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Abstract: Plant species diversity is an important metric of ecosystem functioning, but field
assessments of diversity are constrained in number and spatial extent by labor and other expenses.
We tested the utility of using spatial heterogeneity in the remotely-sensed reflectance spectrum
of grassland canopies to model both spatial turnover in species composition and abundances
(β diversity) and species diversity at aggregate spatial scales (γ diversity). Shannon indices of
γ and β diversity were calculated from field measurements of the number and relative abundances
of plant species at each of two spatial grains (0.45 m2 and 35.2 m2) in mesic grasslands in central
Texas, USA. Spectral signatures of reflected radiation at each grain were measured from ground-level
or an unmanned aerial vehicle (UAV). Partial least squares regression (PLSR) models explained
59–85% of variance in γ diversity and 68–79% of variance in β diversity using spatial heterogeneity
in canopy optical properties. Variation in both γ and β diversity were associated most strongly with
heterogeneity in reflectance in blue (350–370 nm), red (660–770 nm), and near infrared (810–1050 nm)
wavebands. Modeled diversity was more sensitive by a factor of three to a given level of spectral
heterogeneity when derived from data collected at the small than larger spatial grain. As estimated
from calibrated PLSR models, β diversity was greater, but γ diversity was smaller for restored
grassland on a lowland clay than upland silty clay soil. Both γ and β diversity of grassland can be
modeled by using spatial heterogeneity in vegetation optical properties provided that the grain of
reflectance measurements is conserved.

Keywords: airborne remote sensing; hyperspectral spectroradiometer; partial least squares regression;
Shannon diversity; spatial grain; spatial heterogeneity in vegetation optical properties

1. Introduction

Grasslands cover ~25% of terrestrial area [1] and support multiple products and services, including
livestock and wildlife production, and a diverse array of plants, animals, birds, and arthropods [2].
Primary productivity [3], temporal stability in productivity [3–6], and other ecosystem functions
and services on grasslands are enhanced by high levels of plant species diversity, as influenced by
both species richness and evenness, including diversity at multiple spatial scales [7–9]. For example,
increasing species diversity at both local (α diversity) and larger spatial scales (γ diversity) improved
multiple grassland functions, whereas increasing diversity differences among local communities
(β diversity) increased functional reliability at larger spatial scales [8].
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Increased recognition of the importance of plant diversity to ecosystem functions has incentivized
efforts to develop remote sensing techniques to estimate diversity. Field-based measurements of
diversity are expensive, labor-intensive, and typically limited in spatial extent. Airborne remote
sensing, by contrast, could provide rapid, cost-efficient assessments of diversity at the multiple spatial
scales relevant to management and conservation [10]. Indeed, taxonomic diversity may be regarded as
an ‘essential biodiversity variable’, the measurement of which is required to effectively monitor, report,
and manage biodiversity change [11,12]. Most remote sensing products for species richness and γ and
α diversity estimation derive from the premise that diversity is correlated to spatial variation in the
reflectance spectrum (optical diversity in space or spectral heterogeneity [10,13,14]). Wang et al. [13],
for example, demonstrated that the Shannon Index of species diversity was strongly correlated with
an optical index derived by averaging the coefficient of variation (CV) of spectral reflectance in space
across measured wavebands. On the other hand, diversity at small spatial scales (several m2) can
be detected by using among-waveband differences in reflectance, rather than spatial variation in
reflectance, provided that optical properties of species or functional groups are well-differentiated in
the reflectance signal [15–17].

More complex techniques often are employed to link remote sensing signals to β diversity,
defined generally as spatial turnover of species [18]. Methods that employ spectral distances or
differences are required to explain ‘differences’ in diversity among communities (one metric of β
diversity; [18–20]). Dalmayne et al. [21], for example, demonstrated that spectral dissimilarity and
species compositional dissimilarity were correlated when compared between grassland plots at small
spatial scales (2 m × 2 m). Simpler techniques, such as those based on spectral dispersion, including
the CV in reflectance among plant communities, may yield a correlation with β diversity measured
as variation in species composition and relative abundances among communities. We anticipate that
compositional variance among a set of vegetation samples is correlated with the sum of squares of
species relative abundances among samples, which in turn likely will correlate with statistically-related
measures of spatial variation (e.g., the CV) in the reflectance spectrum.

The relationship between spatial variation in canopy optical properties and species diversity often
is assumed to be indirect, the result of soil or disturbance effects on canopy structure and chemistry
that are in turn linked to variation in diversity (e.g., [21]). An alternative explanation is that spatial
heterogeneity in canopy optical properties results largely from differences in structural or functional
properties of species themselves.

In the present study, we used hyperspectral measurements from ground-based and airborne
platforms to model γ and β diversity of composites of vegetated scenes sampled at each of two spatial
scales [grain or spatial resolution = plot (0.43 m2) and patch scales (35.2 m2)] in mesic grasslands that
differ in management. Spatial scale is widely recognized to influence relationships between vegetation
parameters and the reflectance spectrum [13]. Specific objectives were to: (1) develop a statistical
model for grassland diversity (γ and β diversity) applicable at the field/local scale, (2) assess the
influence of the spatial scale of reflectance measurements on modeled diversity, and (3) apply statistical
models to estimate diversity in restored grassland.

2. Materials and Methods

We measured species diversity and spectral reflectance of plant communities in three contiguous
fields located in Temple, Texas, USA (31◦10′N, 97◦34′W; Figure 1. Sampled fields included a pasture
dominated by introduced (exotic) C4 perennial grasses, principally Bothriochoa ischaemum (L.) Keng
and Cynodon dactylon (L.) Pers.; a remnant (never-plowed) tallgrass prairie; and a former agricultural
field planted with stands of either a mixture of native perennial forb and grass species (restored
grassland) or a monoculture of the native C4 grass Panicum virgatum L. (cultivar ‘Alamo’). Stands in
the former agricultural field (long-term biomass experiment (LTBE)) are 17 m wide and 137 to 218 m
long (0.26–0.37 hectares) and traverse a catena from a silty clay soil on the upland (Austin series; 43%
clay, 1.1% organic C to 50 cm depth) to a clay soil on the lowland (Houston Black series; 52% clay, 1.7%
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organic C to 50 cm depth) [22]. Eight randomly-selected stands of the total of 24 stands in LTBE were
planted with a mixture of perennial grassland species in 2010. Remaining stands were planted with
P. virgatum. In each stand of restored grassland with mixed-species, we permanently located 13 patches
each 7 m in diameter along the upland to lowland catena, for a total of 52 patches per soil type. We also
randomly located eight, 7 m diameter patches in the pasture and six patches in the smaller native
prairie. Sampled grasslands are not grazed by domestic livestock, but are hayed annually, the pasture
in June and prairie and restored grassland following the growing season. All grasslands were sampled
prior to any major disturbance to canopy structure.Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 16 

 

 

Figure 1. Illustration of the sampling design employed to develop partial least squares regression 
(PLSR) models relating spectral signatures of grassland canopies to species diversity: (a) Cover by 
species was measured in 76 cm diameter plots, (b) Eight plots of which were randomly-located in 
each 7 m diameter patch. (c) Patches were positioned in pasture, native prairie, and eight stands of 
restored grassland, the latter sampled in both spring and summer (n = 46 samples in total). Diversity 
was modeled at the patch (plot aggregate) and community (patch aggregate) spatial scales. Patch 
diversity was calculated by aggregating species data across the eight 76 cm plots sampled per patch. 
Community diversity was calculated by aggregating species cover data across random combinations 
of sampled patches, including combinations of four (an example of which is illustrated), 8, 16, 24, 32, 
and 40 patches. Diversity at the patch and community scales was modeled using the CV in reflectance 
among plots or patches at each waveband measured. Note that illustrations of the eight rectangular 
stands in restored grassland and of grassland types and patches (c) are not scaled to actual size. 
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Figure 1. Illustration of the sampling design employed to develop partial least squares regression
(PLSR) models relating spectral signatures of grassland canopies to species diversity: (a) Cover by
species was measured in 76 cm diameter plots, (b) Eight plots of which were randomly-located in
each 7 m diameter patch. (c) Patches were positioned in pasture, native prairie, and eight stands of
restored grassland, the latter sampled in both spring and summer (n = 46 samples in total). Diversity
was modeled at the patch (plot aggregate) and community (patch aggregate) spatial scales. Patch
diversity was calculated by aggregating species data across the eight 76 cm plots sampled per patch.
Community diversity was calculated by aggregating species cover data across random combinations
of sampled patches, including combinations of four (an example of which is illustrated), 8, 16, 24, 32,
and 40 patches. Diversity at the patch and community scales was modeled using the CV in reflectance
among plots or patches at each waveband measured. Note that illustrations of the eight rectangular
stands in restored grassland and of grassland types and patches (c) are not scaled to actual size.
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We visually quantified cover by species and cover of bare soil in eight randomly-chosen patches
on each soil type in LTBE during both April–May and August 2017 (n = 32) and in each patch in the
pasture (n = 8) and native prairie during April–May 2018 (n = 6). Cover per patch was estimated by
measuring cover of bare soil and by species in each of eight randomly-located plots (76 cm diameter)
in each patch. Within one week of quantifying species cover, we measured the spectral signature of
reflected radiation from each 76 cm diameter plot and each 7 m diameter patch in each field using
an ASD HandHeld2 Pro spectroradiometer (spectral range of 350–1070 nm; ASD Inc., Boulder, CO,
USA). Reflectance was calculated as the ratio of radiance reflected from the plant canopy to radiance
incident on the canopy, the latter measured as the radiant flux reflected from a Spectralon® white
reference panel exposed to full sunlight. In practice, the electrical current from photodetectors in the
HandHeld 2 is converted to a computer digital number (DN). Reflectance is calculated as the ratio of
the DN resulting from energy reflected from the canopy to the DN of energy incident on the canopy.
Reflectance was measured from directly above each plot at 1.71 m height (10◦ field of view) and each
patch at 15.8 m height (25◦ field of view), the latter using an unmanned aerial vehicle (UAV) (S1000;
DJI; Shenzhen, China) equipped with the ASD HandHeld2 sensor. Patch reflectance was measured by
flying the GPS-guided, rotary-wing UAV to a stationary position above each patch. Reflectance per
patch in LTBE also was measured at approximately two week intervals during the 2016–2018 growing
seasons (March-November). Reflectance was measured on cloudless days within 2 h of solar noon.
All measurements were referenced to a Spectralon® white reference panel at ~15 min intervals to
maintain consistency in observations. From the reflectance spectrum, we calculated the normalized
difference vegetation index (NDVI) for each plot and patch by dividing the difference in reflectance
between near infrared and red wavebands by the sum of reflectance in near infrared and red bands.

We calculated species diversity as the exponential of Shannon entropy (Shannon diversity) for
i = 1 to S species,

Diversity = exp(−
S

∑
i=1

pi x ln pi) (1)

where pi = proportion of total plant cover for species i. Shannon diversity is interpreted as the
number of equally-abundant species required to produce the calculated value of the index [23,24].
The exponential transformation converts Shannon entropy to its number equivalent, reflective of ‘true
diversity’ [24]. We calculated species diversity for each 76 cm diameter plot (plot scale; 0.45 m2), each
grouping of eight plots per patch, representative of diversity at the patch scale (35.2 m2), and for
randomly-created groupings of between 4 and 40 of the total of 46 patches for which species data
were available (community scale, e.g., each community was assembled by randomly selecting, without
replacement, the desired number of patches from the total of 46 patches). From γ and mean α diversity
at the patch and community scales, we calculated β diversity,

β = γ/α (2)

where α is mean diversity across the plots or patches that were aggregated to represent patches
and communities, respectively. β is an index of compositional similarity among plots or patches,
interpreted as the effective number of completely distinct assemblages included in the sample [24].
Multiplicative β is not systematically correlated with (is unrelated to) γ or α, but is strongly influenced
by the number of assemblages included in calculating γ (N; [24,25]). Following Chao et al. [25], we
transformed β to unit interval (designated as β0-1)

β0-1 = (1/β − 1/N)/(1 − 1/N) (3)

Transformation removed the logarithmic dependence of β on the number of assemblages analyzed in
aggregate. β0-1 is interpreted as the mean fraction of species shared among assemblages [25].
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In seeking a statistical model for grassland diversity, we assumed that canopy-level reflectance in
the visible and near infrared differs among species and species ‘functional’ types and, more generally,
among vegetated scenes that differ in diversity. As a partial test of these assumptions, we compared
reflectance vs. wavelength relationships among five groups of sampled species that differ in canopy
structure, phenology, or leaf chemical and structural properties and between groups of patches
that differed in mean diversity. Functional groups include C4 perennial grasses (e.g., B. ischaemum,
Bouteloua curtipendula (Michx.) Torr., Panicum coloratum L.), C3 perennial grasses (e.g., Nassella leucotricha
(Trin. & Rupr.) Barkworth), C3 annual grasses (e.g., Bromus japonicus Thunb. Ex Murray), C3 annual
forbs (e.g., Gaillardia pulchella Foug), and C3 perennial forbs (Helianthus maximiliani Schrad., Solidago
canadensis L.). We identified plots in which each functional group contributed >50% of plant cover
(n = 4–6 plots per group). For each function group, we then averaged reflectance per waveband across
plots and graphed mean reflectance as a function of wavelength. We also compared reflectance vs.
wavelength relationships between groups of 7 m diameter patches that differed in mean diversity.
Reflectance per waveband was averaged across patches with γ diversity < 6.0 and > 6.0 (low and high
diversity, respectively). Mean reflectance then was graphed as a function of wavelength for low and
high diversity patches.

We used two modeling approaches to evaluate correlations between γ and β diversity and
hyperspectral measurements of canopy reflectance. Both approaches are based on the premise that
diversity of plot or patch aggregates is related to spatial heterogeneity (among-plot or among-patch
differences) in reflectance along the visible to near infrared spectrum that we measured (spectral
variance or heterogeneity approach). First, we evaluated the relationship between γ and β (β0-1)
diversity of aggregates of plots (patch scale) and patches (community scale) and ‘optical diversity’ [13].
Optical diversity was calculated by averaging the among-component (plot or patch) CV in reflectance
at each waveband across all wavebands measured. Second, we used partial least squares regression
(PLSR) analysis to model the diversity of plot and patch aggregates (patch and community scales,
respectively) as a function of the among-plot or among-patch CV in reflectance at each waveband
measured. PLSR models were developed using data from areas on which species diversity was
measured. The diversity of patches was modeled using the CV in reflectance among the eight, 76 cm
plots per patch on which species cover was measured. The diversity of communities was modeled
using the CV in reflectance among the 7 m diameter patches that together formed the community.
Communities were created by randomly selecting 4 (n = 16), 8 (n = 16), 16 (n = 8), 24 (n = 4), 32
(n = 2), and 40 (n = 1) patches from the total of 46 patches for which species diversity was measured
(range in spatial scale = 154–1540 m2). Prior to PLSR analysis, we averaged reflectance measurements
from each plot and patch over 5 nm wavebands, beginning at the 661–665 nm band and ending at
756–760 nm, and 10 nm wavebands over the remainder of the 350–1050 nm spectrum, resulting in
a total of 80 wavebands. Data were retrieved in 1 nm wavebands, although the effective resolution
of the ASD sensor is ~3 nm. Reflectance data were averaged to 5 to 10 nm waveband widths to
stabilize readings and reduce the total number of wavebands considered. Smaller (5 nm) waveband
widths were calculated from 661–760 nm to increase the relative representation of wavebands in which
chlorophyll absorption typically is high. In doing so, we assumed that among plot or patch variation
in leaf functioning, as reflected in chlorophyll absorption, would correlate with variation in species
diversity. Reflectance data for the 80 wavebands per plot or patch were normalized to a uniform
brightness of 1 (Brightness normalization; [26]). Brightness normalization has been shown to improve
the stability of PLSR models by dampening effects of canopy shade on model fits [26].

PLSR reduces the number of predictive CV signals from that of all wavebands to a smaller set of
uncorrelated latent variables [27]. The optimal number of latent variables required to predict γ or β
diversity was determined by using a “split-sample” cross validation procedure [28]. A PLSR model
was fit to a data set composed of CV values from every seventh plot or patch aggregate in the list
of 46 and 47 plot and patch aggregates, respectively, beginning with the first entry in the list, while
minimizing the prediction error for unfitted data. The process was repeated iteratively by beginning
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split-sample data sets with data from each successive entry in the list. We chose the PLSR model with
>1 latent variable that produced the first minimum in residuals from predictions of unfitted data (root
mean predicted residual sum of squares (PRESS)). We then tested the utility of PLSR models for γ and
β0-1 diversity that used fewer than the complete data set of 80 wavebands in prediction. Wavebands
for which values of the variable importance in prediction (VIP) were < 0.8 were deleted iteratively to
identify PLSR models with fewer wavebands. We used linear and non-linear (exponential; hyperbolic)
regression analyses to describe relationships between cumulative γ diversity and the number of plots
(each 0.45 m2) sampled in 7 m diameter patches. PLSR and linear/non-linear regressions were fit using
SAS 9.4.

3. Results

3.1. Reflectance Patterns for Species Functional Groups

Reflectance diverged strongly among functional groups of species, particularly in red and near
infrared wavebands (Figure 2). Reflectance in the far red plus near infrared (ca. 750–1050 nm) was
least among C3 annual and C4 perennial grasses and highest among C3 forb species, including both
annual and perennial forbs. Reflectance in the red (ca. 550–650 nm) was lower among C3 annual and
perennial grasses then C4 grasses. Perennial forbs were distinguished from annual forbs by lower
reflectance in the red.
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Figure 2. Mean values of reflectance as a function of wavelength for 76 cm diameter plots that differed 
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Figure 2. Mean values of reflectance as a function of wavelength for 76 cm diameter plots that differed
in functional group dominance. Reflectance per waveband was averaged across plots in which a given
functional group contributed >50% of plant cover (n = 4–6 plots per group).

3.2. Diversity of Patches

Gamma diversity across the eight plots sampled per 7 m diameter patch (γpatch) varied between 1
and 18.6 and was more highly correlated with variation in the mean α diversity of plots (adj. r2 = 0.91)
than with β diversity among plots (βpatch adj. r2 = 0.39, n = 48; not shown). γpatch was only weakly
correlated with the mean CV in reflectance across wavebands (optical diversity; adj. r2 = 0.12). βpatch
was not correlated to optical diversity (P = 0.12). By contrast, variation in both γpatch and βpatch were
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well described by a PLSR model using a data set that included the CV in reflectance among plots for
each of 80 wavebands. PLSR accounted for 63% (eight latent variables; PRESS = 0.99) and 59% (5 latent
variables; PRESS = 1.02; Figure 3) of variance in γpatch when fit using the CV in non-transformed and
normalized reflectance values, respectively.
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Figure 3. Relationships between measured diversity of eight plot (each 0.45 m2) aggregates of grassland
vegetation (patches) and diversity predicted from spatial heterogeneity in brightness normalized
values of canopy reflectance using PLSR: PLSR explained 59% and 68% of the variance in (a) γ and
(b) β diversity, respectively (n = 48; root mean predicted residual sum of squares (PRESS) = 1.02 and
1.04, respectively). Lines show the 1:1 relationship with measured diversity.

A PLSR with 6 latent variables accounted for 68% of the variance in βpatch when fit using values
of the CV of normalized reflectance values per waveband (PRESS = 1.04; Figure 3), but only 17% of
variance in βpatch when fit using the CV of non-transformed reflectance values (not shown). Residuals
from model fits to γpatch and βpatch were not correlated with the mean or CV in either the NDVI or the
percentage cover of bare soil among plots per patch (P = 0.07–0.79).

Variation in both γpatch and βpatch were associated most strongly with the CV in reflectance in
blue (360–390 nm), red (650–750 nm), and near infrared (890–1010 nm) wavebands as indicated by the
large departures of standardized weightings of PLSR coefficients from the zero line over these spectral
ranges (Figure 4). This pattern is consistent with differences in reflectance vs. waveband relationships
observed between patches with high vs. lower diversity. Reflectance was smaller in blue and red
wavebands and greater in the near infrared in patches with high than lower diversity (Figure S1).

We used γ diversity of the 8 plots sampled per patch as an estimate of α diversity at the patch scale.
Values of among-plot γ approached saturation as the number of plots sampled per patch was increased
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from six to eight (Figure 5), implying that γ diversity of plot aggregates provided a reasonable estimate
of diversity at the larger spatial scale of the 7 m diameter patch.
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Figure 5. Gamma (γ) diversity of random assemblages of plots (each 0.45 m2) sampled in 7 m diameter
patches with high (remnant prairie), intermediate (restored grassland), and low diversity (pasture).
The value of γ diversity approached saturation as the number of plots sampled per patch was increased
from six to eight, as indicated by hyperbolic regression fits to data at high (adj. r2 = 0.95; standard error
of estimate (SEE) = 0.77) and intermediate diversity (adj. r2 = 0.71; SEE = 1.09). There was no significant
relationship between γ diversity and plot number for low diversity pasture (P = 0.29).
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3.3. Diversity of Communities

Gamma diversity of communities consisting of random combinations of 4–40 patches (γcom)
varied between 10.2 and 36.4 and was positively correlated with variation in both the mean α and
β diversity (βcom) of patch aggregates (adj. r2 = 0.44 and 0.27, respectively; P < 0.0001, n = 47).
As anticipated, transforming βcom to unit interval (β0-1) eliminated (P = 0.32) the strong correlation
between βcom and the number of patches that were combined to create communities [βcom = 1.135 +
0.90*ln(# patches), adj. r2 = 0.82, P < 0.0001]. β0-1 also was statistically independent of both γcom

(P = 0.32) and the mean α diversity of patch aggregates (P = 0.07).
Variation in both γcom and β0-1 were well described by a PLSR fit to the CV of normalized

reflectance values among patches that together formed communities. PLSR accounted for 85% (seven
latent variables; PRESS = 0.65) of variance in γcom and 79% (eight latent variables; PRESS = 1.09) of
variance in β0-1 (Figure 6). By contrast, γcom and β0-1 were either not correlated or correlated only
weakly with optical diversity (P = 0.57 and P = 0.01, adj. r2 = 0.12, respectively).
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reflectance values among patches that together formed communities. PLSR accounted for 85% (seven 
latent variables; PRESS = 0.65) of variance in γcom and 79% (eight latent variables; PRESS = 1.09) of 
variance in β0–1 (Figure 6). By contrast, γcom and β0–1 were either not correlated or correlated only 
weakly with optical diversity (P = 0.57 and P = 0.01, adj. r2 = 0.12, respectively).  
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was associated mainly with among-patch differences in reflectance in blue (350–370 nm) and near 
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reflectance in red wavebands (660–770 nm).   

Figure 6. Relationships between measured diversity of grassland communities and diversity predicted
from spatial heterogeneity in brightness normalized values of canopy reflectance using PLSR: (a) γ and
(b) unit interval of β diversity (β0-1) of grassland communities created by randomly-selecting between
4 and 40 patches. PLSR explained 85% and 79% of the variance in γ diversity and β0-1, respectively
(n = 47; root mean predicted residual sum of squares, PRESS = 0.65 and 1.09, respectively). Lines
show the 1:1 relationship with measured diversity. Shannon β diversity ranged from 2.7 to 1.9 and is
inversely correlated to β0-1.

As indicated by standardized weightings of PLSR coefficients, variation in both γcom and β0-1

was associated mainly with among-patch differences in reflectance in blue (350–370 nm) and near
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infrared wavebands (810–1050 nm; Figure 7). Variation in β0-1 also depended strongly on the CV in
reflectance in red wavebands (660–770 nm).
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Figure 7. Standardized weightings of regression coefficients from PLSR relationships between two
indices of species diversity and spatial heterogeneity in brightness normalized values of canopy
reflectance: (a) γ diversity and (b) unit interval of β diversity (β0-1) of combinations of 7 m diameter
patches of grassland vegetation (communities; n = 47).

We tested for PLSR models that used fewer than the full set of 80 wavebands to predict γcom

and β0-1 by iteratively eliminating wavebands for which VIP values were < 0.8 from the full model.
PLSR explained 81% of the variance in γcom (6 latent variables) after excluding green and most red
wavebands (450–810 nm, 700 nm excepted; n = 21 wavebands modeled) and 82% of variance in β0-1

(9 latent variables; n = 55 wavebands) after excluding wavebands in the green and lower red portions
of the spectrum (480–650 nm).

PLSR estimates of diversity depended strongly on the spatial scale of the data used to develop
predictive equations. Predicted values of the γ diversity of plot aggregates were greater than observed
γ by a factor of three, on average, when estimated using a PLSR calibrated to relationships between
diversity and reflectance at the spatial scale of patch aggregates (community). Sensitivity of diversity
estimates to a given level of spectral variation was, therefore, much greater at the small than at the
larger spatial scale.

3.4. Diversity of Restored Grassland

We used PLSR models fit to the CV in normalized reflectance values of all measured wavebands
to estimate diversity during spring 2016–2018 on clay and silty clay soils in the LTBE (n = 52 patches
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per community). γcom was smaller on the clay than silty clay soil by 1, 3, and 2 ‘effective’ species in
2016, 2017, and 2018, respectively, representing a decline in γcom of 6–17% on the clay compared to silty
clay soil (Figure 8). βcom (derived from modelled β0-1), by contrast, was larger by about 0.4 species on
the clay than silty clay soil across years. Because γcom was smaller and βcom was slightly greater on
the clay than silty clay, α was lower by 0.5–2.0 species on the clay than silty clay.
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Figure 8. Diversity of restored grassland on clay and silty clay soils during spring 2016–2018: (a)
γ and (b) β diversity were estimated from reflectance values using PLSR models of relationships
between diversity and the CV in in brightness normalized reflectance values of visible through near
infrared wavebands.

Soils differed in relative cover of annual species, but not in early-season biomass. Relative cover of
annual species was significantly greater on the silty clay than clay soil in May 2017 (0.74 vs. 0.58; paired
t-test, P = 0.01, df = 7). Conversely, NDVI during spring, a surrogate for early-season biomass, did not
differ between soil types in any year (mean = 0.72, 0.64, 0.64 for 2016, 2017, and 2018, respectively).

4. Discussion

We modeled grassland γ and β diversity measured at two spatial grains using spatial variability
in the reflectance spectrum. γ and β diversity of aggregates of scenes measured at each spatial grain
were well described by a PLSR model using a data set that included 80 wavebands but were only
weakly correlated to spatial variation in reflectance averaged across wavebands (optical diversity).
Predicted diversity varied more per unit of difference in spectral heterogeneity at the large than
smaller spatial grain, indicating that PLSR estimates of diversity were strongly scale-dependent.
Diversity of restored grassland during spring was estimated from a calibrated PLSR model. Grassland
communities on a heavy clay soil supported relatively fewer equally-common species but exhibited
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greater spatial turnover in species composition and abundances than did those on an upland, silty
clay soil. Our results support the view that grassland diversity is correlated with spatial variability in
canopy structure and function at small- to moderately-sized spatial grains (pixels) but, consistent with
previous investigations (e.g., [10,17]), demonstrate that spectral models developed for a given spatial
grain cannot reliably be applied to data collected at differing grains.

Several have confirmed the utility of PLSR for estimating species richness or diversity from remote
sensing measurements (e.g., [15,16,21]). Our results demonstrate that both γ and β diversity can be
modelled with high confidence by using spatial variation in spectral reflectance for each of multiple
wavebands. PLSR explained >58% of variance in diversity. The standard errors of the estimate (SEE)
of diversity predictions were small (SEE = 0.39 for α diversity; 0.03 and 0.004 for β diversity and
β0-1 of plot and patch assemblages, respectively). β diversity is particularly challenging to estimate
from remote measurements [10]. But, like γ diversity, differences in species composition and relative
abundances among communities (β diversity) varied as a function of spatial heterogeneity in canopy
optical properties at the spatial grains that we considered. Multiplicative indices of β diversity have
been criticized as scale dependent because values are influenced by both γ and α diversity [29].
The unit internal transformation of Shannon β that we used is not systematically correlated with either
γ or α diversity [24]. Consequently, PLSR did not successfully model β diversity simply because
the procedure also described variation in γ diversity. Shannon β also is strongly correlated with the
number of assemblages included in calculations [24,25]. The unit internal transformation of Shannon
β that we fit using PLSR is not biased by assemblage number.

We speculate that spatial variation in reflectance predicted species diversity because spatial
differences in reflectance were associated with species differences in leaf function and canopy
structure [13]. Results are consistent with this prediction. Reflectance signatures differed among
functional groups of species and between patches that differed in mean diversity. Grasslands that we
studied were not grazed or hayed during the growing season of sampling, thereby eliminating effects
of large disturbances on canopy structure and likely enhancing contributions of species functional and
structural differences to canopy optical heterogeneity. PLSR models of γ and β diversity depended on
spatial variation in reflectance in the blue, red, and near infrared. Reflectance in the blue is linked to
leaf chlorophyll content [15,30] and thus with leaf function as well as to shade in brightness normalized
data. Reflectance in the red is linked to chlorophyll absorption. Reflectance and scattering in the near
infrared is influenced by canopy structure and complexity [30] and water absorption in the 820 and
940–970 nm wavebands. Tuomisto et al. [20] and Dalmayne et al. [21] also found that community
differences in β diversity correlated with differences in red and near infrared reflectance. Our PLSR
results thus are consistent with the view that species diversity was correlated with spatial heterogeneity
in canopy structure and function.

As estimated using PLSR models, restored grassland was 6–17% less diverse and exhibited greater
spatial turnover in species composition and abundances when growing on a lowland clay than upland,
silty clay soil. Diversity often varies inversely with productivity, but NDVI during spring did not differ
between soil types in any year. Rather, it appears that soils differed in diversity partly because they
differed in relative abundances of annual vs. perennial species. The vegetation of restored grassland
was shaped by establishment and relative growth of two primary groups of species, the cohort of 38
perennial species that was planted and a cohort of approximately 25 annual grass and forb species that
invaded following restoration. Annual species in this grassland often are relatively small-statured,
cool season (C3) plants that establish following rainfall in autumn and complete growth during spring
when dominant warm-season C4 perennial grasses are beginning growth. Dominant annuals included
the forbs Gaillardia pulchella Foug and Monarda citriodora Cerv. ex Lag and grasses Bromus japonicus
Thunb. ex Murray and Hordeum pusillum Nutt. Relative cover of annual species was greater on the
silty clay than clay, implying that greater abundance of the often small-statured annuals increased
diversity on the upland soil.



Remote Sens. 2019, 11, 458 13 of 15

Extending diversity estimates to larger spatial scales than typically measured is a key motivation
for developing remote sensing metrics of species diversity. Consequently, it is critical to understand
the sensitivity of remote estimates to spatial scale. Diversity was successfully predicted using spatial
variation in reflectance at each of the two spatial grains examined, but predictive equations differed
between scales. A sensitivity to spatial scale also was evident in diversity estimated using the average
CV in reflectance across wavebands [13]. Details in spectral heterogeneity relevant to species diversity
may progressively be lost as the spatial scale of measurement is expanded. One consequence, as
we observed, is that a given difference in spectral heterogeneity will predict a greater difference in
diversity at large than smaller spatial scales. Spatial scale obviously must be considered to remotely
estimate diversity, but we found that PLSR models of spectral heterogeneity predicted both γ and
β diversity at spatial grains that differed by almost an order of magnitude in size. More generally,
our analyses indicate that spectral heterogeneity relevant to estimating spatial differences in diversity
exists at spatial scales of < 0.5 m2 in the grasslands that we studied.

5. Conclusions

We demonstrate that both γ and β diversity of grassland can be statistically modeled by using
spatial heterogeneity in canopy optical properties at small- to moderately-sized spatial grains. PLSR
models using measurements of hyperspectral reflectance in visible to near infrared wavebands
explained 59–85% of variance in γ diversity and 68–79% of variance in β diversity. Our analyses
caution, however, that models are specific to the spatial grain at which they are developed.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/4/458/s1,
Figure S1: mean values of reflectance as a function of wavelength for 7-m diameter patches that differed in
species diversity.
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