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Abstract: Surface downward longwave radiation (DLR) is a crucial component in Earth’s surface
energy balance. Yu et al. (2013) developed a parameterization for retrieving clear-sky DLR
at high spatial resolution by combined use of satellite thermal infrared (TIR) data and column
integrated water vapor (IWV). We extended the Yu2013 parameterization to Moderate Resolution
Imaging Spectroradiometer (MODIS) data based on atmospheric radiative simulation, and we
modified the parameterization to decrease the systematic negative biases at large IWVs. The new
parameterization improved DLR accuracy by 1.9 to 3.1 W/m2 for IWV≥3 cm compared to the Yu2013
algorithm. We also compared the new parameterization with four algorithms, including two based
on Top-of-Atmosphere (TOA) radiance and two using near-surface meteorological parameters and
water vapor. The algorithms were first evaluated using simulated data and then applied to MODIS
data and validated using surface measurements at 14 stations around the globe. The results suggest
that the new parameterization outperforms the TOA-radiance based algorithms in the regions where
ground temperature is substantially different (enough that the difference between them is as large
as 20 K) from skin air temperature. The parameterization also works well at high elevations where
atmospheric parameter-based algorithms often have large biases. Furthermore, comparing different
sources of atmospheric input data, we found that using the parameters interpolated from atmospheric
reanalysis data improved the DLR estimation by 7.8 W/m2 for the new parameterization and
19.1 W/m2 for other algorithms at high-altitude sites, as compared to MODIS atmospheric products.

Keywords: parameterization; brightness temperature; water vapor content; ground-air temperature
difference; MODIS; downward longwave radiation

1. Introduction

The surface downward longwave radiation (DLR) is radiative flux density reaching the surface
in the thermal infrared (TIR) part of the electromagnetic spectrum (4–100 µm) and represents a key
component in land-atmosphere interactions. DLR is related to the downward radiance at the Earth’s
surface as [1]:

DLR = 2π
∫ v2

v1

∫ 1

0
Iv(z = 0,−µ)µdµdν, (1)
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where Iv(z = 0,−µ) is the spectral radiance at the surface at a given local zenith angle θ and µ = cos(θ)
and ν is the wavenumber. Under cloud-free conditions, multiple scatter can be omitted, thus spectral
radiance can be expressed as:

Iλ(z = 0,−µ) =
∫ zt

0
Bv(z′)

∂Tv(0, z′;−µ)

∂z′
dz′, (2)

where zt is the top of atmosphere, Bv(z′) is the Planck function evaluated with the temperature at level
z′, and Tv(0, z′;−µ) is the monochromatic transmittance from surface to height z′.

A global, long-term DLR database is needed for studies of surface energy budget and global
climate change [2–5]. Although surface radiation fluxes can be obtained by field measurement, their
sparsity makes downward radiation estimation difficult over larger regions or regions without in-situ
measurement stations, while remote sensing provides more complete spatial coverage.

Surface DLR results from atmospheric absorption, emission, and scattering within the entire
atmospheric column. If detailed atmospheric information is available, including vertical profiles
of temperature and humidity, ozone and other trace gases, aerosols, as well as cloud physical
properties such as cloud height and cloud temperature, DLR can be accurately calculated by detailed
radiative-transfer (RT) modeling. This method has been applied to data from the TIROS Operational
Vertical Sounder (TOVS) of National Oceanic and Atmospheric Administration (NOAA) satellites [6],
International Satellite Cloud Climatology Project (ISCCP, [7]), and Clouds and the Earth’s Radiant
Energy System (CERES, [8]).

Considering that RT methods require extensive computation and multiple input parameters
that are unavailable for many satellites, researchers developed more practical algorithms, including
empirical and parameterized algorithms. Because the major part of surface DLR originates from
the first few hundred meters of the atmospheric layer above the earth surface under clear sky
conditions [9], the empirical algorithms establish empirical relationships between clear-sky DLR and
meteorological parameters such as near-surface air temperature and humidity [10–13]. Such algorithms
have been applied to the Meteosat series [14–16], Moderate Resolution Imaging Spectroradiometer
(MODIS, [17,18]), Geostationary Operational Environmental Satellite (GOES, [19]), and CERES
data [20]. Empirical algorithms are usually developed using in-situ observations from certain surface
sites and must be adjusted for other locations, which makes them unsuitable for use at larger
scales. The parameterized algorithms express DLR as a function of key atmospheric parameters,
and most of these algorithms determine the relationship between DLR and input parameters through
extensive radiative-transfer model calculation and statistical regression. Gupta et al. [21,22] defined
clear-sky DLR in terms of atmospheric effective temperature and column-integrated water vapor (IWV).
Inamdar and Ramanathan [23] established a relationship between clear-sky DLR and satellite-retrieved
parameters, including top-of-atmosphere (TOA) outgoing longwave radiation, IWV, land surface
temperature, and near-surface air temperature. Zhou et al. [24,25] determined clear-sky DLR from
surface upward longwave radiation and IWV.

Meteorological data used by the last two types of algorithms come from either atmospheric
reanalysis datasets or satellite retrieval products, thus algorithm error is affected by the retrieval
accuracy of atmospheric parameters [1]. In addition, atmospheric data are often at coarse spatial
resolution (≥1◦), which may have large errors when they are directly used at fine scale. Current global
radiation products such as ISCCP-FD, Global Energy and Water Cycle Experiment-Surface Radiation
Budget (GEWEX-SRB), and CERES-FSW were found to have large errors in high-altitude regions such
as the Qinghai-Tibetan Plateau, which were mainly caused by errors in surface air temperature and
water vapor content [26–28]. Zhang et al. [29] pointed out that an uncertainty of ~2–4 K in surface air
temperature would induce ~15 W/m2 of uncertainty in the DLR of ISCCP.

To avoid propagating retrieval errors of satellite-derived atmospheric parameters into final
radiation estimates, some researchers have developed hybrid algorithms that use satellite-observed
thermal infrared (TIR) data to calculate clear-sky DLR directly. Algorithms for the high-resolution



Remote Sens. 2019, 11, 425 3 of 27

infrared spectrometer (HIRS/2) of NOAA [1], MODIS [30–34], and GOES Sounder [35] have been
developed during the past two decades. In these algorithms, the DLR is expressed by linear or
nonlinear combinations of multispectral infrared radiances or brightness temperature (BT) at the TOA.
Because this type of algorithm is not only free from real-time atmospheric and surface information
but also can derive DLR at the same spatial resolution as satellite thermal data, it is regarded as a
promising trend in radiative flux estimation [32]. However, hybrid models that use TOA radiance
or land surface temperature always greatly overestimate DLR during daytime over dry–arid regions
where surface skin temperature is significantly higher than near-surface air temperature [27,30].

To overcome the DLR overestimation over dry–arid regions for TOA radiance-based algorithms,
Yu et al. [36] (hereafter Yu2013) proposed a correction based on ground minus air temperature
difference, denoted as δTs,a. They developed a parameterization that estimates clear-sky DLR from
the BT of Huan Jing InfraRed Scanner (HJ-1B IRS) thermal channel (10.8 µm) and the synchronous
MODIS water vapor product. They found that taking into account δTs,a improved DLR at dry–arid
sites. The Yu2013 parameterization provides a new approach to obtaining DLR from satellite TOA
data. This algorithm is not restricted to satellites with multispectral infrared channels, such as MODIS,
but can also be used for satellites with a single thermal channel, such as Fengyun-2E (FY-2E) and
HJ-1B IRS. However, Yu et al. [36] also found obvious negative errors under high IWV values upon
validation of the parameterization by a testing dataset that was simulated using a radiative transfer
model and global radio-soundings.

The purpose of this paper is to extend Yu2013 parameterization to MODIS data by coefficient
reconstruction, taking advantage of the high-quality input data from MODIS to improve the
parameterization and decrease the systematic negative biases at high IWV values and to compare
the improved parameterization with several other state-of-the-art algorithms with good performance.
The rest of the paper is structured as follows: the algorithm introduction, extension, and improvement
are described in Section 2. Section 3 assess the improved algorithm based on a simulated dataset and
actual MODIS Terra data, respectively. Section 4 further discusses the effect of different sources of
atmospheric products on DLR estimation. Section 5 gives the conclusion.

2. Development of Clear-Sky Algorithm

2.1. Clear-Sky DLR Algorithms

As mentioned in the above section, two types of algorithms have been widely used in DLR
estimation, i.e., parameterizations using atmospheric input data and hybrid algorithms using
TOA radiance of TIR channels. Table 1 gives four widely used or newly developed algorithms.
The algorithms proposed by Zhou et al. [25] and Gupta et al. [22], hereafter referred to as Zhou-Cess
and Gupta2010, were used to produce global radiation flux by the CERES Surface Radiation Budget
(SRB) team [37]. The two TOA radiance algorithms developed by Tang and Li [30] and Liang and
Wang [31], hereafter referred to as Tang-Li and Wang-Liang, define clear-sky DLR by MODIS TOA
radiance or brightness temperature. Zhou-Cess, Gupta2010, and Tang-Li algorithms were developed
using global distributed atmospheric profiles, whereas the Wang-Liang algorithm was developed
based on profiles over the North American continent only.

The Yu2013 parameterization is a hybrid of the two types of algorithms above. This parameterization
was developed at the hypothesis that the atmosphere is a grey body, and clear-sky DLR can be written
as σεaT4

e , where σ is Stefan-Boltzmann constant, εa is effective emissivity of the entire atmospheric
column, and Te is the effective temperature of the atmosphere. Considering that the TOA BT of TIR
channels sensitive to near surface (without making atmospheric corrections) has strong correlation with
near-surface air temperature Ta [1,15,36], which is relevant to the atmospheric effective temperature
under a clear sky, BT is used to represent the effective temperature [1,36]. Then, the definition
of atmospheric effective emissivity should be adjusted when TOA BT substitutes for atmospheric
temperature:
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εk =
DLR
σT4

k
, (3)

where Tk is BT of the TIR channel, and subscript k denotes the channel number. Because atmospheric
effective emissivity εk can be empirically specified as a function of atmospheric IWV by regression
analysis [1,36]:

εk = a0 IWV + a1
√

IWV + a2, (4)

where IWV has units of cm, and ai (i = 0, 2) represent coefficients. Therefore, DLR is expressed as:

DLR = σT4
k (a0 IWV + a1

√
IWV + a2) (5)

For the Yu2013 algorithm, T k used the TIR channel of HJ1B/IRS with a center wavelength of
10.8 µm. The regression coefficients are the look up tables (LUTs) of elevation H, satellite view zenith
angle VZA, and δTs,a, where δTs,a = Ts – Ta. For ordinary regions that Ts is similar to Ta, the regression
coefficients are be written as ai = ai (H, VZA). For the condition that Ts is very distinct from Ta, such
as in arid regions, ai = ai (H, VZA, δTs,a). The coefficients were regressed using the dataset simulated
by the MODerate resolution atmospheric TRANsmission (MODTRAN) radiation model [38] and
thermodynamic Initial Guess Retrieval (TIGR) atmospheric profiles [39].

Table 1. Clear-sky downward longwave radiation (DLR) algorithms.

Authors Abbreviation Algorithm 1

Zhou et al. [25] Zhou-Cess DLR = a0 + a1 · SULW + a2 · ln(1 + IWV) + a3 · [ln(1 + IWV)]2

Gupta et al. [22] Gupta2010 DLR = (a0 + a1V + a2V2 + a3V3) · T3.7
e , V = ln(10 ∗ IWV)

Te = 0.60Ts + 0.35T1 + 0.05T2

Tang and Li [30] Tang-Li
DLR = a0 + a1 M29 + a2 M34 + a3 M33 + a4 M36 + a5 M28+

a5 M28 + a6 M31, Mi = πLi
,

Wang and Liang [31] Wang-Liang
DLR = LTair(a0 + a1L27 + a2L29 + a3L33 + a4L34 + b1L32/L31

+b2L33/L32 + b3L28/L31 + c1H)

Yu et al. [36] Yu2013 DLR = σT4
k (a0 IWV + a1

√
IWV + a2)

1 Li is the top-of-atmosphere (TOA) irradiance of channel i; ai and bi are regression coefficients, SULW is the surface
upwelling longwave flux computed using 2-m air temperature Ta with an emissivity of unity, integrated water
vapor (IWV) is in unit of cm, Te is effective temperature which computed from the surface skin temperature Ts and
the mean temperatures of the lowest two atmospheric layers (T1 and T2), and H is surface elevation.

2.2. Extension of Yu2013 Parameterization to MODIS

When extending the Yu2013 algorithm to MODIS satellite data, Tk in (5) is replaced by BT of
MODIS channel 31 (T31) with a central wavelength of 10.8 µm, thus εk is expressed as ε31. As shown
in Figure 1, BT has a strong correlation with atmospheric effective temperature, thus the algorithm
is feasible for MODIS. The flowchart of algorithm construction is shown in Figure 2. Firstly, DLR
and TOA radiance of MODIS channel 31 were simulated by atmospheric radiative transfer model
and global profiles. Then, the relationship between DLR and MODIS T31 was derived by regression
analysis—actually, the relationship between ε31 and IWV was derived. Finally, the algorithm was
validated using simulated data and actual data.

2.2.1. Training and Testing Datasets Construction

In order to adequately cover atmospheric variations, two global atmospheric profile databases
were used to simulate the training dataset. The atmospheric profile database TIGR2002 of the previous
study was used [36]. TIGR2002 includes 2311 atmospheric profiles of temperature, relative humidity,
and ozone at 40 fixed pressure levels from 1013 to 0.05 hPa. However, TIGR2002 lacks the profiles
with high IWV [36]. Therefore, a database of 13,495 profiles generated by Chevallier et al. [40] was
also used. These profiles were sampled from European Centre for Medium-Range Weather Forecast
(ECMWF) 40-year re-analyses, which are globally distributed and representative of a wide range of
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atmospheric conditions. The ECMWF profiles include temperature, relative humidity, and ozone in
60 fixed pressure levels from 1013 to 0.1 hPa. We converted the ECMWF profiles to the same pressure
levels as TIGR2002 using the dataset self-contained program. Because only clear-sky conditions were
considered, profiles with relative humidity <85% in each layer were selected. Finally, 875 TIGR2002
and 7730 ECMWF profiles were used in the simulation.
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Figure 2. Flowchart of DLR modeling process and DLR derivation.

For each atmospheric profile, the DLR, TOA radiance, and BT of MODIS thermal channels
were simulated for various surface types, viewing angles, elevations, and δTs,a. Version 4.0 of the
MODTRAN radiation model was used for simulation. Downward surface radiances at nineteen
different zenith angles (0◦ to 85◦ at 5◦ interval, and 89◦) were computed for wave numbers ranging
between 100 and 3333 cm−1 at a resolution of 1 cm−1. Such values were then integrated to obtain the
total DLR according to Equation (1). The model was configured to use ozone and trace gases from a
climatological data set and the “Rural” aerosol with horizontal meteorological visible thickness 23 km,
all available from MODTRAN. Seven surface types (conifer, dry grass, sea water, fine snow, wetland,
concrete, and soil) with distinctly different emissivity spectra, seven elevations, eight VZA, and nine
δTs,a values were used to simulate TOA radiance and brightness temperature. Surface emissivity
spectra were from the ASTER spectral library, and their spectral emissivity are described in Figure 3.
To obtain atmospheric profiles at various elevations, profiles from 40 to 34 layers were used, and
average elevations of the lowest seven layers were 0.002, 0.454, 0.934, 1.410, 1.885, 2.670, and 3.511 km.
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The VZA varied from 0◦ to 70◦ at a 10◦ interval. Ts was assumed to be different from Ta, and the δTs,a

was between −20 K and 20 K at 5 K intervals. Knowing DLR and BT, ε31 defined by BT were calculated
using Equation (3). IWV for each condition was calculated by MODTRAN directly.
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The testing dataset was used to evaluate whether the new algorithm was appropriate under
various atmospheric conditions and to quantify algorithm accuracy under error-free conditions of the
input parameters. A global, cloud-free atmospheric profile database, Cloudless Land Atmosphere
Radiosounding (CLAR, [41]), was used. CLAR contains 382 radiosoundings taken at uniformly
distributed meteorological stations and has a wide range of temperature, humidity, and elevation.
Thus, the database can serve as an ideal testing dataset for accuracy evaluation. The testing dataset was
generated using the same method as the training dataset except that only these atmospheric profiles
at the surface elevation were used, and the ozone was from the climatological data set provided
by MODTRAN.

2.2.2. Improvement of DLR Underestimation at High Water Vapor Content

Yu et al. [36] found that DLRs predicted by Equation (5) had increasing negative errors with
IWV when IWV was large. The underestimation was caused by a significant underestimation of
atmospheric emissivity at large IWV, as shown by the fit1 line of Figure 4a. Adding a large number of
profiles with large IWV to derive the coefficients can obviously decrease the negative errors, but the
underestimation persists (Figure 4b).

Considering that the DLR underestimation was caused by underestimation of atmospheric
emissivity ε31, we intended to develop a robust formulation of atmospheric emissivity ε31. Water vapor
is the most important atmospheric gas contributing to clear-sky DLR, and the variation of other gases
(such as CO2 and O3) have small effects on DLR [32,34]. Therefore, we used IWV to predict atmospheric
emissivity ε31. As shown in Figure 4, the atmospheric emissivity ε31 increased with atmospheric IWV
and then was nearly unchanged when IWV achieved a specific value. By data analysis, we found that
using a logarithmic form of IWV predicted the relationship between atmospheric emissivity ε31 and
IWV well, which is consistent with the results in previous studies [22,25,42]. Since the logarithmic
function decreases very rapidly with decreasing water vapor below 1 cm, replacing ln(IWV) by
ln(1+IWV) can avoid flux underestimation under low water vapor conditions [25]. Finally, based on
the regression result, the emissivity term of Equation (5) is modified to the following form:
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DLR = σT4
31

(
a0 + a1V + a2V2 + a3V3

)
(6a)

V =
√

ln(1 + IWV) (6b)

where 1 + IWV is used to ensure that V is greater than zero under low water vapor conditions.
In Equation (6), V is expressed by

√
ln(1 + IWV) rather than ln(1 + IWV) because DLR is overestimated

at very large IWV when using ln(1 + IWV) (as shown in Figure 4a). Figure 4 compares atmospheric
emissivity ε31 fitted from three different formulations. Using

√
IWV or ln(1 + IWV) will underestimate

or overestimate the atmospheric emissivity ε31 at very large IWV, especially when the number of
training profiles is small (Figure 4a). On the contrary, using

√
ln(1 + IWV) produces much better

results than the two former formulations, and the result is not restricted by sample number.Remote Sens. 2019, 11 FOR PEER REVIEW  7 
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Figure 4. Atmospheric emissivity (ε31) defined by Equation (3) using brightness temperature (BT) of
MODIS 31st channel, plotted as functions of IWV at the condition of conifer surface, H = 1.435 km, view
zenith angle (VZA) = 0◦, and δTs,a = 0 K. The black and gray dots represent TIGR2002 and ECWMF
profiles, respectively. Only the TIGR2002 profiles were used in regression in Figure (a), and all the
TIGR2002 and the ECWMF profiles were used in Figure (b). Poly2 and poly3 represent quadratic and
cubic function, respectively.

The new formulation can greatly improve results compared with the Yu2013 algorithm at large
IWV, especially when the profile number for regression is not large. Figure 5 shows the results
of the two parameterizations when their coefficients were derived using only TIGR2002 profiles.
The atmospheric emissivity was underestimated at large IWV for the Yu2013 parameterization, causing
negative bias of DLR (Figure 5a,c). With the new parameterization, the negative bias of atmospheric
emissivity was corrected, thereby improving the predicted DLRs (Figure 5b,d). As shown in the figure,
the new parameterization reduced the root mean square error (RMSE) by 1.9 to 3.1 W/m2 for δTs,a = 0
K. The DLR statistical error distribution for IWV greater than 3.0 cm is shown in Table 2. For small
VZA (<60◦), more than 99% of the DLRs had accuracy within 20 W/m2, an improvement of 0.5%
compared with Yu2013 algorithm. At large VZA (=60◦), the accuracy increased by 16.9%.

Subsequently, we derived a LUT of coefficients for the new parameterization at various elevation,
VZA, and δTs,a values from the training dataset. We found the coefficients did not yield obvious
differences between surface types except for dry grass, the same result as that in [36], because the
emissivity spectrum of dry grass is obviously lower than other surface types in the thermal infrared
range. Therefore, two sets of coefficients were derived, dry grass-only coefficients for arid surfaces and
the all surfaces-average coefficients for other surfaces. Moreover, because δTs,a is difficult to retrieve
accurately using MODIS data, we suggest that δTs,a is only used to surface with large δTs,a, such as bare
ground, arid region, snow, ice, etc. Also, we suggest setting δTs,a within ±20 K in the DLR calculation
to limit the error caused by inaccurate δTs,a.
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Figure 5. DLRs calculated from testing dataset using the Yu2013 (a,c) and new parameterizations (b,d),
respectively. The algorithms coefficients were deriving from TIGR2002 profiles. Figures (a,b) show
the comparison between the estimated and the MODTRAN-simulated DLRs. Figures (c,d) show the
residuals of the predicted DLR, which vary with water vapor content for different VZAs, assuming
δTs,a = 0 K.

Table 2. Error distribution statistics for IWV greater than 3.0 cm and δTs,a = 0 K.

Sensor Zenith View Angle Range of Error (W/m2) Yu2013 NewParam

VZA = 0◦
[−20, 15] 99.5% 100%

[−40, −20] 0.5% 0%

VZA = 30◦
[−20, 15] 98.9% 99.5%

[−40, −20] 1.1% 0.5%

VZA = 60◦
[−20, 15] 73.8% 90.7%

[−40, −20] 25.1% 8.2%
[−200, −40] 1.1% 1.1%

3. Algorithm Evaluation using Testing Dataset

3.1. Evaluation of Algorithm Accuracy

DLRs were calculated from IWV and the simulated TOA BT of the testing dataset using the
new parameterization and evaluated using MODTRAN-simulated DLRs. Table 3 indicates that most
surfaces had similar retrieval accuracy (RMSE = 5.1–8.4 W/m2), except of dry grass, which has a large
negative error (bias= −6.0 W/m2). We further gave the DLR error statistics under different climatic
conditions for the conifer surface. We found the RMSEs of daytime and nighttime, with and without
temperature inversion, were 6.2, 4.8, 5.5, and 5.6 W/m2, respectively. Daytime DLRs had a larger
positive error (~3.4 W/m2) than nighttime, and DLRs under temperature inversion conditions had a
bias about −3.1 W/m2 greater than the conditions without temperature inversion. Based on detailed
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analysis, we found that the temperature inversion had a very small effect on DLR estimation for this
algorithm, except that the near-surface temperature profile had a very thick layer with a strong lapse
rate. Furthermore, some polar winter profiles had large negative errors. Figure 6a,d gives RMSE and
bias variation with VZA for the conifer surface. RMSE increased with VZA from 5.6 to 20.2 W/m2 for
δTs,a = 0 K, and the bias was 1.8 to −6.8 W/m2. RMSE were 5.4 to 20.0 W/m2 and 6.7 to 20.8 W/m2 for
δTs,a = −20 and 20 K, respectively.

Table 3. The mean value of actual and calculated DLRs (DLRact and DLRcal), root mean square error
(RMSE), bias, maximum error and minimum error between actual DLRs, and those calculated from
training datasets for different surface types when δTs,a = 0 K and VZA = 0◦ (unit: W/m2).

Surface Types Conifer Soil Wet Land Concrete Dry Grass Sea Water Fine Snow All Types

DLRact 321.9 321.9 321.9 321.9 321.9 321.9 321.9 321.9
DLRcal 326.7 324.9 327.6 325.5 323.8 326.8 327.1 326.1
RMSE 5.6 5.4 6.7 5.1 8.4 5.7 6.0 6.2
Bias 1.8 −1.9 3.8 −0.6 −6.0 2.2 2.8 0.3

Max error 16.8 11.7 19.6 13.5 10.4 17.3 18.2 19.6
Min error −24.0 −25.3 −23.3 −24.9 −26.3 −23.9 −23.7 −26.3
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Figure 6. Figures (a–f) illustrate the RMSE and Mean-Bias-Error (MBE) between the actual and
estimated DLRs versus VZA and δTs,a for conifer surface and for NewParam (a,d), Tang-Li algorithm
(b,e), and Wang-Liang algorithm (c,f), respectively.

The new algorithm was compared with the four algorithms in Section 2.1. Though these
algorithms were developed under different conditions, it was worth investigating their advantages
and drawbacks by applying them to the testing data. The results of algorithms based on testing data
are shown in Figures 6 and 7. As shown in Figure 6, the TOA radiance-based algorithms, Tang-Li
and Wang-Liang, performed poorer than the new algorithm, and their DLR accuracies were largely
dependent on δTs,a and VZA. The Tang-Li algorithm had the best result at δTs,a = 0 K and performed
worse when the absolute value of δTs,a became larger. This is because Ta was considered equal to Ts
in the algorithm development [30]. For the Wang-Liang algorithm, RMSE and bias were minimal at
δTs,a = 10 K and increased at other δTs,a values. Though MODIS-derived Ta and Ts were used in the
MODTRAN simulation during their algorithm development [31], the coefficients were not regressed
for each δTs,a value separately. Therefore, they represented the average δTs,a of all training profiles.
When VZA ≤ 40◦, DLR RMSE is 17.0 to 23.8 W/m2 for the Tang-Li algorithm at δTs,a = 0 K and 18.7 to
31.4 W/m2 for the Wang-Liang algorithm at δTs,a = 10 K. When VZA was larger, RMSEs of the two
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algorithms increased rapidly with VZA, especially for Wang-Liang algorithm, with RMSE reaching
151.5 W/m2. Figure 7a,b indicate that the large negative biases in DLR occurred at large VZA, which
happened at high IWVs. Considering that the Wang-Liang algorithm was developed over the North
American continent, 38 CLAR profiles in this region were analyzed. Results in the North American
continent were similar to those worldwide except that the best result was at δTs,a = 5 K, and RMSE
varied from 14.9 to 163.4 W/m2 with VZA increase at δTs,a = 10 K.
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Figure 7. Comparison of the clear-sky flux calculated from DLR algorithms with those from MODTRAN
simulation based on the testing dataset. Figures (a) to (d) represent Tang-Liang, Wang-Li, Gupta2010,
and Zhou-Cess algorithms, respectively, and δTs,a is 0 K and 10 K in Figures (a,b).

The Gupta2010 and Zhou-Cess algorithms performed well, with RMSEs of 10.3 and 11.2 W/m2

(Figure 7). The new parameterization had a smaller RMSE (about 5 W/m2) than the two algorithms
for VZA ≤ 50◦ (comparing Figures 6 and 7) but had a slightly larger RMSE (about 1 to 9 W/m2) than
the other two algorithms at larger VZAs. However, when the two algorithms were applied to actual
satellite data, DLRs from them were greatly influenced by the uncertainty of Ta, which was difficult to
retrieve accurately using satellites, especially for those without the TIR sounding channels.

3.2. Sensitivity Analysis of Input Parameters

The sensitivity of three main inputs parameters, IWV, BT, and δTs,a, were analyzed for three
various climate types. As shown in Table 4, Cases 1, 2, and 3 were at the conditions of low-BT and
low-IWV, high-BT and low-IWV, and high-BT and high-IWV, respectively. The three cases represent a
dry and cold climate such as a polar region, a hot and dry climate such as a desert, and a wet and hot
climate such as a tropical ocean, respectively. The sensitivity was defined as the DLR error versus the
error of an input parameter while keeping the others fixed. The definition of each case and the error
range of input parameters are given in Table 4, and the results of sensitivity analysis are displayed in
Figure 8.



Remote Sens. 2019, 11, 425 11 of 27

Table 4. The definition of each case and the error range of input parameters.

Input Parameter Value of All Parameters Error of Input Parameter

IWV
Case 1 (BT = 260 K, IWV = 0.5 cm), δTs,a = 0 K [−90%, 400%]
Case 2 (BT = 300 K, IWV = 0.5 cm), δTs,a = 0 K [−90%, 400%]
Case 3 (BT = 300 K, IWV = 5.0 cm), δTs,a = 0 K [−60%, 60%]

BT Case 1, Case 2, Case 3, δTs,a = 0 K [−20 K, 20 K]

δTs,a
Case 1, Case 2, Case 3, δTs,a = −10 K [−5 K, 5 K]
Case 1, Case 2, Case 3, δTs,a = 10 K [−20 K, 20 K]
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Figure 8. DLR error versus the error of input parameters such as IWV (a,b), brightness temperature
(c), and δTs,a (d,e) under different climate conditions. Cases 1, 2, and 3 represent the conditions of
BT = 260 K and IWV = 0.5 cm, BT = 300 K and IWV = 0.5 cm, and BT = 300 K and IWV = 5.0 cm,
respectively. Figures (a,b) are for H = 0 and 3.0 km, respectively. Figures (d,e) represent the conditions
of δTs,a = −10 and 10 K, respectively.

3.2.1. Sensitivity to Water Vapor Content Error

Figure 8a,b shows the DLR error to IWV relative error (RE) at elevation of 0 and 3 km, respectively.
We found that satellite retrieved IWVs were sometimes 10 times smaller or larger than the actual
data at very small IWVs, and IWV RE was relatively small at large IWVs. Therefore, we set different
IWV RE for different conditions; they were set within ± 60% for high IWV conditions (Case 3) and
within −90% to 400% for low IWVs (Cases 1 and 2). DLR error was small for IWV RE within ±50%
under low-IWV conditions, i.e., −7.8 to 5.4 W/m2 and −13.7 to 9.5 W/m2 for Cases 1 and 2 when
elevation = 0 km and VZA = 0◦. However, when the IWV RE range was −90 to 400%, DLR had a larger
error, −24.5 to 34.8 W/m2 and −43.5 to 61.7 W/m2 for Cases 1 and 2. DLR was most sensitive to IWV
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uncertainty under high-IWV conditions (Case 3), with a DLR error of −74.9 to 58.6 W/m2 for IWV
RE within 60%. Moreover, DLR was slightly more sensitive to IWV at larger VZAs, but the DLR error
difference between VZA = 0◦ and 50◦ could be considered negligible (about 0 to 2 W/m2) unless the
IWV or the IWV error was very large. Compared with low elevation, IWV uncertainty produced much
larger DLR errors when IWV RE was large for low-IWV conditions at high elevation (Figure 8b). DLR
error was −41.9 to 42.3 W/m2 and −74.3 to 75.1 W/m2 for Cases 1 and 2, with a DLR RE of −23.8
to 24.1% for both conditions. Nevertheless, DLR errors for high IWV were very similar to those at
low altitude.

3.2.2. Sensitivity to Brightness Temperature Error

The BT error was from an instrument calibration error and spatial mismatch between the ground
station and the satellite pixel. Compared to the former error, the latter error was very large in rugged
areas and under cloud contamination conditions. As shown in Figure 8c, the DLR error showed a
linear relationship with the BT error when it was −5 to 5 K. For altitude = 0 km and VZA = 0◦, the DLR
error of Case 1 was −13.9 to 14.8 W/m2 and RE was −7.5 to 7.9% (not shown). The DLR error was
more sensitive to BT at high-BT conditions at −21.5 to 22.5 W/m2 for Case 2 and −29.5 to 31.0 W/m2

for Case 3.

3.2.3. Sensitivity to Error in Temperature Difference between Ground and Air

Figure 8d,e show the DLR sensitivity to the error of δTs,a when the ground was 10 K cooler or
warmer than the surface air. The DLR error linearly increased with the absolute error δTs,a and reached
its positive (or negative) maximum when the δTs,a error was −10 K (or 10 K) for δTs,a = −10 K (or
10 K) because δTs,a was set within ±20 K in the DLR calculation. DLR was more sensitive to δTs,a for
high-BT and low-IWV conditions (Case 2) than other cases. Furthermore, the DLR error difference
between 0◦ and 50◦ was only 1 to 2 W/m2 for Cases 1 and 2, but it reached 17.3 W/m2 for Case 3.
The figure indicated that if δTs,a was ignored in DLR estimation, which meant the δTs,a error was 10 K
(or −10 K) for δTs,a = −10 K (or 10 K), DLR would be underestimated by 27.3, 48.3, and 25.9 W/m2 (or
overestimated by 23.1, 40.9, and 25.2 W/m2) for Cases 1, 2, and 3 for VZA = 0◦. Therefore, we suggest
that δTs,a should be considered for the bare soil, sand, and dry grass surfaces, especially for deserts
where higher Ts and lower Ta and high BT and low IWV frequently exist in the daytime. Also, the
δTs,a is non-negligible for an ice surface where Ts is much lower than Ta.

The above sensitivity analysis indicates that DLR accuracy in actual application is greatly affected
by uncertainties of IWV, BT, and δTs,a. When RE of IWV is within 50%, it produces a very large error
into DLR retrieval for large IWVs (i.e., 5 cm), and a relatively smaller DLR error for small IWVs (i.e.,
0.5 cm). However, IWV RE is usually much larger than 50% under small IWV conditions and therefore
leads to a large error of DLR. Moreover, an IWV error leads to larger error of DLR at high elevations
than that at low elevations. The BT error caused by the spatial mismatch of pixel and field in rugged
areas and by the cloud contamination causes a significant error to DLR retrievals; 10 K error in δTs,a

causes an error of about 20 to 40 W/m2 to DLR. Therefore, δTs,a should be considered under the
conditions that Ts is very different from Ta (δTs,a = −10 K or 10 K), which is related to bare soil, sand,
dry grass, and ice surfaces. For the input parameters of IWV and BT, DLR is more sensitive to their
errors under high BT and high IWV conditions than under other conditions, whereas for δTs,a, DLR is
most sensitive to errors under high BT and low IWV conditions.
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4. Validation Results of Satellite Retrieved DLRs

4.1. Satellite and Surface Data

4.1.1. MODIS data

The collection 6.0 MODIS products were used, including MOD021KM, MOD03, MOD35_L2 [43],
MOD05_L2 [44,45], and MOD07_L2 [46]. The input parameters of the new parameterization and
the four algorithms for comparison are shown in Table 5. We used near-infrared water vapor from
MOD05_L2 in the daytime and the infrared IWV in the nighttime when the near-infrared water vapor
data were unavailable. MOD07_L2 furnishes Ts, surface pressure, and temperature and moisture
profiles at 20 pressure levels. Surface Ta was acquired by interpolating MODIS temperature at the
lowest pressure level to the surface altitude, assuming a temperature lapse rate of 6.5 K/km [18]. Then,
δTs,a and the mean temperatures of the lowest two layers for the Gupta2010 algorithm were calculated.
The lowest two atmospheric layers were defined as the surface to 780 hPa and 780 to 700 hPa when
surface pressure was ~1000 hPa, whereas both layers were ~100 hPa thick over high-altitude regions.
The lowest layer was defined as at least 25 hPa above the surface to guarantee that the temperature
lapse rate was applied to a layer at least 25 hPa in thickness [47].

Table 5. Input parameters and data sources used in this study.

Parameters Data Source Algorithms Requiring the Data

Geolocation information and
elevation

MOD03, at 1 km All algorithms

Cloud mask MOD35, at 1 km All algorithms
Viewing zenith angle MOD03, at 1 km NewParam, Tang-Li, Wang-Liang
TIR channel radiance MOD021KM, at 1 km NewParam, Tang-Li, Wang-Liang
Water vapor content MOD05, at 1 km for daytime and 5

km for nighttime
NewParam, Zhou-Cess,

Gupta2010
Atmospheric profiles MOD07, at 5 km Gupta2010

Air and surface temperatures MOD07, at 5 km NewParam, Zhou-Cess,
Gupta2010

4.1.2. NCEP Data and Atmospheric Parameter Derivation

Li et al. [48] found that the MODIS’s profile lacked lower-atmospheric data for high-altitude
regions. To evaluate the performance of different atmospheric products in DLR calculation, National
Centers for Environmental Prediction (NCEP) data with higher vertical resolution were used and
compared with MODIS. The NCEP FNL (Final) Operational Global Analysis data were prepared
operationally every six hours at 1◦ × 1◦ resolution. The NCEP data provided several parameters
required by the study, including surface pressure, total water vapor content, 2-m air temperature,
surface temperature, and atmospheric profiles. The atmospheric profiles included temperature and
relative humidity at 26 levels from 1000 to 10 hPa (1000, 975, 950, 925, 900, 850, 800, 750, 700, 650, 600,
550, 500, 450, 400, 350, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hPa).

The atmospheric parameters for DLR retrieval, including Ta, IWV, Ts, Te, and atmospheric profiles,
were obtained from NCEP, and the other inputs were unchanged. The profiles were obtained by
interpolation from the 1◦ × 1◦ original grid into a 1 km × 1 km mesh. We used the method proposed
by [47] to extract the satellite pixel profile and other parameters from the NCEP data, including
temporal, spatial, and vertical interpolation. First, two NCEP files representing two adjacent forecast
times were loaded and interpolated to the satellite time using linear interpolation with time difference.
Then, the profiles at satellite pixel were extracted by bilinear interpolation from the four grid corners
surrounding a specific location. Finally, the Ta and humidity at the surface level were bilinearly
interpolated from the two closest layers to the surface. Ts was obtained after temporal and spatial
interpolation, whereas Ta, Te, and IWV were calculated from the final atmospheric profile.
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4.1.3. Ground Measurements

DLR measurements were collected from 14 sites around the globe belonging to either the
Chinese Watershed Allied Telemetry Experimental Research (WATER; [49]), the Atmospheric Radiation
Measurement (ARM) Program, the international Baseline Surface Radiation Network (BSRN), or the
Ameriflux. The information about site location, period, instrument, and measurement uncertainty are
presented in Table 6. The sites are in various climate types including polar regions with dry and cold
climate, tropical marine climate with high temperature and IWV, and arid regions with low IWV and
large δTs,a. The arid sites are marked with asterisks, including the desert surface and the sites that
were considered as arid by [22]. All sites are a homogeneous surface type, and most of them are in flat
and rural regions. The homogeneity of the sites was analyzed using ASTER global digital elevation
model (DEM) data with 30-m resolution. The standard deviation of elevation within a 3 km × 3 km is
4–40 m for most sites; it is about 347 m for Dome C (DOM), which is relatively small compared with
the site altitude and has little influence on DLR calculation. Therefore, all sites can be regarded as
homogeneous in the validation.

The radiation data provided by WATER, ARM, BSRN, and Ameriflux sites were in 10-min, 1-min,
1-min and 30-min average, respectively. For the sites from the former three networks, the data closest
to the satellite overpass time were chosen, while for the Ameriflux sites, in-situ DLR was interpolated
from the two data points that were closest to the satellite pass time. Besides surface radiations, the
three sites of ARM and South Pole (SPO) of BSRN provided discontinuous measurements of IWV. One
year of data were used for most sites, whereas field measurements were discontinuous during 2010 at
DOM, and only summer and winter data were used for NSA-C1 and SPO because the Terra-MODIS
passes overhead as many as eight times per day at these sites.

DLR was measured by Eppley Precision Infrared Radiometer (PIRs), CG3 pyrgeometers of Kipp
& Zonen CNR1 Net Radiometers, or Kipp & Zonen CG 4 pyrgeometers at these sites. For the ARM
network, the Eppley PIRs were shaded and ventilated to prevent excessive heating of the dome by
the sun and were equipped with the Solar Infrared Radiation Station (SIRS) system at SGP-C1 and
with the Sky Radiation (SKYRAD) system at Barrow North Slope of Alaska (NSA-C1) and Manus
Island Tropical Western Pacific (TWP-C1). Their DLR measurement uncertainties were provided
by Stoffel [50,51]. PIR accuracy for the BSRN DLR reached 10 W/m2 through improvement of its
calibration [52]. DLR uncertainties used the factory accuracies for other sites. The spectral ranges
of the CG3, PIR, and CG4 were 5–50, 4.0–50, and 4.5–42 µm, respectively. Although the spectral
response functions of the pyrgeometers did not cover the whole infrared spectrum, their readings were
calibrated to the total range of longwave emission [53].
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Table 6. Description of site conditions. Sites used as examples of dry-arid regions are marked with asterisks.

Site Label Geographic Name Latitude/Longitude (◦) Elevation(m) Period Surface Type Instrument DLR Accuracy Network

YK Yingke oasis station, China 38.850/100.417 1519 2010 Cropland Kipp & Zonen CNR1 ±10% WATER
AR Arou freeze/thaw station, China 38.050/100.450 3033 2010 Grass Eppley PIR ±5% WATER

HZZ * Huazhaizi desert station, China 38.767/100.317 1726 2010 Desert Kipp & Zonen CNR1 ±10% WATER

SGP-C1 South Great Plains, Central Facility,
America 36.600/−97.500 318 2010 Grass Eppley PIR ±2.5% or ±4

W/m2 ARM

NSA-C1 Barrow, North Slope of Alaska,
America 71.300/−156.600 7.6 2010 Tundra Eppley PIR ±6 W/m2 ARM

TWP-C1 Manus Island, Tropical Western
Pacific −2.100/147.400 4 2010 Grass Eppley PIR ±6 W/m2 ARM

ASP * Alice Springs, Australia −23.798/133.888 547 2010 Grass Eppley PIR ±10 W/m2 BSRN
DOM Dome C, Antarctica −75.100/123.383 3233 2010, [1,2] Glacier Kipp & Zonen CG4 ±3% BSRN
DRA * Desert Rock, America 36.626/−116.018 1007 2010 Desert Eppley PIR ±10 W/m2 BSRN
SBO * Sede Boqer, Israel 30.905/34.782 500 2010 Desert Eppley PIR ±10 W/m2 BSRN
SPO South Pole, Antarctica −89.983/−24.799 2800 2010, [1,7,8] Glacier Eppley PIR ±10 W/m2 BSRN

TAM * Tamanrasset, Algeria 22.780/5.510 1385 2010 Desert Eppley PIR ±10 W/m2 BSRN
FMF Flagstaff Managed Forest, Arizona 35.1426/−111.7273 2160 2010 Forest Kipp & Zonen CNR1 ±10% Ameriflux

GLEES US-GLE Wyoming, USA 41.3644/−106.2394 3190 2010 Forest Eppley PIR ±5% Ameriflux
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4.2. Validation Result of MODIS-Derived DLRs

The pixels that the MODIS cloud mask considered to be clear at 95% and 99% probability were
selected, and those lacking information about atmospheric profile or water vapor were removed
as cloudy. Because the MODIS cloud mask may have substantial uncertainty in polar regions,
we determined clear-sky conditions from field measurements at DOM, SPO, and NSA-C1 using
the dual-threshold method proposed by [54]. The clear-sky threshold and standard deviation threshold
of DLR for each month were selected according to the time series of DLR measurements and the
clear-sky DLRs simulated by MODTRAN and in-situ atmospheric profiles. The measurements for
DLR that were greater than a monthly clear-sky DLR threshold or DLR standard deviation over
a 20-min period greater than the monthly standard deviation threshold were removed as cloudy
conditions. Furthermore, the pixels with unreasonably low TOA radiance at sites Flagstaff Managed
Forest (FMF) and US-GLE Wyoming (GLEES) and those with very low IWV at TWP-C1 were excluded
as cloud contaminated.

The DLRs of MODIS clear-sky pixels were calculated and compared with in-situ measurements.
As shown in Table 7, the validation results were arranged into three region types—the sites belonging
to the arid region, the sites belonging to the high-altitude region (elevation > 2000 m), and other sites
belonging to ordinary regions. The statistical results for each site and their averages for each region
type are presented. The scatter plots of estimated and ground-measured DLRs for the three region
types are shown in Figures 9–11.
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Table 7. Error statistics for MODIS-derived clear-sky DLR using different algorithms. RMSE, bias, and the square of the correlation coefficients (R2) of all sites and the
average values of each type of region are given. RMSE and bias are in units of W/m2. The best results are highlighted in bold, and the worst results are marked
with asterisks.

Site Label
NewParam Tang-Li Wang-Liang Zhou-Cess Gupta2010

RMSE Bias R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias R2

Sites in ordinary regions (DEM < 2000 m)

YK 23.5 1.2 0.85 23.3 −1.9 0.83 24.1 −12.2 0.86 35.4 * −21.6 0.74 21.3 −9.3 0.88
SGP-C1 19.4 8.0 0.91 50.2 * 39.8 0.75 21.6 2.4 0.86 24.1 7.8 0.85 25.6 16.9 0.91
NSA-C1 17.7 −1.8 0.95 24.6 * 13.3 0.93 20.3 10.1 0.94 20.6 10.4 0.94 17.7 −6.3 0.95
TWP-C1 22.3 * −9.2 0.05 19.2 −8.1 0.01 19.9 6.8 0.00 20.5 −16.1 0.18 19.3 −11.3 0.15

Mean 20.5 1.1 0.95 34.3 * 14.4 0.87 21.5 1.8 0.94 25.9 −2.4 0.91 21.7 0.1 0.94

Sites in dry-arid regions

HZZ 24.3 −6.5 0.90 26.7 11.8 0.84 33.2 −9.0 0.82 33.2 −25.1 0.84 26.3 −20.5 0.91
ASP 19.5 0.6 0.82 49.9 * 40.7 0.66 24.0 12.6 0.77 18.0 −6.9 0.85 18.4 −9.6 0.86
DRA 26.8 7.4 0.79 48.6 * 35.7 0.67 30.2 −21.5 0.79 23.7 −2.9 0.73 21.7 −1.9 0.81
SBO 23.9 0.8 0.72 48.6 * 36.4 0.59 27.7 −3.3 0.63 26.1 −13.4 0.66 26.1 −13.8 0.71
TAM 21.9 6.7 0.77 34.4 16.9 0.46 39.2 * −17.5 0.27 18.1 −3.6 0.81 18.4 3.4 0.84
Mean 23.3 3.3 0.80 43.6 * 29.3 0.61 31.9 −9.0 0.60 22.8 −8.0 0.77 22.3 −1.6 0.81

Sites in high-altitude regions (DEM ≥ 2000 m)

AR 23.7 9.6 0.82 23.7 8.6 0.71 21.4 −4.3 0.74 27.1 −10.4 0.67 27.2 * −18.8 0.83
DOM 7.8 1.4 0.56 23.3 18.0 0.31 13.4 2.9 0.30 34.8 * 34.0 0.57 12.4 9.8 0.58
SPO 15.5 −10.6 0.83 17.3 0.5 0.77 25.3 −17.3 0.94 29.6 * 27.0 0.78 24.3 −12.6 0.71
FMF 22.5 −8.2 0.80 26.3 −0.1 0.66 19.4 5.3 0.83 23.8 3.0 0.74 17.9 5.3 0.87

GLEES 35.7 6.3 0.62 33.3 12.6 0.65 29.4 10.9 0.72 45.4 14.2 0.39 34.6 8.7 0.61
Mean 22.1 −0.6 0.94 25.8 9.5 0.92 23.1 6.1 0.94 33.5 * 15.3 0.89 23.1 0.1 0.93
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4.2.1. Performance of New Algorithm

Because MODIS-derived δTs,a may have large uncertainties, we used δTs,a only at the sites in arid
and polar regions and the SGP-C1 site where Ts were largely different from Ta and the uncertainties.
Specifically, we used dry grass-only coefficients for the arid sites, and all surfaces-average coefficients
for other sites. Table 7 indicates that the new algorithm had good results at most sites with accuracies
within 25 W/m2. The mean RMSEs of DLRs were 20.5, 23.3, and 22.1 W/m2 for ordinary, arid, and
high-altitude regions, respectively.

As shown in Figure 9a, the new parameterization performed well under most circumstances in
ordinary regions but produced some negative errors at the lower DLRs (≤200 W/m2), which were at
NSA-C1, and had some positive and negative errors at the higher DLRs (~400 W/m2), which were at
TWP-C1. We further analyzed the error sources by comparing satellite and field measured parameters
at NSA-C1 and TWP-C1. Because field measured IWVs were discontinued, only parts of the samples
were analyzed. The DLR underestimations of NSA-C1 mainly occurred in the winter season when
MODIS IWV had negative errors up to−50% compared to field measurements. The other error sources
included uncertainty in δTs,a and the fact that the algorithm could not accurately simulate DLRs
for some polar profiles, as mentioned in Section 3.1. The DLR underestimation and overestimation
at TWP-C1 were mainly caused by the uncertainty of the MODIS IWV error (from −1.9 to 2.0 cm),
whereas uncertainty caused by δTs,a was relatively small.

DLR RMSEs were 19.5–26.8 W/m2 for the arid sites. Using δTs,a obviously improved the results
at these sites (not shown), especially during daytime. Slight overestimations appeared at the larger
DLRs (Figure 10a), which mainly happened during daytime. Also, slight underestimations during
nighttime were found (not shown). We analyzed the δTs,a values at sites Huazhaizi (HZZ) and Desert
Rock (DRA), and found the in-situ δTs,a had large positive values (10 to 20 K at HZZ and 5 to 20 K
at DRA) during daytime and slightly negative values (−5 to 0 K) during nighttime. However, the
ranges of MODIS δTs,a errors during daytime and nighttime were −5 to 5 K and 5 to 10 K at HZZ
and were −10 to 5 K (mainly negative errors) and 0 to 5 K at DRA. Therefore, the retrieved DLRs had
larger negative errors during nighttime at HZZ and larger positive errors during daytime at DRA.
We recalculated the DLRs using in-situ δTs,a and found the uncertainty caused by δTs,a was within
20 W/m2 at both sites.

DLRs accuracies ranged from 7.8 to 35.7 W/m2 at the high-altitude sites. As shown in Figure 11a,
DLRs had large positive errors at the large DLRs, which mainly occurred at GLEES, and had negative
errors at lower DLRs that were in the winter of SPO. Furthermore, some overestimations at Arou
(AR) and overestimations and underestimations at FMF were found. The errors at GLEES, AR, and
FMF were mainly caused by the uncertainty of IWV. We found MODIS IWV had some values much
greater than those on adjacent days during nighttime at AR and GLEES. When the pixels with IWV
≥2.1 cm were removed, the DLR accuracies improved from 6.3 ± 35.7 to −3.2 ± 25.7 W/m2 at GLEES.
As for the SPO site, the underestimations were caused by IWV uncertainty, the algorithm limitation
in polar winter, and strong temperature inversions. The mean relative error of MODIS-derived IWV
was −71.9%, and the thick inversion layer with temperature lapse rate exceeding −20 K/km was
frequently found at SPO during winter.

4.2.2. Comparison with Other Algorithms

The new algorithm was compared with the four algorithms in Section 2.1. Considering that the
coefficients of Wang-Liang algorithm were derived over the North American continent and cannot
represent the atmosphere in tropical and Antarctic regions, its coefficients were calibrated at sites
DOM, SPO, and TWP-C1 to compare these algorithms equally.

In the ordinary regions, the RMSE of MODIS DLRs from the new algorithm was 1.0 and 1.5 W/m2

smaller than those from Wang-Liang and Gupta2010 algorithms and was 13.8 and 5.4 W/m2 smaller
than those from Tang-Li and Zhou-Cess algorithms. Though Wang-Liang and Gupta2010 had similar
performance to the new algorithm (Figure 9), Gupta2010 had large positive errors at SGP, and
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Wang-Liang slightly underestimated the DLRs at Yingke (YK) and overestimated the DLRs at NSA-C1
(Table 7). For the Zhou-Cess algorithm, the DLRs at the lower end were overestimated, and those at
the higher end were underestimated for the DLRs within 200–400 W/m2 (at YK and SGP-C1), while
the DLRs ≥400 W/m2 (at TWP-C1) were underestimated. Tang-Li significantly overestimated the
DLRs at all ranges.

For the sites in arid regions, the RMSE from the new algorithm was slightly larger than those
from Zhou-Cess and Gupta2010 (~0.5–1.0 W/m2), and much smaller than those from the Tang-Li
and Wang-Liang algorithms (~8.5–20.3 W/m2). Though it performed slightly better, Zhou-Cess
showed underestimations overall (Figure 10b), whereas Gupta2010 had obvious negative biases at
HZZ and SBO (Figure 10c). The Tang-Li algorithm significantly overestimated DLRs, whereas the
Wang-Liang algorithm obviously underestimated DLRs (Figure 10d,e). These findings may be because
δTs,a was not considered by either algorithm. The large positive biases of the Tang-Li algorithm mainly
occurred during daytime when large δTs,a values were found at these sites. The performance of the
Wang-Liang algorithm was consistent with the conclusion of Section 3.1 that DLRs had negative errors
for δTs,a < 10 K.

In the high-altitude regions, the new algorithm performed slightly better than the Gupta2010,
Wang-Liang, and Tang-Li algorithms (with mean RMSE decreased 1.0 to 3.7 W/m2) and much
better than the Zhou-Cess algorithm (with mean RMSE decreased 11.4 W/m2). For the DLR
within 200–400 W/m2 that occurred mainly at sites AR, FMF, and GLEES, the Zhou-Cess and
Gupta2010 algorithms had larger positive and negative errors than the new algorithm. Tang-Li
slightly overestimated the DLRs overall, while Wang-Liang performed well but had some negative
errors (Figure 11). Besides the uncertainty of MODIS IWV, the results of the Gupta2010 and the
Zhou-Cess algorithms were also influenced by the uncertainty of MODIS-derived Ta. For example,
the two algorithms greatly underestimated DLRs at Arou, where we found that Ta from MODIS was
~10 K lower than those from the ground measurement. For the lower DLRs in polar regions, Tang-Li
overestimated them while the Wang-Liang and the Gupta2010 algorithms underestimated the winter
data among them (Figure 11). However, the Zhou-Cess algorithm greatly overestimated the DLRs
in polar regions. This may be because the in-situ DLRs and satellite cloud fractions of the two sites
were used during the algorithm development [25], and some data of cloudy pixels may not have been
discriminated and were fitted as clear sky.

In summary, compared with the Tang-Li and the Wang-Liang algorithms, the new algorithm
is based on the Stefan-Boltzmann law and therefore has more reasonable physical meaning. It also
performs better over arid regions or other conditions with large δTs,a because the difference between
air and surface temperature is accounted for in the algorithm. Compared with the Zhou-Cess and the
Gupta2010 algorithms, the new algorithm can avoid the underestimations or overestimations in DLR
caused by inaccurate air temperature over high-altitude regions.

4.3. Evaluation of Different Atmospheric Products for DLR Retrievals

We found the same problem as Li et al. [48] that MODIS’s profile lacked lower-atmospheric data
at high-altitude sites AR and YK. NCEP data with higher vertical resolution were used and compared
with MODIS for the high-altitude sites. In this section, the atmospheric parameters for DLR retrieval,
including Ta, IWV, Ts, and atmospheric profiles, were obtained from NCEP, and the other inputs
were unchanged.

4.3.1. Difference between MODIS- and NCEP-derived Atmospheric Parameters

Figure 12 shows a comparison of MODIS- and NCEP-derived atmospheric profiles at sites AR,
GLEES, and SPO. For the AR site, because the surface pressure from MODIS was much smaller
than the observed value, the atmospheric information of a thickness ~50 hPa above the surface was
missing. Since the surface Ta and infrared IWV was obtained from the MODIS atmospheric profile,
the information deficiencies in the lower troposphere may have led to the underestimations of Ta and
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nighttime IWV. Conversely, the surface pressure from MODIS was ~60 hPa larger than the observed
values at the GLEES site, which may have caused IWV overestimation. The surface-level Ta that
interpolated from NCEP data was closer to observed values than those from MODIS at the two sites.
As for SPO, the surface pressure was similar to the observed value, but the Ta interpolated from
MODIS lowest atmospheric level by assuming a temperature lapse rate of 6.5 K/km had a larger error
than the NCEP-derived Ta.

Remote Sens. 2019, 11 FOR PEER REVIEW  4 

 

MODIS lowest atmospheric level by assuming a temperature lapse rate of 6.5 K/km had a larger 
error than the NCEP-derived Ta. 

 

Figure 12. Vertical distribution of air temperatures from the National Centers for Environmental 
Prediction (NCEP) and MOD07 profiles at sites Arou (AR), US-GLE Wyoming (GLEES), and South 
Pole (SPO). The solid line, dashed line, and asterisk represent MODIS, NCEP, and field-measured 
data, respectively. 

 
Figure 13. Comparison of MODIS-derived atmospheric parameters with those from NCEP at the 
sites AR (left column), GLEES (middle column), and SPO (right column). The solid line and dashed 
line represent parameters from MODIS and NCEP, respectively. 

Figure 13 shows the histograms of IWV and bias in Ta from the two products at these sites. 
MODIS-derived Ta had a median bias of about −10 and −4 K for daytime and nighttime at AR, while 

Figure 12. Vertical distribution of air temperatures from the National Centers for Environmental
Prediction (NCEP) and MOD07 profiles at sites Arou (AR), US-GLE Wyoming (GLEES), and South
Pole (SPO). The solid line, dashed line, and asterisk represent MODIS, NCEP, and field-measured
data, respectively.

Remote Sens. 2019, 11 FOR PEER REVIEW  4 

 

MODIS lowest atmospheric level by assuming a temperature lapse rate of 6.5 K/km had a larger 
error than the NCEP-derived Ta. 

 

Figure 12. Vertical distribution of air temperatures from the National Centers for Environmental 
Prediction (NCEP) and MOD07 profiles at sites Arou (AR), US-GLE Wyoming (GLEES), and South 
Pole (SPO). The solid line, dashed line, and asterisk represent MODIS, NCEP, and field-measured 
data, respectively. 

 
Figure 13. Comparison of MODIS-derived atmospheric parameters with those from NCEP at the 
sites AR (left column), GLEES (middle column), and SPO (right column). The solid line and dashed 
line represent parameters from MODIS and NCEP, respectively. 

Figure 13 shows the histograms of IWV and bias in Ta from the two products at these sites. 
MODIS-derived Ta had a median bias of about −10 and −4 K for daytime and nighttime at AR, while 

Figure 13. Comparison of MODIS-derived atmospheric parameters with those from NCEP at the sites
AR (left column), GLEES (middle column), and SPO (right column). The solid line and dashed line
represent parameters from MODIS and NCEP, respectively.



Remote Sens. 2019, 11, 425 22 of 27

Figure 13 shows the histograms of IWV and bias in Ta from the two products at these sites.
MODIS-derived Ta had a median bias of about −10 and −4 K for daytime and nighttime at AR, while
the NCEP-derived Ta was better during the daytime. The distribution of bias in Ta from NCEP was
more centralized toward zero compared to that of MODIS at the GLEES site. The MODIS IWV had
some large IWV values at AR and GLEES, which were unreasonable, whereas these very large values
were smoothed by NCEP data. For the SPO site, we found the number of underestimated Ta from
MODIS was deduced, and the IWVs negative biases during winter that were mentioned in Section 4.2
were decreased after using NCEP data compared to those from MODIS.

4.3.2. Difference between MODIS- and NCEP-derived DLRs

DLRs at the high-altitude sites were calculated by the NCEP parameters using the new, the Zhou-Cess,
and the Gupta2010 algorithms. Table 8 indicates that using NCEP parameters distinctly improved the
results, especially for the Gupta2010 and the Zhou-Cess algorithms. The DLR underestimations at
SPO during winter and at AR, as well as the overestimations at GLEES, were substantially corrected.
DLR RMSEs decreased by 5.5 and 19.1 W/m2 at AR and GLEES for Zhou-Cess and decreased by
2.4, 19.0 and 6.7 W/m2 at AR, SPO, and GLEES for Gupta2010. Because only IWV was improved,
the new algorithm was less affected by different sources of atmospheric data than the other two
algorithms. The DLR RMSEs decreased at SPO and GLEES (3.1 and 7.8 W/m2) but slightly increased
at AR and FMF. Figure 14 displays the scatter points between retrieved and observed DLRs and the
distributions of DLR biases from NCEP and MODIS, respectively. Comparing Figure 14 with Figure 11,
the dispersed points were diminished for the three algorithms, and the underestimated points at the
low DLRs were corrected for Gupta2010. Figure 14d–i indicates that errors from NCEP had narrower
distributions than those from MODIS. Furthermore, we compared the two products in other regions
and found that using NCEP-derived parameters appreciably improved results of these algorithms
under extreme climatic conditions, such as during the winter of NSA-C1 and at site TWP-C1. NCEP
data are not recommended for other regions because the coarse resolution causes great uncertainties in
atmospheric parameters.

Table 8. Same as Table 7 but for the results in the high-altitude regions. The clear-sky DLRs were
estimated using NCEP atmospheric data. The differences between RMSE from NCEP and that from
MODIS are displayed in the brackets.

Event Label
NewParam Zhou-Cess Gupta2010

RMSE Bias R2 RMSE Bias R2 RMSE Bias R2

AR 25.2(1.5) 7.0 0.78 21.6(−5.5) −3.2 0.84 24.8(−2.4) −15.6 0.87
DOM 7.8(0) 3.3 0.63 35.1(+0.3) 34.7 0.73 14.6(+2.2) 13.3 0.74
SPO 12.4(−3.1) −8.4 0.88 29.4(−0.2) 28.5 0.96 5.3(−19) 0.5 0.96
FMF 26.8(4.3) −3.4 0.77 20.2(−3.6) −10.4 0.87 21.8(+3.9) −14.5 0.88

GLEES 27.9(−7.8) −11.4 0.74 26.3(−19.1) 2.3 0.73 27.9(−6.7) −8.4 0.71
Mean 21.3(−0.8) −2.2 0.94 27.8(−5.7) 10.8 0.96 20.5(−2.6) −3.1 0.96
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5. Conclusions

In this study, the Yu2013 algorithm that parameterized clear-sky DLR using BT and IWV was
improved and extended to MODIS data. The improved parameterization avoids considerable DLR
underestimations under high IWV conditions by changing the functional form of water vapor from
square-root to logarithmic. An evaluation based on a testing dataset generated from global atmospheric
profiles and MODTRAN simulations indicates that the new parameterization was not restricted
by sample number and could greatly improve results at large IWV compared with the original
parameterization. The total RMSE of DLR decreased by ~1.9 to 3.1 W/m2, and DLR accuracy under
high IWV (>3.0 cm) improved by 0.5%–16.9%.

Accuracy evaluation using the simulated testing dataset shows that the algorithm gives accuracies
between 5.4 and 20.8 W/m2 when the input parameters are perfectly accurate. A sensitivity analysis
indicates that DLR accuracy is greatly affected by uncertainties of IWV, BT, and δTs,a. DLR error is
more sensitive to the error in IWV at large IWVs and at small IWVs at high altitudes, to the error of BT
at high-BT conditions, and to the error of δTs,a under high-temperature and low-IWV conditions than it
is to other conditions. The new algorithm was compared with four state-of-the-art algorithms. The two
algorithms parameterized with TOA radiance produced large positive or negative errors, especially
for large DLRs when Ts was much higher or lower than Ta. The new algorithm accounted for δTs,a and
made improvements at high IWV, thereby achieving better results than the two algorithms. The new
algorithm also gives slightly better results to the two atmospheric parameter-based algorithms for
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VZA ≤50◦, whereas the latter two algorithms would be greatly affected by the uncertainties of IWV
and air and surface temperatures in actual applications.

The new algorithm was applied to MODIS Terra data and extensively validated using one year’s
ground data from 14 stations around the globe. The algorithm produced favorable results at most sites
with accuracies within 25 W/m2. However, the algorithm performed poorly under extreme climatic
conditions, such as winter in polar regions with a dry and cold climate and in the tropical western
Pacific with a warm and moist climate. The poor performance for these conditions was mainly caused
by the uncertainty of MODIS-derived IWV and δTs,a and the algorithm limitations under extreme
climate. The proposed algorithm had much better results than the TOA radiance-based algorithms
in dry–arid regions or other conditions in which Ts was substantially different from Ta because δTs,a

was considered. The algorithm performed 1.0 to 11.4 W/m2 better than atmospheric parameter-based
algorithms in high-altitude regions because DLRs from the latter two algorithms were greatly affected
by the inaccurate air temperature.

To evaluate the effect of different atmospheric datasets on DLR accuracy, MODIS and NCEP
atmospheric products were compared for DLR estimation. The NCEP-derived atmospheric parameters
were more accurate than MODIS data in high-altitude regions because the lowest layers from MODIS
profiles sometimes were above or below the actual surface there, which caused the underestimations
or overestimations of IWV and Ta. In addition, using NCEP data could avoid the very large
positive/negative IWV errors and Ta errors from MODIS. Therefore, using NCEP data could clearly
improve DLR estimation in such regions, especially for the atmospheric parameter-based algorithms
(RMSE decreased by 2.2 to 19.1 W/m2).

The study demonstrates that the new parameterization works well in most situations and
overcomes the shortcomings of current TOA radiance-based and atmospheric parameter-based
algorithms. In future work, the new algorithm will be applied to geostationary satellite data, such
as Meteosat-9/10 and GOES13, to obtain diurnal changes in DLR, whereby acquiring accurate IWV
and δTs,a is most important during the DLR estimations. Moreover, the algorithm needs further
modification to improve performance under extreme climatic conditions.
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