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Abstract: Synthetic aperture radar (SAR) is an important means to detect ocean oil spills which cause
serious damage to the marine ecosystem. However, the look-alikes, which have a similar behavior
to oil slicks in SAR images, will reduce the oil spill detection accuracy. Therefore, a novel oil spill
detection method based on multiple features of polarimetric SAR data is proposed to improve the
detection accuracy in this paper. In this method, the self-similarity parameter, which is sensitive to
the randomness of the scattering target, is introduced to enhance the discrimination ability between
oil slicks and look-alikes. The proposed method uses the Random Forest classification combing
self-similarity parameter with seven well-known features to improve oil spill detection accuracy.
Evaluations and comparisons were conducted with Radarsat-2 and UAVSAR polarimetric SAR
datasets, which shows that: (1) the oil spill detection accuracy of the proposed method reaches
92.99% and 82.25% in two datasets, respectively, which is higher than three well-known methods.
(2) Compared with other seven polarimetric features, self-similarity parameter has the better oil spill
detection capability in the scene with lower wind speed close to 2–3 m/s, while, when the wind
speed is close to 9–12 m/s, it is more suitable for oil spill detection in the downwind scene where the
microwave incident direction is similar to the sea surface wind direction and performs well in the
scene with incidence angle range from 29.7◦ to 43.5◦.

Keywords: oil spill detection; polarimetric SAR; self-similarity parameter; random forest; multi-feature

1. Introduction

1.1. Background

With the development of the marine transport and offshore oil industries, oil spills caused by
leaks in pipelines, offshore oil tankers, and drilling platforms occur more often. Large amounts of
crude oil and refined oil enter the ocean in different ways, causing significant damage to birds, marine
organisms and coastal environments. Hence, it is very necessary to monitor marine oil spills, which
is of great help for pollution treatment. Remote sensing plays an increasingly important role in oil
spill response efforts, as the location and extent of oil spills can be quickly and accurately determined
by remote sensing [1]. Among many remote sensing sensors, synthetic aperture radar (SAR) is an
effective tool of oil spill detection due to its all-weather and all-day capabilities [2–4].

On the ocean’s surface, capillary waves and short gravity waves of water reflect microwave
energy, producing a “bright” image known as sea clutter in single-polarization SAR image [1]. The oil
slicks on the ocean surface dampen capillary waves and short gravity waves, which cause microwave

Remote Sens. 2019, 11, 451; doi:10.3390/rs11040451 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-7250-8781
http://www.mdpi.com/2072-4292/11/4/451?type=check_update&version=1
http://dx.doi.org/10.3390/rs11040451
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 451 2 of 20

backscatter energy of oil slicks weaker than the surrounding clean sea. Therefore, oil slicks are normally
detected as dark areas in the SAR images [5–7]. However, there are other natural phenomena which
cause dark areas in SAR images, like natural biogenic slicks, rain cells, internal waves, grease ices,
currents, etc. [6,8,9]. These look-alike phenomena increase the difficulty of oil spill detection. Compared
with single-polarization SAR, polarimetric SAR includes not only the power information but also the
relative phase information between channels, which can reflect the difference in target characteristics.
Many studies have proven that the extra polarimetric information contained in polarimetric SAR data
can provide powerful discrimination between oil slicks and look-alikes [3,10–12].

1.2. Related Works

There are many studies of oil spill detection using polarimetric features from polarimetric SAR
data in recent years, which detect oil slicks by the differences of polarimetric information between oil
slicks and look-alikes. Many polarimetric features have been proposed to detect oil spills [13]. These
features are mainly divided into three categories, according to their principle of oil spill detection.

The first kind utilizes the backscattered energy to distinguish oil slicks; for example, span [14],
Freeman decomposition parameters [15], geometric intensity (V) [16], Bragg energy proportion (η) [17],
etc. Among them, V is classified in this category because it is mathematically similar to the span, but it
contains information on the cross products in addition to the intensities used in the span [16]. η refers
to the ratio of Bragg scattering energy to the total energy in the microwave reflected energy [17].

The second kind utilizes the correlation between different channels to distinguish oil slicks;
for example, the standard deviation of the co-polarized phase difference (cpd) [4], the real part
of the co-polarization cross product (Rco) [16], conformity coefficient (µ) [18], etc. Among them,
Rco was proposed that has the ability to distinguish slick-covered areas from the clean sea and
look-alikes [16,19].

The third kind utilizes the scattering mechanism to distinguish oil slicks—for example,
H/α/A decomposition parameters [7], modified anisotropy coefficient (A12) [16], etc. In addition,
some features are also classified into this category that can detect oil spills by measuring polarized or
unpolarized components in the electromagnetic waves, such as the degree of polarization (DoP) [20],
pedestal height (Ph) [3], etc. Among them, Dop can measure how close the scattering mechanism of the
observed scene is to be deterministic [20], and Ph is a reliable estimator of the amount of unpolarized
backscattered energy [3].

In addition to the polarimetric SAR, compact-polarimetric SAR has also been introduced for
oil spill detection [21–23]. Some above-mentioned full-polarimetric features were extended to
compact-polarimetric SAR for oil spill detection, such as µ [10,24], DoP [10,25], etc. In this paper,
we focus on the fully polarimetric features.

Among these features introduced above, some show better ability of oil spill detection, which has
already been proved in related literature [3,16,18,20]. The expressions for these features, along with
their expected behavior over the oil slicks and look-alikes, are described in Table 1.

With the increasing number of polarimetric features utilized for oil spill detection, it gradually
becomes a trend that uses multiple features to detect oil spills [13]. For example, Liu et al. proposed
a parameter F, which is a combination of multi-feature, combined with Otsu segmentation to detect
oil spills [14]. Yin et al. proposed an extended Bragg model combined with maximum likelihood
classification for oil spill detection [26]. Ramsey et al. used Freeman–Durden decomposition and
Cloude–Pottier decomposition combined with Wishart classification for oil spill detection [15], etc.
In consideration of the complementarity among features to the classification performance, it may be
possible to use multi-features simultaneously to improve the oil spill detection accuracy and reduce
the false alarm caused by look-alikes [11,27].
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Table 1. Polarimetric features and their expected behavior over the oil slicks and look-alikes.

Categories Polarimetric Features Oil Slicks Look-Alikes

Backscattered energy η = T11+|T12|2/T11
Span Low High

V = det(T)3 Low High

Correlation between
different channels

µ =
2(Re〈SHH S∗VV 〉−|SHV |2)

Span Low High

Rco =
∣∣Re(

〈
SHHS∗VV

〉
)
∣∣ Low High

Scattering mechanism or
polarized state

DoP =

√
1
3

(
tr(MtM)

M2
11
− 1
)

Low High

Ph = λ3
λ1

High Low
A12 = λ1−λ2

λ1+λ2
Low High

where Tij means the (i, j) entry of coherency matrix T, Span denotes the total power of scattering matrix, det(·) is the
determinant, Re(·) denotes the real part, SHH , SHV , and SVV are the complex elements of the scattering matrix, *
means the complex conjugate operator, 〈·〉 is the ensemble average operator, tr(·) is the trace operator of the matrix,
M means the Mueller matrix, and Mij is the (i, j) entry of M, t stands for transpose operator, λi is eigenvalue of T.

1.3. The Proposed Approach

The Random Forest (RF) algorithm based on multi-feature has proven to have a good performance,
which is robust to noise and outliers without over-fitting [28,29]. In addition, the RF can also assess
the importance of the feature [30,31]. In this paper, we propose a multi-feature based method using
RF classification to detect oil spills from polarimetric SAR data. Three kinds of polarimetric features
shown in Table 1 were used for oil slick classification.

In order to improve the oil spill detection accuracy and reduce the errors caused by look-alikes,
we also introduce a new polarimetric feature, self-similarity parameter, to enhance the discrimination
ability between oil slicks and look-alikes. The self-similarity parameter can be used to describe the
randomness of the scattering mechanism of the target [32]. Compared to water and look-alikes,
the randomness of scattering mechanisms in oil slicks is higher because of its complex scattering
mechanism [33]. Hence, the self-similarity parameter was introduced to detect oil spills along with
other seven polarimetric features.

This paper is organized as follows: Section 2 introduces the method frame of oil spill
detection. The experimental data, oil spill detection ability analysis of different polarimetric features,
and comparison of different methods are introduced in Section 3. The noise analysis and influencing
factors of oil spill detection are analyzed in Section 4. Section 5 introduces the major conclusions of
this paper.

2. Methodology

2.1. Method Frame for Oil Spill Detection

The flow chart of the proposed method is shown in Figure 1. It mainly includes two parts, the first
part is the polarimetric features extraction, and the second part is multi-feature based RF classification.
In order to suppress the effect of speckle noise, the polarimetric SAR images were processed by Lee
filtering with a 7 × 7 window size.

In the first part, the self-similarity parameter and seven other polarimetric features shown in
Table 1 were extracted. After features extraction, multi-feature fusion was performed as the input
variable for RF.

In the second part, the RF classification was used to classify oil slicks. First, obtain the multiple
bootstrap datasets by multiple random sampling from the training sample (i.e., oil slicks, look-alikes,
and water). Then, construct the decision tree for each bootstrap dataset, grow the tree using
Classification and Regression Trees (CART) to maximum size and do not prune [34]. Then, use multiple
decision trees to build the random forest model of oil spill detection and use voting classification
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to classify oil slicks, look-alikes, and water in the images. Finally, detect oil spills according to the
classification results. 4 of 20 
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2.2. Using Self-Similarity Parameters to Describe Oil Slicks

In Section 2.1, we introduced the processes of the proposed method. Among them, the polarimetric
features were as the inputs of the RF classification. In-depth explanations of seven features in Table 1
have been provided in the corresponding literature [3,16,18,20]. Thus, this section focuses on explaining
the self-similarity parameter.

The similarity parameter was proposed to measure the similarity between two scattering matrices
by Yang et al. [35], which extracts the scattering mechanism of targets by calculating the similarity
between targets and the canonical target (i.e., sphere, diplane reflector, left/right helix, etc.) [35,36].
The self-similarity parameter (rrrs) is a new parameter defined based on the similarity parameter by
Li et al., which is related to its own scattering matrix and not associated with the canonical target [32].
It is used to describe the randomness of the target scattering mechanism.

The full polarimetric SAR system measures four combinations of liner transmit and receive
polarization, the scattering matrix S of is:

S =

[
SHH SHV
SVH SVV

]
. (1)

The matrix S is a symmetric matrix under the monostatic radar system, i.e., SHV = SVH . The Pauli
scattering vector k can be extracted from the scattering matrix S as:

k =
1√
2
[SHH + SVV , SHH − SVV , 2SHV ]

t. (2)

As for two given targets, their similarity parameter r based on matrix S is defined as [35]:

r(S1, S2) =

∣∣∣k1
Hk2

∣∣∣2
‖k1‖2‖k2‖2 , (3)

where H is conjugate transpose operator, and ‖ · ‖2 denotes the square sum of the absolute values of
the components of the vector.
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In practical applications, the polarimetric coherence matrix T is generally used to describe the
distributed target. In this case, the similarity parameter rrr of a mixed scatterer T and a canonical
mixed scatterer Tc based on coherence matrix T can be described as [32]:

rrr(T, Tc) =
tr
(
TTH

c
)

tr(T)tr(Tc)
=

∑3
i=1 λiλci

∑3
i=1 λi ∑3

i=1 λci
. (4)

In order to measure the randomness of target scattering, the self-similarity parameter is
obtained from similarity parameter rrr when T = cTc, where c is an arbitrary number. Therefore,
the self-similarity parameter rrrs of matrix T is defined as [32]:

rrrs(T) = rrr(T, Tc) =
∑3

i=1 λiλci

∑3
i=1 λi ∑3

i=1 λci
=

∑3
i=1 λ2

i(
∑3

i=1 λi

)2 =
tr
(
TTH)

(tr(T))2 . (5)

The value of the rrrs ranges from 1/3 to 1. When the scattering mechanism of the target is more
single, the value of rrrs is larger, and the value of rrrs reaches the maximum 1 when the scattering
mechanism is the single scatterer, while, when the scattering mechanism of the target is more complex,
the value of rrrs is smaller, and the value of rrrs reaches the minimum 1/3 when the scattering
mechanism is the randomly noisy scatterer.

The value distribution of three eigenvalues in the oil slicks, look-alikes, and water are shown
in Figure 2a. The scattering mechanism of the slick-free sea surface is mainly the Bragg or titled
Bragg scattering [3], its first eigenvalue λ1 is much larger than the second eigenvalue λ2 and the third
eigenvalue λ3 as shown in Figure 2a. Hence, the value of rrrs in the water region is relatively high.
In the oil slicks, the λ1 is close to the λ2 and λ3, the value of rrrs in the oil slick region is relatively low,
for the scattering mechanism is complex scattering with high depolarization, due to the strong
damping properties of the oil slicks [3]. In the look-alikes, taking natural biogenic slicks as an
example, its scattering mechanism is still Bragg scattering, although characterized by low backscatter
returns, which generate a dark area in the SAR image [3,37,38]. Thus, the λ1 of look-alikes is still much
larger than the λ2 and the λ3, the value of rrrs of the look-alike region is still high compared to the oil
slick area.

 5 of 20 
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Figure 2. The value of features in the oil slicks, look-alikes, and water. (a) three eigenvalues;
(b) self-similarity parameter.

In order to visually represent rrrs’ difference among oil slicks, look-alikes, and water, the mean
and standard deviations of rrrs in different targets are shown in Figure 2b, according to the samples
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shown in Figure 3. The vertical bars show the mean and standard deviation of the value of the rrrs in
four regions. It is obvious that there is a good distinction between oil slicks and look-alikes. Since rrrs

detect oil slicks based on the randomness of the scattering mechanism, it should be classified as the
third category in Table 1, namely “Scattering mechanism or polarized state”. 6 of 20 
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2.3. Oil Spill Detection Based on RF Classification

Based on the above eight polarimetric features as the inputs, RF is utilized to classify oil slicks
in the proposed method. It is an integrated learning algorithm proposed by Breiman [34], which has
been used in polarimetric SAR image classification [29,39,40]. RF classification consists of multiple
decision trees, which generated based on a combination of a random subsample of the training dataset
and a random subset of explanatory input features.

In the ocean oil spill detection, water usually occupied most of the image, which caused class
imbalance and interfered with the final classification accuracy. Under this circumstance, RF can
suppress the classification error effectively [34]. In addition, RF can effectively suppress over-fitting
caused by noise and erroneous samples [41,42], and RF can process large amounts of data without
features selection. Additionally, RF provides a variable importance (VI) index to estimate the
contribution of each feature, which is of good help for analyzing which features are better for oil spill
detection [29].

The eight polarimetric features described above are used as the inputs of RF classification, and the
training data used in the RF model learning process are also selected among these features.

The oil spill detection steps based on RF classification are as follows:
(1) Randomly select partial subsets from total training data to obtain the multiple bootstrap

datasets, which include oil slicks, look-alikes, and water. Use these bootstrap datasets to construct
decision trees.

(2) Randomly select partial features from inputs at each node of each decision tree, and then select
one of these features which has the best classification ability to determine the split.

(3) Each tree grows to the maximum using CART, without any cutting in the process of division.
(4) Use the RF model that combines multiple decision trees to vote classification with the input

polarimetric features. After the classification, the look-alikes and water are masked, and the oil slicks
are the final result of oil spill detection.

In this study, the RF classification implemented in “imageRF” and available as part of the
EnMAP-Box distribution was used.
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3. Experiment and Results

3.1. Experimental Data

In this paper, two datasets, Radarsat-2 and Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR), were used to verify the proposed method. The details of these experiment datasets are
shown in Table 2.

Table 2. The details of the two experiment datasets.

Sensor Number Date, Time UTC Relative Direction Wind Speed Incidence Angle

Radarsat-2 / 8 June 2011 17:27 / 1.6–3.3 m/s 35.1–35.9◦

UAVSAR
#1 10 June 2015 06:13 Downwind 9–11 m/s 39.6–43.5◦

#2 10 June 2015 07:05 Downwind 9–11 m/s 29.7–34.4◦

#3 10 June 2015 07:17 Upwind 9–11 m/s 28.9–34.2◦

Notes: The “Relative direction” refers to the look direction relative to the wind. In the case of UAVSAR data
acquisition, the aerial vehicle has two headings, ascending pass and descending pass. Since the sensor is left-looking
and the measured average wind direction is almost constant during the experiment, the sensor was looking close to
upwind for the ascending pass and closed to downwind for the descending pass. The “Incidence angle” refers to
the range of incidence angle in the oil slick and look-alike region.

The first dataset is a C-band Radarsat-2 image with a resolution of 5.2 m × 7.6 m, which was
collected from a man-made experiment of oil spills by Norwegian Clean Seas Association for Operating
Companies (NOFO). Three different kinds of film were released onto the surface, vegetable oil,
emulsion, and crude oil. Among them, approximately 0.4 m3 Radiagreen ebo vegetable oil was used
to simulate the natural monomolecular biogenic slick, since the vegetable oil has a similar structure as
the surface-active compounds in natural biogenic slicks. There is approximately 1 m3 of emulsion on
the surface, which consists of Oseberg blended crude oil and IFO380. The crude oil consists of 30 m3 of
evaporated Balder crude oil. These slicks were sprinkled onto the sea surface 13 h, 29 h, and 9 h before
satellite imaging, respectively [16]. The Pauli color-coded image of Radarsat-2 is shown in Figure 3,
the red box is the crude oil region, the yellow box is the emulsion region, the green box is the vegetable
oil region, and the blue box is the water region.

The second dataset contains three L-band UAVSAR images (https://uavsar.jpl.nasa.gov/), with a
resolution of 7.2 m × 5 m. They were collected during the Norwegian Radar Oil Spill Experiment
(NORSE 2015). There are four kinds of film in the image, including three different emulsions and one
vegetable oil, were released onto the sea surface close in time. Among them, the emulsions were all
based on Troll and Oseberg crude oils but had different oil volumetric fractions, i.e., 80% oil (E80),
60% oil (E60), and 40% oil (E40) [43]. The vegetable oil was the Radiagreen ebo, which is used to
simulate the biogenic slicks. The volumes of the releases were 0.5 m3 for each of the emulsions and
0.2 m3 for the vegetable oil. The Pauli color-coded image of #1 in the dataset is shown in Figure 4.
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3.2. Oil Spill Detection Ability Analysis of the Self-Similarity Parameter

In order to verify the ability of a self-similarity parameter for oil spill detection, we compared
the self-similarity parameter and other seven polarimetric features from both the qualitative analysis
(probability density function of these features, the results of oil slicks classification using these features
separately) and quantitative analysis (Jeffreys–Matusita distance of these features) aspects using the
Radarsat-2 image.

The probability density function (pdf) of the eight polarimetric features in four areas: crude
oil (c), emulsion (e), vegetable oil (v), and water (w), are shown in Figure 5, the samples are shown in
Figure 3. The features are here normalized for the whole image. In the pdfs, more overlap between the
two regions means the weaker discriminability of the two regions; less overlap means the stronger
discriminability. Overall, in the eight features, there are few overlap regions between the oil slicks and
the water, which means that the oil slicks and the water have a good distinction in these polarimetric
features. The overlap regions between two oil slicks are relatively large, and a separation between
these two is hard based on these features. There are few overlap regions between the oil slicks and the
vegetable oil. Among them, the overlap areas between the crude oil and the vegetable oil are less than
that between the emulsion and vegetable oil except for Figure 5f. In addition, it is obvious that the
overlap regions between the crude oil and the vegetable oil in Figure 5e,g, and h are much few than
that in Figure 5a,b,d, and that in Figure 5c,f are similar. The overlap regions between the emulsion and
the vegetable oil in Figure 5e–h are few than that in Figure 5a–d.
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Figure 5. The Probability Density Function (PDF) of eight polarimetric features values within selected
regions of Radarsat-2 images. The features V and Rco are log transformed for visualization purposes;
(a) DoP; (b) µ; (c) logRco; (d) η; (e) Ph; (f) logV; (g) A12; and (h) rrrs.

In order to visually represent the effect of each feature on the oil spill detection, the classic k-means
classifications based on these individual features are compared. The unsupervised classification results
are shown in Figure 6. In all cases, the main parts of the emulsion and crude oil are classified as the
red class, and the surrounding zones of them are classified to the green class. The main parts of the
water are classified to the blue class and mixed with some green class. In addition, vegetable oil in the
upper left corner is mainly classified to the green class and mixed with the different degrees of the red
class and blue class. It is obvious that the number of red classes in the vegetable oil area in Figure 6e–h
is less than that in Figure 6a–d.
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means classifications based on these individual features are compared. The unsupervised 
classification results are shown in Figure 6. In all cases, the main parts of the emulsion and crude oil 
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In order to quantitatively compare these features, the Jeffreys–Matusita (J–M) distance was used
to measure their oil spill detection capabilities. J–M distance is an index that is widely used to select
features, which can evaluate well the ability of a feature to recognize a target [44]. In this paper,
it was used to quantitatively analyze the oil spill detection ability of different polarimetric features.
The expressions of J–M distance are shown as:

J = 2
(

1− e−B
)

, (6)

B =
1
8
(m1 −m2)

2 2
δ2

1 + δ2
2
+

1
2

ln

[
δ2

1 + δ2
2

2δ1δ2

]
, (7)

where J represents the J–M distance of features (such as rrrs, DoP, etc.). m1 and m2 are the mean of
the feature value of the two different targets, respectively. δ1 and δ2 are the standard deviation of
the feature value of two different targets, respectively. The greater the value of the J–M distance,
the stronger the distinguishability of the two targets. The J–M distances for the four different regions
of eight polarimetric features on Radarsat-2 image are shown in Figure 7.

It can be seen in Figure 7 that the J–M distances of all polarimetric features are around 1.8 between
the oil slicks and the water (c vs. w and e vs. w), proving that these eight features can both distinguish
oil slicks from water very well. On the whole, among the four comparisons, the J–M distance of rrrs is
the largest in all four comparisons. It can be concluded that the self-similarity parameter has better oil
spill detection capability compared with other polarimetric features from the comparison of the three
aspects above.



Remote Sens. 2019, 11, 451 11 of 20 11 of 20 

 

 

Figure 7. Jeffreys–Matusita (J–M) distances for eight polarimetric features in a Radarsat-2 image. 

3.3. Evaluation and Comparison 

In order to verify the improvement in oil spill detection accuracy by the proposed method, three 
well-known oil spill detection methods were compared with the proposed method in two 
polarimetric SAR datasets; namely: (1) the method which utilizes geometric intensity and the real 
part of the co-polarization cross product combined with k-means classification (GRK) [16]; (2) the 
method which utilizes the combined parameter F and Otsu segmentation (FOS) [14]; (3) the method 
which utilizes the extended Bragg model and Maximum likelihood classification (EBM) [26]; and (4) 
the proposed method which utilizes the self-similarity parameter and seven well-known features in 
combination with the RF classification (SRF). 

In addition to qualitative visual evaluation, the oil spill detection results need quantitative 
evaluation. In this paper, the 𝐹  score was used to evaluate the quality of oil spill detection results. 
The 𝐹  score is an index used to measure the accuracy of the dichotomous model, which takes into 
account the accuracy and false alarm rate of the test results [45]. Expression of 𝐹  is calculated as: 𝐹1 = 2 × (1 − 𝐹𝐴𝑅) × 𝐷𝑅(1 − 𝐹𝐴𝑅 + 𝐷𝑅) , (8) 

where DR is the detection rate, and FAR is the false alarm rate.  
According to the samples shown in Figure 3 and Figure 4, the Radarsat-2 image and UAVSAR 

image are classified by the proposed method, and classification results are shown in Figure 8. The 
Radarsat-2 image was classified into four classes: crude oil slicks (red), emulsion slicks (yellow), look-
alikes (green), and water (blue), and the UAVSAR image was classified into three classes: emulsion 
slicks (yellow), look-alikes (green), and water (blue). The UAVSAR image selected here is the image 
labeled #1 in the second dataset. 

As seen in Figure 8a,b, it is obvious that oil slicks, look-alikes, and water are successfully 
classified into three classes. In Figure 8a, both the crude oil areas and the emulsion areas are well 
classified as the oil slicks, and the vegetable oil areas in the upper left are classified as the look-alikes. 
In Figure 8b, both the three emulsion areas with different oil volumetric fractions are well classified 
as the oil slicks and the vegetable oil areas at the bottom are classified as the look-alikes. Hence, it can 
be concluded that the oil slicks and look-alikes have good classification results. However, there are 
still some misclassifications in the results. In Figure 8a, since the edge of crude oil and emulsion is 
subject to a large degree of weathering and diffusion, the outermost part of the crude oil and emulsion 
are classified as vegetable oil, which was also observed by Skrunes et al. [16]. The same phenomenon 
also appears in Figure 8b, a few pixels at the surrounding zones of emulsions are also classified as 
vegetable oil in the UAVSAR image, and a little vegetable oil is misclassified as emulsions. 

According to the classification results, the look-alikes and water were masked and the crude oil 
slicks and emulsions were extracted as the final result of oil spill detection. Four methods were used 
to detect oil spills in two datasets. 

0.8

1

1.2

1.4

1.6

1.8

2

Dop μ Rco η Ph V

J-M
 d

is
ta

nc
e

Polarimetric SAR feature

c vs w e vs w c vs v e vs v

𝑟𝑟𝑟𝒔𝐴
Figure 7. Jeffreys–Matusita (J–M) distances for eight polarimetric features in a Radarsat-2 image.

3.3. Evaluation and Comparison

In order to verify the improvement in oil spill detection accuracy by the proposed method, three
well-known oil spill detection methods were compared with the proposed method in two polarimetric
SAR datasets; namely: (1) the method which utilizes geometric intensity and the real part of the
co-polarization cross product combined with k-means classification (GRK) [16]; (2) the method which
utilizes the combined parameter F and Otsu segmentation (FOS) [14]; (3) the method which utilizes
the extended Bragg model and Maximum likelihood classification (EBM) [26]; and (4) the proposed
method which utilizes the self-similarity parameter and seven well-known features in combination
with the RF classification (SRF).

In addition to qualitative visual evaluation, the oil spill detection results need quantitative
evaluation. In this paper, the F1 score was used to evaluate the quality of oil spill detection results.
The F1 score is an index used to measure the accuracy of the dichotomous model, which takes into
account the accuracy and false alarm rate of the test results [45]. Expression of F1 is calculated as:

F1 =
2× (1− FAR)× DR
(1− FAR + DR)

, (8)

where DR is the detection rate, and FAR is the false alarm rate.
According to the samples shown in Figures 3 and 4, the Radarsat-2 image and UAVSAR image

are classified by the proposed method, and classification results are shown in Figure 8. The Radarsat-2
image was classified into four classes: crude oil slicks (red), emulsion slicks (yellow), look-alikes
(green), and water (blue), and the UAVSAR image was classified into three classes: emulsion slicks
(yellow), look-alikes (green), and water (blue). The UAVSAR image selected here is the image labeled
#1 in the second dataset.

As seen in Figure 8a,b, it is obvious that oil slicks, look-alikes, and water are successfully classified
into three classes. In Figure 8a, both the crude oil areas and the emulsion areas are well classified as
the oil slicks, and the vegetable oil areas in the upper left are classified as the look-alikes. In Figure 8b,
both the three emulsion areas with different oil volumetric fractions are well classified as the oil
slicks and the vegetable oil areas at the bottom are classified as the look-alikes. Hence, it can be
concluded that the oil slicks and look-alikes have good classification results. However, there are still
some misclassifications in the results. In Figure 8a, since the edge of crude oil and emulsion is subject
to a large degree of weathering and diffusion, the outermost part of the crude oil and emulsion are
classified as vegetable oil, which was also observed by Skrunes et al. [16]. The same phenomenon
also appears in Figure 8b, a few pixels at the surrounding zones of emulsions are also classified as
vegetable oil in the UAVSAR image, and a little vegetable oil is misclassified as emulsions.

According to the classification results, the look-alikes and water were masked and the crude oil
slicks and emulsions were extracted as the final result of oil spill detection. Four methods were used to
detect oil spills in two datasets.
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The oil spill detection results and accuracy measures of the Radarsat-2 image using the different
methods are shown in Figure 9 and Table 3, respectively. As shown in Figure 9, the crude oil and
emulsion are detected well by the four methods. The main difference is the number of black spots
on the upper left corner of the image, which is the false alarm caused by vegetable oil. Compared
with the other three methods, SRF has the least number of black points in this region. As shown in
Table 3, the F1 score of SRF is over 3% (FOS), 4% (GRK), and 12% (EBM) higher than the other methods,
respectively. It means that the proposed method obtains the best oil slicks’ detection results in the
Radarsat-2 image compared to the other three methods.
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Table 3. The F1 scores of four methods in the Radarsat-2 polarimetric SAR image.

Method DR FAR F1

FOS 88.62% 9.99% 89.31%
GRK 83.44% 6.38% 88.23%
EBM 75.71% 14.15% 80.46%
SRF 90.54% 4.43% 92.99%

The oil spill detection results and accuracy measures of the fourth scene UAVSAR image using
the different methods are shown in Figure 10 and Table 4, respectively. As shown in Figure 10, three
emulsions areas can be detected by the four methods, and the detection results in the GRK and the
proposed method SRF are better, while the misclassifications in the FOS and EBM are more. In the
look-alikes, the regions misclassified as oil slicks in the EBM and the proposed method SRF are less
than in FOS and GRK. As shown in Table 4, it can be seen that the F1 score of SRF is over 30% (FOS),
4% (GRK) and 20% (EBM) higher than other methods, respectively. It means that the proposed method
obtains the best oil slicks detection result in the UAVSAR image compared to the other three methods.
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Table 4. The F1 scores of four methods in the UAVSAR polarimetric SAR image.

Method DR FAR F1

FOS 45.63% 40.70% 51.57%
GRK 76.96% 20.74% 78.09%
EBM 46.01% 7.45% 61.46%
SRF 74.47% 8.15% 82.25%

In addition to the classification results, the RF also provides the VI for input features that can
assess the importance of each feature in classification results. The VI values of eight polarimetric
features are shown in Figure 11. Overall, the importance of the rrrs is higher than that of other seven
features, although it is closer to the V and Ph in Radarsat-2 image and closer to the V and Rco in
UAVSAR image. It can be concluded that the self-similarity parameter has the highest contribution in
RF classification for oil spill detection. In conclusion, it further demonstrates the advantages of the
self-similarity parameter in oil spill detection.
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Figure 11. Contributions of eight features in the RF classification.

4. Discussion

4.1. Noise Analysis

In the case of polarimetric SAR oil spill detection, the returns from the oil slick and look-alike
regions may be masked by sensor instrument noise for their backscatter signal may be lower than
the sensor noise floor, i.e., Noise Equivalent Sigma Zero (NESZ). The NESZ should be lower than the
returns to ensure that the information of each polarization channel is not interfered [46,47]. In such a
situation, the self-similarity parameter and other polarimetric features which using full polarization
information can accurately describe marine target and be used for oil spill detection. Hence, it is
necessary to analyze the signal level over marine targets relative to the noise floor. Noise analyses are
implemented based on the Radarsat-2 data and UAVSAR data, respectively.

As shown in Figure 12, the normalized radar cross section (NRCS) of each polarization channel
(HH, VV, VH) is plotted with the NESZ to analyze the signal level. The noise analyses of three
polarization channels of Radarsat-2 data with four groups of sample data, including crude oil, emulsion,
vegetable oil, and water, are shown in Figure 12a–c. For the HH channel, the signal values of water are
far greater than the NESZ. In the vegetable oil region, the signal values are lower than water but still lie
above the NESZ. In the crude oil and emulsion regions, most of the signal values lie above the NESZ,
but all of the signal values are lower than the vegetable oil. All the signal values of all sample data
in the VV channel are higher than those in the HH channel, whereas, in the VH channel, most of the
signal values of four regions lie below the NESZ, indicating that this channel is nearly affected by
the instrument noise. The noise analyses of three polarization channels of UAVSAR data with five
groups of sample data including E80, E60, E40, vegetable oil, and water, are shown in Figure 12d–f.
As in the Radarsat-2 data, the ordering of the signal values in the UAVSAR data is water > vegetable
oil > oil slick, and VV channel > HH channel > VH channel. The difference is that the signal values
from both sample regions in the VH channel are higher than the NESZ since the UAVSAR has the
lower NESZ. Based on the noise analyses presented here, the instrument noise has a small effect on
the signals in the Radarsat-2 data, with the main impact being concentrated on the cross-polarization
channel. In the UAVSAR data, each polarization channel signal is hardly affected by instrument noise.
Hence, the self-similarity parameter and other polarimetric features used in this paper in these two
data can describe the marine target well and detect oil spill.
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Figure 12. Signal-to-noise analyses of each channel of two sensors, the vertical bars show the mean 
and standard deviation of the backscatter values 𝜎  in the regions indicated by samples in Figure 2 
and 3. (a) HH channel (Radarsat-2); (b) VV channel (Radarsat-2); (c) VH channel (Radarsat-2); (d) HH 
channel (UAVSAR); (e) VV channel (UAVSAR); (f) VH channel (UAVSAR). 
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4.2.1. The Look Direction Relative to the Wind 

Figure 12. Signal-to-noise analyses of each channel of two sensors, the vertical bars show the mean
and standard deviation of the backscatter values σ0 in the regions indicated by samples in Figures 2
and 3. (a) HH channel (Radarsat-2); (b) VV channel (Radarsat-2); (c) VH channel (Radarsat-2); (d) HH
channel (UAVSAR); (e) VV channel (UAVSAR); (f) VH channel (UAVSAR).

4.2. Analysis of Oil Spill Detection Ability of Self-Similarity Parameter under Different Imaging Conditions

In Section 3, we have analyzed the oil spill detection ability of each feature on the sea surface.
It can be found that the polarimetric features can distinguish between the oil slicks and water, and the
main difficulty of oil spill detection is to distinguish oil slicks from look-alikes. During the imaging
process on the sea surface, the ability of polarimetric features to distinguish between oil slicks and
look-alikes will be influenced by the different imaging conditions which have a certain impact on the
scattering mechanism of the oil slicks [48]. The relevant factor analysis studies are in [48–50]. The main
factors analyzed include the look direction relative to the wind, the sensor incidence angle, and the
wind speed, etc. In this section, we mainly focus on the first two factors. The corresponding data is
selected from the UAVSAR dataset to analyze the ability of the self-similarity parameter to distinguish
between oil slicks and look-alikes under the different conditions of these two factors.
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4.2.1. The Look Direction Relative to the Wind

The look direction relative to the wind refers to the relative direction of the incident direction
of the SAR and the wind direction of the sea surface and is divided into two scenes: downwind
and upwind. The nonpolarized component has been shown to account for most of the differences
observed between upwind and downwind backscatter [48]. Hence, the ability of polarimetric feature
distinguishes between oil slicks and look-alikes may be different in different wind directions. In this
paper, two scenes of upwind and downwind images with similar imaging time and incidence angle
in the oil slick areas were used for the comparative experiment, i.e., #2 and #3. The J–M distances
between the oil slicks and the look-alikes of the polarimetric features in these two scenes are shown in
Figure 13.

 16 of 20 

 

upwind. The nonpolarized component has been shown to account for most of the differences 
observed between upwind and downwind backscatter [48]. Hence, the ability of polarimetric feature 
distinguishes between oil slicks and look-alikes may be different in different wind directions. In this 
paper, two scenes of upwind and downwind images with similar imaging time and incidence angle 
in the oil slick areas were used for the comparative experiment, i.e., #2 and #3. The J–M distances 
between the oil slicks and the look-alikes of the polarimetric features in these two scenes are shown 
in Figure 13. 

  
Figure 13. The J–M distances between the oil slicks and the look-alikes of the polarimetric features in 
different wind direction scenes. E40, E60, and E80 represent the oil slicks with oil volumetric fractions 
of 40%, 60%, and 80%, respectively, VO represents the vegetable oil, the suffix D represents the 
downwind and U represents the upwind. 

It can be seen from Figure 13 that the ability of the self-similarity parameter to distinguish 
between oil slicks and look-alikes varies widely in different wind directions. The discrimination 
ability of the self-similarity parameter in the downwind is significantly stronger than the upwind. In 
the downwind scene, the ability of the self-similarity parameter to distinguish between oil slicks and 
look-alikes is stronger than other polarimetric features, while, in the upwind scene, it is weaker than 
the Rco, V, etc. It means that the self-similarity parameter is more suitable for distinguishing oil slicks 
and look-alikes in the downwind scene than other polarimetric features, while it cannot offer better 
distinguishability than some features in the upwind scene. 

4.2.2. The Sensor Incidence Angle  

The relevant studies proved that the values of the polarimetric feature in each region (e.g., oil 
slick, water, look-alike, etc.) are different at different incidence angle conditions [49,50]. Hence, the 
ability of polarimetric feature distinguish between oil slicks and look-alikes may differ in different 
incidence angles. Two images with similar imaging time and the same wind direction were used for 
the comparative experiment, i.e., #1 and #2, to analyze the ability to distinguish between oil slicks 
and look-alikes of self-similarity parameter under different incidence angle conditions. The J–M 
distances between the oil slicks and the look-alikes of the polarimetric features in these two scenes 
are shown in Figure 14. 

It can be seen from Figure 14 that the ability of the self-similarity parameter to distinguish oil 
slicks from the look-alikes has little difference in these two angles of incidence scenes. The 
discrimination ability of the self-similarity parameter in the scene with the incidence angle ranges 
from 29.7 to 34.4° is slightly stronger than that from 39.6 to 43.5°. In addition, in the 29.7 to 34.4° scene, 
the discrimination ability of the self-similarity parameter is significantly higher than other 
polarimetric features. In the 39.6 to 43.5° scene, the discrimination ability of the self-similarity 
parameter is close to that of Rco and V, and is higher than that of other features. It means that the 

0.00

0.40

0.80

1.20

Dop μ Rco η Ph V

J-M
 d

is
ta

nc
e

Polarimetric SAR feature

E40 vs VO_D E60 vs VO_D E80 vs VO_D

𝐴 𝑟𝑟𝑟𝒔
Figure 13. The J–M distances between the oil slicks and the look-alikes of the polarimetric features in
different wind direction scenes. E40, E60, and E80 represent the oil slicks with oil volumetric fractions of
40%, 60%, and 80%, respectively, VO represents the vegetable oil, the suffix D represents the downwind
and U represents the upwind.

It can be seen from Figure 13 that the ability of the self-similarity parameter to distinguish between
oil slicks and look-alikes varies widely in different wind directions. The discrimination ability of the
self-similarity parameter in the downwind is significantly stronger than the upwind. In the downwind
scene, the ability of the self-similarity parameter to distinguish between oil slicks and look-alikes is
stronger than other polarimetric features, while, in the upwind scene, it is weaker than the Rco, V, etc.
It means that the self-similarity parameter is more suitable for distinguishing oil slicks and look-alikes
in the downwind scene than other polarimetric features, while it cannot offer better distinguishability
than some features in the upwind scene.

4.2.2. The Sensor Incidence Angle

The relevant studies proved that the values of the polarimetric feature in each region (e.g.,
oil slick, water, look-alike, etc.) are different at different incidence angle conditions [49,50]. Hence,
the ability of polarimetric feature distinguish between oil slicks and look-alikes may differ in different
incidence angles. Two images with similar imaging time and the same wind direction were used for
the comparative experiment, i.e., #1 and #2, to analyze the ability to distinguish between oil slicks and
look-alikes of self-similarity parameter under different incidence angle conditions. The J–M distances
between the oil slicks and the look-alikes of the polarimetric features in these two scenes are shown in
Figure 14.

It can be seen from Figure 14 that the ability of the self-similarity parameter to distinguish oil slicks
from the look-alikes has little difference in these two angles of incidence scenes. The discrimination
ability of the self-similarity parameter in the scene with the incidence angle ranges from 29.7◦ to 34.4◦ is



Remote Sens. 2019, 11, 451 17 of 20

slightly stronger than that from 39.6◦ to 43.5◦. In addition, in the 29.7◦ to 34.4◦ scene, the discrimination
ability of the self-similarity parameter is significantly higher than other polarimetric features. In the
39.6◦ to 43.5◦ scene, the discrimination ability of the self-similarity parameter is close to that of
Rco and V, and is higher than that of other features. It means that the self-similarity parameter
maintains a good ability to distinguish between oil slicks and look-alikes in both of these two angles of
incidence scenes.
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Figure 14. The J–M distances between the oil slicks and the look-alikes of the polarimetric features in
different incidence angle scenes. The suffix H indicates higher incidence angle scene (the incidence
angle of the oil slick areas ranges from 39.6◦ to 43.5◦), and L indicates lower incidence angle scene
(the incidence angle of the oil slick areas ranges from 29.7◦ to 34.4◦).

4.3. Accuracies, Errors, and Uncertainties

The above experiment results prove that the proposed method has a better effect of oil spill
detection compared to the other three methods. Nevertheless, there are some factors that may affect
the oil spill detection result of the proposed method, such as the degree of weathering of the oil slicks,
sea surface wind speed, incidence angles of oil slick areas, etc.

The oil slicks covering the sea surface are affected by weathering, which includes the evaporation,
emulsification, diffusion, dissolution, oxidation, etc. They will change the physical and chemical
properties of the oil slicks, which influence the scattering mechanism. From the classification results
of Radarsat-2 images, it can be seen that the parts of emulsions with longer weathering time that is
misclassified as the look-alikes are more than the fresh crude oil slicks. From the classification results
of UAVSAR images, it can be seen that the parts of the emulsions with different oil volume fractions
that are misclassified as look-alikes are also different. Therefore, the degree of emulsification of the oil
slicks will bring certain error effects on the experimental results.

Two kinds of polarimetric SAR data with different wind speeds were used to evaluate the effect
of the oil spill detection of the proposed method. Nevertheless, the specific impact of different wind
speeds on the result of oil spill detection is unclear. It can be seen from the experiment results that the
J–M distances between the oil slicks and look-alikes of polarimetric features in UAVSAR images with
high wind speed are generally lower than that of the Radarsat-2 image, and the former accuracy of the
oil spill detection is also lower than the latter. Wind speed is one of the important factors that cause this
difference. Nonetheless, it is difficult to judge the contribution of wind speed in this difference, since
the two images have different sensor parameters in addition to the wind speed (e.g., sensor band and
instrument noise floor, etc.). Therefore, the impact of wind speed on the oil detection capability of the
proposed method and related polarimetric features requires further analysis based on relevant data.
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In addition, the incidence angles of oil slick areas in the experimental data range from 29.7◦

to 43.5◦. Nevertheless, the UAVSAR can provide a larger incidence angle, i.e., 19.5–67.5◦. Hence, the oil
spill detection capability of the proposed method and the self-similarity parameter outside 29.7◦ to
43.5◦ requires more relevant data for analysis.

5. Conclusions

Oil spill identification in single-polarization SAR imagery is a challenging task due to the presence
of look-alikes, which have surface signatures similar to oil spills. Nonetheless, this task is made
easier by exploiting polarimetric SAR data using proper modelling tools. In this paper, a novel
multi-feature based ocean oil spill detection method for polarimetric SAR data has been proposed by
using Random Forest (RF) classification. This method combines the self-similarity parameter and seven
other polarimetric features. The main characteristics are as follows: first, RF classification utilizes a
variety of polarimetric features of oil spill detection to distinguish oil slicks from look-alikes accurately.
Second, introducing a self-similarity parameter with better oil detection capabilities further improves
the detection accuracy.

Two kinds of different scenarios of oil spill datasets (Radarsat-2 and UAVSAR) were utilized
to validate the practicability of the proposed method. Experiments show that the accuracy of the
proposed method reaches 92.99% and 82.25%, respectively, which is higher than the three well-known
methods in these datasets. It can be concluded that the proposed method improves the accuracy
of oil spills effectively. In addition, the oil spill detection ability of polarimetric features was
measured and compared. The results prove that the self-similarity parameter has the better oil
spill detection capability compared other seven polarimetric features in the scene with lower wind
speed, and performs well in the scene with incidence angle range from 29.7◦ to 43.5◦.

Nevertheless, for extreme sea conditions or different degrees of weathering slicks, the performance
of the proposed method may be affected. Hence, the impact of wind speed on the oil detection
capability, the quantitative analysis of the weathering effect of oil slicks on oil spill detection accuracy
and the detection ability of the scenes outside the incidence angle, which ranges from 29.7◦ to 43.5◦,
requires further analysis with more relevant data.
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