij, (24)

where x̄i is the mean of the neighboring pixels lying within a window around xi and the parameter α

controls the tradeoff between hyperspectral information and spatial information. Let dx
ij = ||xi − uj||22

and dx̄
ij = ||x̄i − uj||22, and denote di ∈ Rm a vector with the jth element as dij = dx

ij + βdx̄
ij. It is

obvious that Equation (24) can be rewritten in vector form as

min
Zi
||Zi +

1
2γ

di||22, (25)

where ZT
i 1 = 1 and Zi ≥ 0. Following y Nie et al. [43], the parameter γ can be denoted by

γ = (s/2)di,s+1 − (1/2)∑s
j=1 dij, and the resolution of Equation (25) is

Zij =
di,k+1 − dij

kdi,k+1 −∑k
j′=1 dij′

. (26)

For the detailed deviation, see [27]. After we get the regression matrix Z, the affinity matrix W
can be obtained as

Ŵ = Z∆−1ZT , (27)

where ∆ is a diagonal matrix, the jth entry is defined as ∑n
i=1 Zij and Ŵ is symmetric positive

semidefinite and doubly stochastic. Not that ZT
i 1 = 1 and Zi ≥ 0, and it can be verified that

Ŵ is a double stochastic matrix and Ŵij ≥ 0. More importantly, the approximated matrix Ŵ is

automatically normalized and we can find that Ŵ = D−
1
2 WD−

1
2 . In this case, the Laplacian matrix L

can be considered as L = I− Ŵ and we can rewrite P and Q as follows:

P = 2λY + Z∆−1ZTY

Q = Y + 2λYYTY
(28)

5. Experiments

In the experiments, we verified the performance of the proposed unsupervised HSI classification
algorithm on both synthetic datasets and HSI datasets, and then showed several useful analysis.
The synthetic benchmark datasets were three sets of data with manifold structure and the HSI datasets
are several hyperspectral images (i.e., Salinas, Pavia University, Kennedy Space Center, Samson, Indian
Pines, Urban and Japser).
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5.1. Experimental Datasets

We conducted experiments on eight widely used hyperspectral datasets:

• Salinas and Salinas-A were acquired by the 224-band AVIRIS sensor over Salinas Valley, California,
and characterized by high spatial resolution (3.7-m pixels). Salinas covers 512 lines by 217 samples
at as scale of 512× 217. Salinas ground truth contains 16 classes. Salinas-A is an small subscene
of Salinas image and it comprises 86× 83 pixels located within the same scene at [samples, lines]
= [591–676, 158–240] and includes six classes.

• Pavia University is the scene collected by the ROSIS sensor during a flight campaign over Pavia,
northern Italy. The number of spectral bands is 103 for Pavia University. Pavia University
is a 610× 610 pixels image, where some pixels contain no information and these samples are
discarded. Both hyperspectral image ground truths differentiate nine classes.

• Kennedy Space Center was acquired by the NASA AVIRIS instrument over the Kennedy Space
Center (KSC), Florida, on 23 March 1996. They acquired data in 224 bands of 10 nm width
with center wavelengths from 400 to 2500 nm and 176 bands were used for the analysis.
KSC hyperspectral image contains 512 × 614 pixels. For classification purposes, 13 classes
representing the various land cover types that occur in this environment were defined for the site.

• Samson dataset is an image with 95 × 95 pixels and each pixel was recorded at 156 channels
covering the wavelengths from 401 nm to 889 nm. The spectral resolution is high up to 3.13 nm
and it is not degraded by blank or noisy channels. There are three targets in this image: Soil,
Tree and Water.

• Japser Ridge is a hyperspectral image with 100 × 100 pixels. Each pixel was recorded at
224 channels ranging from 380 nm to 2500 nm. The spectral resolution is up to 9.46 nm. There are
four end-members latent in these data: Road, Soil, Water and Tree.

• Urban has 210 wavelengths ranging from 400 nm to 2500 nm, resulting in a spectral resolution
of 10 nm. There are 307× 307 pixels, each of which corresponding to a 2× 2 m2 area. There are
three versions of the ground truth, which contain 4, 5 and 6 end-members respectively, and are
introduced in the ground truth.

• Indian Pines was gathered by AVIRIS sensor in northwestern Indiana and consists of
145× 145 pixels and 224 spectral reflectance bands. The Indian Pines scene contains two-thirds
agriculture, and one-third forest or other natural perennial vegetation. The ground truth available
is designated into sixteen classes and we reduced the number of bands to 200 by removing bands
covering the region of water absorption.

5.2. Evaluation Metrics

In the experiments, we evaluated the clustering results by Purity (P.) and Normalized Mutual
Information (NMI).

• P. is the most common metric for clustering results evaluation and it can be formulated as

Purity(Ω, Ω̂) =
1
n ∑

i
max

j
|Ωi ∩ Ω̂j| (29)

where Ω is the clustering result set and Ω̂ is the ground truth. The worst clustering result is very
close to 0 and the best clustering result has a purity value equal to 1.

• NMI is a normalization of the mutual information score to scale the results between 0 and 1 as

NMI =
∑c

i=1 ∑c
j=1 ni,jlog

ni,j
ni n̂j√

(∑c
i=1 nilog ni

n )(∑
c
i=1 n̂ilog n̂i

n )
, (30)
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where ni denotes the number of data contained in the cluster Ci(1 ≤ i ≤ c), n̂j is the number of
data belonging to the Lj(1 ≤ j ≤ c), and ni,j denotes the number of data that are in the intersection
between the cluster Ci and the class Lj. The larger is the NMI, the better is the clustering result.

We ran the experiments under the same environment: Intel(R) Core(TM) i7-5930K CPU,
3.50 GHz, 64 GB memory, Ubuntu 14.04.5 LTS system and Matlab version R2014b. We compared
our algorithm with Spectral Clustering (SC), Anchor-based Graph Clustering (AGC), and Nyström
Extension Clustering (NEC). The corresponding improved algorithms based on multiplicative update
optimization are SC-I, NEC-I, and AGC-I. The affinity matrix of the above algorithms were constructed
in three ways and the detailed description of the above affinity matrix is presented in the next section.

5.3. Toy Example

We firstly explored the performance of our algorithm on three synthetic datasets to verify the
effectiveness of multiplicative update optimization and two approximated affinity matrix matrices.
In this experiment, three synthetic datasets were introduced in our experiment: Cluster in Cluster (CC),
Two Spirals (TS), and Crescent Moon (CM). Figure 1 presents the manifold structure of the synthetic
datasets in detail. These synthetic datasets contain 2000–40,000 data points that are divided into two
groups and they are extremely challenging since clustering algorithms that only consider data point
distance have difficulty obtaining a robust result. The algorithms with spectral graph theory provide
a more powerful technique in dealing with the manifold information. The resolution for spectral
clustering can be divided into two parts: affinity matrix construction and eigenvalue decomposition of
the Laplacian matrix. In this paper, we present three formulations for the affinity matrix construction as

Euclidean distance : Wij = e
−||xi−xj ||

2
2

2ασ̄2 ,

Nyström extension : Ŵ =

[
A
BT

]
A−1

[
A B

]
, Aij = e

−||ui−uj ||
2
2

2ασ̄2 , Bij = e
−||ui−xj ||

2
2

2ασ̄2 ,

Anchor-based graph : Ŵ = Z∆−1ZT , Zij =
di,k+1 − dij

kdi,k+1 −∑k
j′=1 dij′

.

(31)

where x is the whole sample and u is the chosen data points. α is the parameter to control the neighbor
of data points for Euclidean distance and we set α = 10. A is the affinity matrix for anchors (chosen
data points) and B stores the similarity between anchors (chosen data points) and the remaining ones.
dij denotes the distance between the ith data point and the jth anchor, which can be considered as
chosen data points, and di1, di2, ..., din are ordered from small to large. According to [27], the parameter
k for anchor-based graph was set to 10, which provided a good performance in most cases. Note that
the last two affinity matrices are the approximated solution for the original affinity matrix. The sample
scale was set to 10, which means we randomly selected one-tenth of data points as the anchors or the
chosen data points.

(a) Cluster in cluster (CC) (b) Two spirals (TS) (c) Crescent moon (CM)

Figure 1. The synthetic datasets.
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Compared with the traditional eigenvalue decomposition of the Laplacian matrix, we propose
a multiplicative update optimization to get a more efficient solution of eigenvalue decomposition.
In our experiments, the number of iterations was about 150 and we obtained good results in most
cases. Besides the above-mentioned parameters, the other parameters of the compared algorithms and
our improved algorithms were tuned to the optimum.

Tables 2–4 present the performance of the above six methods on three synthetic datasets. SC and
SC-I provided a good clustering result since the corresponding affinity matrix considered the similarity
of the whole data points; however, these two methods also needed more time to calculate the
Euclidean distance among samples. Note that the proposed multiplicative update algorithm delivered a
substantial efficiency increase, taking only half the time to get a similar clustering result. NEC and AGC
had the benefit of the approximated affinity matrix and took only about one-tenth the time, but NEC
was not robust enough to get a stable resolution of the eigenvalue decomposition. Compared with NEC,
the improved algorithm NEC-I provided a better clustering result because of the orthonormal constraint
and nonnegative constraint. AGC performed better than SC and NEC in terms of effectiveness and
efficiency in the experiments, as it utilized the anchor-based affinity matrix, and the proposed AGC-I
also had a good performance.

5.4. HSI Clustering Analysis

In this section, a further study is presented to illustrate the performance of the proposed
multiplicative update algorithm and the efficiency of the approximated affinity matrix mentioned in
Section 4 on several popular hyperspectral image datasets. We followed the experiment setting in the
previous section where the parameter α was set to 10 and the parameter k was set to 10. In addition,
the parameter λ was set to 0.5 and the other parameters were tuned to the optimum for fair competition.
Note that the affinity matrix for the hyperspectral image datasets was different from the previous
section because it needed to consider both the brightness value and the spatial information. In this
case, the affinity matrix W can be rewritten as

Wij = e
−
||xi−xj ||

2
2

2ασ̄2
x
−
||li−lj ||

2
2

2ασ̄2
l ,

(32)

where l is the pixel location and the parameter α was set to 10 for both the brightness value and
the spatial information. The affinity matrices A and B for NEC were constructed in the same way.
Meanwhile, The affinity matrix for AGC is provided as

Ŵ = Z∆−1ZT ,

Zij =
di,k+1 − dij

kdi,k+1 −∑k
j′=1 dij′

,
(33)

where dij = ||xi − uj||22 + ||x̄i − uj||22 and x̄ is the mean of the brightness value around pixel x.
Figure 2 and Table 5 present the experimental results, which were evaluated by Purity and NMI

on the hyperspectral image datasets. We made the following observations:

• SC and the corresponding improved algorithm SC-I achieved competitive performance in term of
Purity and NMI. However, SC took more time solving eigenvalue decomposition of Laplacian
matrix and our improved algorithm provided a more efficient solution because of the utilization
of the multiplicative update optimization. Meanwhile, it took more time to process India Pines
because of the rapid growth of time complexity of eigenvalue decomposition of Laplacian matrix
caused by the increase of spatial resolution and classes. Note that SC-I, which is based on the
multiplicative update algorithm, slightly outperformed SC in terms of Purity and NMI, illustrating
that the nonnegative constraint and the orthonormal constraint provided a better indicator matrix.
This made it easier to get a robust clustering result by the later processing, such as k-means.
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• NEC and AGC are two efficient improved algorithms and they took only one-twentieth the
time in our experiments. Moreover, NEC and AGC could be used on large-scale hyperspectral
image datasets such as KSC and Urban, while SC ran out of memory in dealing with the above
large-scale datasets because of the storage and time complexity of the affinity matrix. However,
the experimental results also illustrate that NEC was not robust enough, which might be because
the affinity matrix A can be indefinite and the inverse matrix contains plural elements, making it
difficult to get a robust clustering result by k-means. Besides NEC, the other methods did not
struggle with this problem, and also provided a better performance than NEC.

• The proposed NEC-I and AGC-I outperformed the other methods in terms of effectiveness and
efficiency. NEC-I and AGC-I firstly take the advantage of sample techniques including Nyström
extension and anchor-based graph, which allow them to be used on large-scale hyperspectral
image datasets. Furthermore, the proposed multiplicative update algorithm provided an efficient
resolution for eigenvalue decomposition of Laplacian matrix. The results presented in Table 5
illustrate that NEC-I and AGC-I performed better than NEC and AGC in most cases. The proposed
multiplicative update optimization is flexible and well-knit with the approximated affinity matrix
such as Nyström extension and anchor-based graph.

(a) GT (SalinasA) (b) GT (Japser Ridge) (c) GT (Samson) (d) GT (Indian Pines)

(e) Result (SalinasA) (f) Result (Japser Ridge) (g) Result (Samson) (h) Result (Indian Pines)

(i) GT (Salinas) (j) GT (Pavia Uni.) (k) GT (Urban) (l) GT (KSC)

(m) Result (Salinas) (n) Result (Pavia Uni.) (o) Result (Urban) (p) Result (KSC)

Figure 2. HSI ground truth and results.
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Table 2. Clustering results on synthetic dataset (CC).

SC SC-I NEC NEC-I AGC AGC-I

P. NMI CT P. NMI CT P. NMI CT P. NMI CT P. NMI CT P. NMI CT

Num. = 2000 1.00 1.00 1.02 1.00 1.00 0.35 0.68 0.25 0.05 1.00 1.00 0.08 1.00 1.00 0.05 1.00 1.00 0.06
Num. = 4000 1.00 1.00 1.45 1.00 1.00 1.35 0.65 0.09 0.14 1.00 1.00 0.17 1.00 1.00 0.15 1.00 1.00 0.14
Num. = 6000 1.00 1.00 3.12 1.00 1.00 2.94 0.69 0.26 0.36 1.00 1.00 0.48 1.00 1.00 0.26 1.00 1.00 0.29
Num. = 8000 1.00 1.00 5.53 1.00 1.00 5.23 0.67 0.25 0.68 1.00 1.00 0.81 1.00 1.00 0.56 1.00 1.00 0.54

Num. = 10,000 1.00 1.00 9.05 1.00 1.00 7.87 0.68 0.25 0.81 1.00 1.00 1.25 1.00 1.00 0.69 1.00 1.00 0.86
Num. = 12,000 1.00 1.00 13.04 1.00 1.00 11.35 0.50 0.00 1.91 1.00 1.00 1.89 1.00 1.00 0.83 1.00 1.00 1.20
Num. = 14,000 1.00 1.00 18.39 1.00 1.00 15.23 0.57 0.02 2.67 1.00 1.00 2.32 1.00 1.00 1.13 1.00 1.00 1.62
Num. = 16,000 1.00 1.00 23.99 1.00 1.00 21.44 0.52 0.00 3.66 1.00 1.00 3.01 1.00 1.00 1.33 1.00 1.00 2.17
Num. = 18,000 1.00 1.00 31.05 1.00 1.00 25.00 0.63 0.19 3.25 1.00 1.00 4.42 1.00 1.00 1.85 1.00 1.00 2.87
Num. = 20,000 1.00 1.00 39.52 1.00 1.00 31.52 0.69 0.27 6.59 1.00 1.00 4.55 1.00 1.00 2.23 1.00 1.00 4.58
Num. = 22,000 1.00 1.00 50.36 1.00 1.00 43.48 0.50 0.00 5.58 1.00 1.00 7.19 1.00 1.00 3.06 1.00 1.00 5.57
Num. = 24,000 1.00 1.00 62.55 1.00 1.00 52.81 0.54 0.00 7.13 1.00 1.00 8.40 1.00 1.00 3.79 1.00 1.00 6.54
Num. = 26,000 1.00 1.00 76.38 1.00 1.00 60.66 0.53 0.00 9.17 1.00 1.00 8.88 1.00 1.00 4.54 1.00 1.00 7.57
Num. = 28,000 1.00 1.00 93.06 1.00 1.00 70.78 0.69 0.26 11.59 1.00 1.00 12.34 0.83 0.47 5.45 1.00 1.00 8.78
Num. = 30,000 1.00 1.00 111.98 1.00 1.00 81.95 0.74 0.28 19.52 1.00 1.00 14.34 1.00 1.00 8.12 1.00 1.00 10.31
Num. = 32,000 1.00 1.00 182.78 1.00 1.00 95.47 0.59 0.15 23.14 1.00 1.00 15.63 0.83 0.48 10.01 1.00 1.00 12.43
Num. = 34,000 1.00 1.00 212.34 1.00 1.00 96.86 0.63 0.20 17.35 1.00 1.00 18.90 1.00 1.00 10.30 1.00 1.00 13.72
Num. = 36,000 1.00 1.00 277.53 1.00 1.00 104.32 0.51 0.00 21.86 1.00 1.00 19.13 1.00 1.00 31.71 1.00 1.00 14.41
Num. = 38,000 1.00 1.00 348.30 1.00 1.00 115.03 0.50 0.00 24.99 1.00 1.00 22.33 1.00 1.00 23.17 1.00 1.00 16.07
Num. = 40,000 1.00 1.00 475.56 1.00 1.00 138.64 0.57 0.12 43.01 1.00 1.00 24.66 1.00 1.00 18.09 1.00 1.00 17.70

Average 1.00 1.00 101.85 1.00 1.00 49.11 0.60 0.13 10.17 1.00 1.00 8.54 0.98 0.95 6.37 1.00 1.00 6.37
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Table 3. Clustering results on synthetic dataset (TS).

SC SC-I NEC NEC-I AGC AGC-I

P. NMI CT P. NMI CT P. NMI CT P. NMI CT P. NMI CT P. NMI CT

Num. = 2000 0.97 0.83 1.01 1.00 0.98 0.50 0.50 0.01 0.08 0.99 0.93 0.17 1.00 1.00 0.82 0.95 0.71 0.14
Num. = 4000 0.98 0.85 1.40 0.98 0.88 1.92 0.73 0.22 0.38 1.00 0.96 0.87 1.00 1.00 0.40 0.98 0.87 0.24
Num. = 6000 0.97 0.83 2.95 0.97 0.82 3.98 0.50 0.00 0.68 1.00 0.98 1.76 1.00 1.00 0.87 0.99 0.93 0.43
Num. = 8000 0.97 0.79 5.41 0.99 0.93 7.40 0.50 0.00 1.26 0.99 0.94 2.63 1.00 1.00 1.04 1.00 0.96 0.97

Num. = 10,000 0.97 0.81 8.37 0.99 0.95 11.27 0.50 0.00 2.35 1.00 0.95 4.09 1.00 1.00 2.68 0.87 0.45 1.90
Num. = 12,000 0.97 0.79 13.39 0.99 0.94 15.81 0.50 0.00 3.46 0.99 0.95 7.65 1.00 1.00 2.75 0.95 0.71 2.41
Num. = 14,000 0.97 0.79 18.70 0.98 0.89 20.61 0.71 0.29 5.01 0.99 0.91 11.43 1.00 1.00 4.77 0.98 0.87 3.31
Num. = 16,000 0.97 0.79 26.49 0.83 0.35 29.71 0.51 0.03 6.79 0.96 0.80 18.55 1.00 1.00 5.68 0.99 0.93 4.14
Num. = 18,000 0.97 0.81 32.98 0.99 0.92 34.42 0.68 0.25 8.97 0.99 0.95 20.36 1.00 1.00 6.82 1.00 0.96 4.03
Num. = 20,000 0.97 0.82 43.03 0.99 0.90 43.23 0.50 0.00 10.82 0.99 0.93 23.61 1.00 1.00 6.96 0.92 0.59 5.59
Num. = 22,000 0.97 0.79 55.62 0.99 0.93 52.66 0.72 0.30 15.71 0.99 0.94 32.81 1.00 1.00 11.39 0.95 0.71 5.30
Num. = 24,000 0.97 0.80 72.02 0.99 0.95 63.61 0.52 0.01 16.68 0.99 0.93 34.86 1.00 1.00 10.94 0.98 0.87 6.48
Num. = 26,000 0.97 0.80 85.32 0.99 0.94 72.83 0.53 0.03 21.37 0.99 0.91 48.00 1.00 1.00 10.66 0.99 0.93 7.71
Num. = 28,000 0.97 0.80 102.27 0.99 0.95 83.75 0.50 0.00 25.86 0.99 0.95 52.51 1.00 1.00 11.99 1.00 0.96 8.52
Num. = 30,000 0.97 0.81 149.99 1.00 0.98 97.31 0.51 0.03 32.83 0.99 0.94 64.45 1.00 1.00 17.10 1.00 1.00 9.06
Num. = 32,000 0.97 0.81 190.72 0.99 0.93 118.01 0.50 0.00 38.24 0.99 0.94 72.44 1.00 1.00 18.38 1.00 0.98 11.40
Num. = 34,000 0.97 0.81 258.66 0.98 0.88 128.90 0.51 0.03 47.00 0.99 0.95 71.32 1.00 1.00 24.32 0.91 0.57 12.86
Num. = 36,000 0.97 0.81 358.37 0.98 0.86 137.45 0.50 0.00 51.82 0.99 0.94 83.11 1.00 1.00 30.24 0.98 0.89 13.48
Num. = 38,000 0.97 0.80 459.32 0.97 0.82 160.64 0.50 0.00 57.57 0.68 0.10 94.87 1.00 1.00 20.89 0.98 0.04 15.44
Num. = 40,000 0.97 0.81 636.23 0.99 0.94 201.30 0.50 0.00 67.46 1.00 0.97 115.24 1.00 1.00 30.73 1.00 1.00 15.88

Average 0.97 0.81 126.31 0.98 0.89 64.27 0.55 0.06 20.72 0.98 0.89 38.04 1.00 1.00 10.97 0.97 0.80 6.46
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Table 4. Clustering results on synthetic dataset (CM).

SC SC-I NEC NEC-I AGC AGC-I

P. NMI CT P. NMI CT P. NMI CT P. NMI CT P. NMI CT P. NMI CT

Num. = 2000 1.00 1.00 0.38 1.00 0.98 0.70 0.50 0.00 0.09 1.00 1.00 0.17 0.56 0.19 0.86 1.00 1.00 0.08
Num. = 4000 1.00 1.00 1.34 0.99 0.92 2.43 0.50 0.00 1.50 1.00 1.00 0.85 1.00 1.00 0.41 1.00 1.00 0.29
Num. = 6000 1.00 1.00 2.70 0.99 0.90 5.22 0.50 0.00 1.08 1.00 1.00 1.63 1.00 1.00 1.14 1.00 1.00 0.81
Num. = 8000 1.00 1.00 5.71 0.99 0.91 9.64 0.89 0.53 1.90 1.00 1.00 3.22 1.00 1.00 2.13 1.00 1.00 1.48

Num. = 10,000 1.00 1.00 8.46 0.99 0.95 15.39 0.50 0.00 3.05 1.00 1.00 5.32 1.00 1.00 2.20 1.00 1.00 2.34
Num. = 12,000 1.00 1.00 12.55 0.99 0.95 21.76 0.50 0.01 4.70 1.00 1.00 8.24 1.00 1.00 3.73 1.00 1.00 3.42
Num. = 14,000 1.00 1.00 18.24 0.99 0.94 27.11 0.50 0.00 8.47 1.00 1.00 12.49 1.00 1.00 3.74 1.00 1.00 4.64
Num. = 16,000 1.00 1.00 26.76 0.93 0.63 39.33 0.50 0.00 10.85 1.00 1.00 17.26 1.00 1.00 4.50 1.00 1.00 6.28
Num. = 18,000 1.00 1.00 34.21 0.99 0.92 44.15 0.90 0.55 15.68 1.00 1.00 20.80 1.00 1.00 6.51 1.00 1.00 7.63
Num. = 20,000 1.00 1.00 43.86 0.99 0.92 57.08 0.50 0.00 21.38 1.00 1.00 25.60 1.00 1.00 7.78 1.00 1.00 9.60
Num. = 22,000 1.00 1.00 55.55 0.99 0.94 72.23 0.50 0.00 27.26 1.00 1.00 33.16 1.00 1.00 8.48 1.00 1.00 11.20
Num. = 24,000 1.00 1.00 69.45 0.99 0.95 86.58 0.68 0.25 27.87 1.00 1.00 38.49 1.00 1.00 8.98 1.00 1.00 13.34
Num. = 26,000 1.00 1.00 101.07 0.99 0.95 99.36 0.50 0.01 48.77 1.00 1.00 44.62 1.00 1.00 11.41 1.00 1.00 15.60
Num. = 28,000 1.00 1.00 114.92 0.99 0.95 114.37 0.50 0.00 39.56 1.00 1.00 55.30 1.00 1.00 11.83 1.00 1.00 17.92
Num. = 30,000 1.00 1.00 149.53 1.00 0.96 136.30 0.91 0.59 76.80 1.00 1.00 63.81 1.00 1.00 14.98 1.00 1.00 21.26
Num. = 32,000 1.00 1.00 209.87 0.99 0.93 158.11 0.85 0.49 84.71 1.00 1.00 67.09 1.00 1.00 16.84 1.00 1.00 27.18
Num. = 34,000 1.00 1.00 270.50 0.99 0.91 167.20 0.50 0.00 82.73 1.00 1.00 79.64 1.00 1.00 20.62 1.00 1.00 28.29
Num. = 36,000 1.00 1.00 381.08 0.99 0.91 181.04 0.62 0.04 76.13 1.00 1.00 89.44 1.00 1.00 20.62 1.00 1.00 30.00
Num. = 38,000 1.00 1.00 594.83 0.96 0.75 223.33 0.77 0.37 99.99 1.00 1.00 100.11 1.00 1.00 21.47 1.00 1.00 33.28
Num. = 40,000 1.00 1.00 754.12 0.99 0.93 258.65 0.50 0.00 108.56 1.00 1.00 119.93 1.00 1.00 32.86 1.00 1.00 36.46

Average 1.00 1.00 142.76 0.99 0.91 86.00 0.61 0.14 37.05 1.00 1.00 39.36 0.98 0.96 10.05 1.00 1.00 13.55
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Table 5. Clustering results on hyperspectral image datasets. The bold numbers represent the best results in terms of purity, normalization of the mutual information
and computational time.

SC SC-I NEC NEC-I AGC AGC-I

PUI. NMI CT PUI. NMI CT PUI. NMI CT PUI. NMI CT PUI. NMI CT PUI. NMI CT

Samson 0.85 0.61 6.57 0.85 0.60 5.77 0.73 0.53 0.10 0.85 0.60 0.17 0.88 0.73 0.19 0.91 0.75 0.19
Jasper 0.83 0.71 10.31 0.91 0.76 6.43 0.70 0.56 0.03 0.83 0.71 0.11 0.72 0.66 0.09 0.82 0.70 0.14

SalinasA 0.81 0.80 4.77 0.85 0.79 4.31 0.78 0.77 0.06 0.80 0.81 0.17 0.79 0.78 0.10 0.84 0.81 0.15
India Pines 0.36 0.44 66.21 0.46 0.46 45.37 0.43 0.45 0.53 0.43 0.49 1.29 0.35 0.43 0.58 0.42 0.46 1.46

Salinas - - - - - - 0.60 0.72 1.62 0.62 0.71 4.62 0.56 0.67 2.44 0.56 0.71 3.55
Pavia Uni. - - - - - - 0.47 0.34 1.34 0.61 0.57 3.34 0.46 0.51 3.40 0.54 0.57 3.67

KSC - - - - - - 0.46 0.57 1.16 0.51 0.52 5.97 0.47 0.52 6.10 0.51 0.53 6.48
Urban - - - - - - 0.40 0.12 0.41 0.45 0.21 3.01 0.51 0.33 1.14 0.50 0.29 3.12

Average 0.68 0.58 27.69 0.74 0.60 19.19 0.57 0.51 0.66 0.64 0.58 2.34 0.59 0.58 1.76 0.64 0.60 2.35
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5.5. Computational Time

Figure 3 lists the computational time on three synthetic datasets. We ran the experiments under
the same environment: Intel(R) Core(TM) i7-5930K CPU, 3.50 GHz, 64 GB memory, Ubuntu 14.04.5 LTS
system and Matlab version R2014b. The methods listed in Figure 3 achieved similar clustering results
when there were fewer than 10,000 data points, and SC and SC-I took more time than the other methods
when there were more than 10,000 data points. Moreover, the computational time grew rapidly along
with the increase of the number of data. The proposed improved algorithm SC-I took only about half
the time with more than 30,000 data points. Compared with the above two methods, NEC, AGC and
the corresponding improved algorithms NEC-I and AGC-I provided better performance in terms of
computational time. Meanwhile, the affinity matrix constructed by the anchor-based graph was better
than the affinity matrix constructed by Nyström extension, as the anchor-based graph provided a
better way to measure the similarity of data points.

(a) Computational time on the synthetic dataset (CC)

(b) Computational time on the synthetic dataset (TS)

Figure 3. Cont.
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(c) Computational time on the synthetic dataset (CM)

Figure 3. Computational time on three synthetic datasets.

6. Conclusions

In this paper, we briefly review the classical spectral clustering technique for unsupervised
HSI classification, and two major problems in dealing with large-scale HSI datasets, namely affinity
matrix construction and eigenvalue decomposition of Laplacian matrix. Firstly, we introduce two
efficient affinity matrix approximation methods, namely Nyström extension and anchor-based graph,
by sampling several HSI pixels. Furthermore, we propose an efficient and effective multiplicative
update algorithm to get a robust resolution of eigenvalue decomposition and the experimental results
also illustrate that the combination of the affinity matrix approximation and the multiplicative update
optimization outperformed the other methods. More importantly, the proposed improved algorithm
provides an efficient solution for large-scale HSI classification where the traditional spectral clustering
have no capability to deal with them.
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