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Abstract: This paper presents an efficient sampling system for the acquisition of synthetic aperture
radar (SAR) data at sub-Nyquist rate. The system adopts a quadrature compressive sampling
architecture, which uses modulation, filtering, sampling and digital quadrature demodulation to
produce sub-Nyquist or compressive measurements. In the sequential transmit-receive procedure of
SAR, the analog echoes are modulated by random binary chipping sequences to inject randomness
into the measurement projection, and the chipping sequences are independent from one observation
to another. As a result, the system generates a sequence of independent structured measurement
matrices, and then the resulting sensing matrix has better restricted isometry property, as proved by
theoretical analysis. As a standard recovery problem in compressive sensing, image formation from
the sub-Nyquist measurements has significantly improved performance, which in turn promotes
low sampling/data rate. Moreover, the resulting sensing matrix has structures suitable for fast
matrix-vector products, based on which we provide a first-order fast image formation algorithm.
The performance of the proposed sampling system is assessed by synthetic and real data sets.
Simulation results suggest that the proposed system is a valid candidate for sub-Nyquist SAR.

Keywords: synthetic aperture radar; compressive sampling; restricted isometry property; fast recovery

1. Introduction

Synthetic aperture radar (SAR) is an imaging radar mounted on a moving platform. As the
platform moves, electromagnetic waves are sequentially transmitted to illuminate an area and the
backscattered echoes are collected by the radar receiver to form raw data for subsequent digital
processing. With increasing demands for SAR products, modern SAR systems are facing several
problems. On the one hand, the raw data has resulted in a large burden on board and subsequent
storage as well as downlink transmission, especially for spaceborne repeat-pass observations.
Nowadays, numerous on-orbit earth observation missions are collecting SAR data continuously
and have accumulated huge historical archives. On the other hand, it is often required to use large
bandwidth signals for high-resolution applications, which thus need high-speed analog-to-digital
converters (ADCs). These requirements present a big challenge for SAR development.

Compressive sensing (CS) theory [1], which emerged in the past decade, brings us new concepts
for sub-Nyquist acquisition of SAR data. For a sparse or compressible radar scene, it is sufficient
to recover a high-resolution SAR image with a small number of samples. Past investigations find
that CS offers various benefits for SAR, such as reduced storage cost, increased resolvability of point
targets [2], and reduced speckle [3]. In sub-Nyquist SARs, CS can be applied both in azimuth and
range dimensions. Azimuth-dimensional CS is easily realized through observation at a random subset
of azimuth positions [4,5], while range-dimensional CS falls into the scope of analog sub-Nyquist

Remote Sens. 2019, 11, 472; doi:10.3390/rs11040472 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-9725-088X
https://orcid.org/0000-0002-4546-5843
https://orcid.org/0000-0002-4170-3023
http://www.mdpi.com/2072-4292/11/4/472?type=check_update&version=1
http://dx.doi.org/10.3390/rs11040472
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 472 2 of 27

sampling [6,7]. Since CS in range dimension is an important bottleneck in conventional high-resolution
SARs, building analog samplers at sub-Nyquist rates is crucial for the sub-Nyquist acquisition of
SAR data. In this paper, we therefore focus on the range-dimensional CS. Now, several sub-Nyquist
sampling systems have been suggested for sampling radar echoes. The original sub-Nyquist sampler
is random sampling [8] or non-uniform sampling [9], which digitizes analog signals at random
or irregular time points. However, random/non-uniform sampling is not conducive to hardware
implementation and is sensitive to jitter noise. To circumvent these disadvantages, Kirolos et al.
established the random demodulation system, which modulates large bandwidth lowpass signals
with a pseudo-random binary sequence, followed by lowpass filtering and low-rate ADC sampling [6].
Thereafter, Xi et al. merged the random demodulation into classical quadrature sampling and thus
presented a quadrature compressive sampling (QuadCS) system to gather intermediate frequency
radar echoes [10]. On the other hand, Eldar et al. provided a Xampling system [11,12] by accomplishing
the random sampling in frequency domain. Among these systems, Xampling has been successfully
applied to SAR systems [4]. Therefore, these sampling systems are promising in SAR data acquisition
at sub-Nyquist rate.

Different from classical SARs via Nyquist sampling, sub-Nyquist SARs collect sub-Nyquist
or compressive measurements, and the imaging performance greatly depends on the sensing
matrix resulting from the sampling system. Since SAR observations are sequentially conducted,
the sub-Nyquist measurements can be modeled as

ycs
l = Φlyl + nl , l = 1, ..., Na (1)

for all Na observations, where l is the index of azimuth position, yl and nl are vectors denoting the
Nyquist samples of SAR echo and the sub-Nyquist measurements of observation noise, respectively,
and Φl is the measurement matrix resulting from the sampling system. Stacking all sequential
measurement vectors ycs

l into a large one, we can translate (1) into a structured CS model as

ycs = diag {Φ1, · · · , ΦNa}Dx + n, (2)

where D is a basis matrix for sparsely representing the Nyquist samples of SAR echo [3], n is the
stacked noise vector, and x is the sparse reflecting coefficient vector. An example of the sparse reflecting
coefficient is that, in a marine environment, scenes consisting of ships or islands usually lead to sparse
SAR images [13,14]. In this paper, we focus on this kind of sparse scenes.

In the context of CS, the linear system (2) is typically ill-posed, and image recovery from the
sub-Nyquist measurements is equivalent to a sparse recovery problem, which can be handled by many
methods, such as greedy algorithms [15] and convex optimization-based algorithms [16]. The recovery
errors between the ground truth and the estimates returned by these algorithms greatly depend on
the sparsity of the vector x and the restricted isometry property (RIP) of the sensing matrix defined as
A = diag{Φ1, · · · , ΦNa}D. Specifically, the matrix A satisfies the s-order RIP if there exists a constant
δs ∈ (0, 1) such that

(1− δs) ‖x‖2
2 6 ‖Ax‖2

2 6 (1 + δs) ‖x‖2
2 (3)

holds for all s-sparse vectors x. In addition, the smallest δs is called the restricted isometry constant
(RIC). If the matrix A satisfies 2s-order RIP with RIC δ2s < δ# for some constant δ# < 1, the recovery
error between the sparse vector x and its estimate x# returned by those algorithms will obey∥∥∥x− x#

∥∥∥
2
≤ C1

σs(x)1√
s

+ C2ε, (4)

where ε is a upper bound of the noise norm ‖n‖. In (4), σs(x)1 = inf‖z‖0≤s‖x− z‖1 denotes the
best s-term approximation error of x in `1-norm, and C1 and C2 are positive constants depending
on δ2s (their values increase as the increase of δ2s). Therefore, it is expected that the RIC δ2s is



Remote Sens. 2019, 11, 472 3 of 27

small for reasonable large s, such that the recovery error
∥∥x− x#

∥∥
2 is well bounded, or, in other

words, the recovery is stable and robust in the sense that (4) is bounded in the presence of noise and
mismodeling (for example, the scene is not reasonable sparse). Unfortunately, previous sub-Nyquist
SAR works lack in RIP-based design and analysis.

The original motivation of this paper is to design a RIP-based efficient sampling system for
sub-Nyqusit SAR. Here, the RIP-based efficiency means that the sensing matrix A has the smaller
RIC, which thus provides better imaging performance with theoretical guarantees. As mentioned
above, Xampling has been exploited for sub-Nyquist SAR [4], where a fixed measurement matrix is
taken to sample radar echoes for all observations, i.e., the measurement matrices Φl for l = 1, · · · , Na

are the same. However, in the context of CS, the sensing matrix with more randomness usually
results in a smaller RIC, so Xampling is not in favor of an efficient sensing matrix. Along
this analysis, a natural question arises: may the measurement matrix Φl vary among different
observations so that the sensing matrix A will have smaller RIC? In this paper, we provide an
affirmative answer. By designing time-varying measurement matrices, the sampling systems that
inject randomness by random modulation are competitive candidates, and they have been well
studied, such as random demodulation [6]. A variant of random demodulation is QuadCS [10],
as shown in Figure 1, which can effectively acquire sub-Nyquist in-phase and quadrature components
of sparse bandpass signals. The QuadCS uses random modulation by chipping sequence, bandpass
filtering, intermediate-frequency sampling and digital quadrature demodulation to collect sub-Nyquist
measurements. It has been successfully applied to sample pulse-Doppler radar echoes with a fixed
chipping sequence between different pulse repetition intervals [17–19].
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cst k f
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Figure 1. The architecture of QuadCS. The first subsystem is to perform low-rate random measurement;
the second subsystem is a classical digital quadrature demodulation system [20] used for extract
compressive in-phase and quadrature measurement.

Based on the QuadCS architecture, this paper proposes an efficient sampling system for
sub-Nyquist SAR, which was partially presented in [21]. In the sequential observations, the initial
seeds that control the chipping sequences are assigned to different values to generate independent
chipping sequences. As a result, the measurement matrices Φl are different from one observation
to another, which is significantly different from Xampling [4]. By this strategy, more randomness is
injected into the sampling system, which better meets the principle of random measurement in CS,
and consequently the resulting sensing matrix has a smaller RIC. Theoretical analysis will demonstrate
that the RIP attains a diversity gain Na by this strategy, and thus the recovery performance will be
improved. In addition, it is important to note that the proposed QuadCS system does not put further
burden on hardware implementation because the independence of chipping sequences can be easily set
beforehand by maximal-length linear feedback shift registers (MLFSR) with a set of unique initial seeds.

Another contribution of this paper is the development of a fast sparse imaging algorithm for
the proposed sub-Nyquist SAR system. As an image inverse problem, the recovery of sparse images
from sub-Nyquist measurements have a large problem size. Optimization methods designed for
large-scale problems, such as truncated Newton interior-point method [22] and the more popular
first-order methods [23–26], numerically rely on computing the matrix-vector products involving
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A and its adjoint A∗. However, the large problem size precludes the direct application of these
off-the-shelf optimization methods because the matrix A cannot be stored explicitly and it is costly,
even impractical to calculate the matrix-vector products directly. In the proposed sampling system,
we will decompose the matrix-vector products into several fast Fourier transform (FFT) based and
Hadamard product-based fast operations. Then, the matrix A does not need to be stored explicitly,
and the matrix-vector products have only O (Nlog(N)) complexity and thus much less computational
overhead, where N is the Nyquist sampling size of SAR echo. By exploiting the decomposition into
typical first-order methods, we provide a first-order fast imaging algorithm.

The rest of this paper is organized as follows. Section 2 reviews some basic knowledge of
conventional SAR and sub-Nyquist SAR. Section 3 presents our QuadCS-based sampling system for
SAR. Section 4 gives a fast sparse imaging algorithm for sub-Nyquist measurements. Section 5 provides
the RIP analysis of proposed system. Section 6 gives several numerical simulations to illustrate the
improved performance, and finally we conclude the paper in Section 7.

Notation

The sets of real and complex numbers are denoted by R and C, respectively. An integer set,
{1, 2, · · · , N}, is denoted by [N]. The cardinality of a set S is denoted by card(S). Vectors and
matrices are denoted by lower case boldface and upper case boldface letters, e.g. x and A, respectively.
The support of a vector x is denoted by supp(x). The vector output by a reconstruction algorithm
is denoted by x#. For a matrix A, vec (A) is the vector obtained by concatenating the columns of A,
and diag(A) is the diagonal matrix obtained by taking vec (A) as its diagonal elements. The identity
matrix and the zero matrix are denoted by IN and 0N ∈ RN×N , respectively.

The real part of a complex-valued signal is denoted by Re {·}. The transpose, conjugate and
adjoint of a matrix are denoted by (·)T , (·) and (·)∗, respectively. The adjoint of an operator is
also denoted by (·)∗. The `1, Euclidean and Frobenius norm are denoted by ‖·‖1, ‖·‖2 and ‖·‖F.
The symbols ⊗ and ◦ denote the Kronecker product and the Hadamard product, respectively.

2. SAR Imaging and Sub-Nyquist SAR Model

In this section, we give a basic introduction to SAR imaging, and then discuss the sub-Nyquist
SAR and associated image formation method.

2.1. SAR Imaging

For simplicity, we take the stripmap SAR as an example. As shown in Figure 2, the radar platform
travels along azimuth direction at a constant velocity while the radar illuminates a scene. As the
radar moves, the SAR transmits a pulse Re

{
s (t) ej2π f0t

}
with carrier frequency f0 and bandwidth B

to illuminate the scene and collect its echo data, and this procedure is sequentially conducted every
pulse repetition interval (PRI) T to collect multiple coherent measurements that contains the reflectivity
information about the scene. Supposing that the illuminated scene is discretized into K scattering units
with predesigned resolution, then the received backscattered signal can be modeled as superpositions of
the echo signals due to these scattering units. For the l-th observation, after demodulation, the complex
baseband envelope can be expressed as

yl (t) =
K

∑
n=1

Dl,n (t) σn. (5)

In (5), σn is the complex reflectivity coefficient of the n-th scattering unit and Dl,n (t) is a waveform
related to the scattering unit as

Dl,n (t) =wa (lT − ηn) s
(
t− 2Rl,n

/
c
)

× exp
(
−j4π f0Rl,n

/
c
)

,
(6)
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where wa (·) is the antenna beam pattern, ηn is the beam center crossing time, and Rl,n is the slant
range of the n-th scattering unit. For subsequent digital processing, the baseband echo (6) is sampled
according to the Nyquist theorem to collect its complex sample vector yl with length Nr = BT.
A coherent combination of Na echo data forms a two-dimensional data matrix of complex samples
Y = [y1, · · · , yNa ]. Let us denote the reflectivity map of the discretized scene by a complex image
matrix X with size Kr ×Ka. By stacking the echo data matrix and image matrix into vectors respectively,
we obtain the following observation model

y = Dx, (7)

where y = vec (Y) is the vectorized Nyquist rate echo data with length N = Nr Na, and x = vec (X)
is the image vector with length K = KrKa. The SAR image can be well focused by traditional
matched-filter-based focusing methods, xm f = D∗y, such as range-Doppler algorithm and chirp
scaling algorithm (CSA). A virtue of these algorithms is that they are numerically efficiency with
O (N log (N)) complexity, owing to range and azimuth decoupled processing and fast Fourier
transform (FFT) operations.

Azim
uth

v

R
n,l

Synthetic
 apertu

re

Nadir t
rac

k

Swath width

Ground range

Figure 2. Illustration of stripmap SAR imaging geometry.

2.2. Sub-Nyquist SAR

Since its invention, CS theory has been applied to SAR systems to reduce the data rate and
subsequent demands on storage [27,28]. In classical SAR systems, radar echoes are sampled at Nyqusit
rate in azimuth and range dimensions, respectively. Therefore, CS can be conducted both in azimuth
and range dimensions. In the azimuth dimension, CS is often realized through randomly transmitting
a reduced number of pulses at irregular azimuth positions. A shortcoming of this strategy is that
the underlying mathematical model falls into the paradigm of block sampling, which limits the
performance of its sensing matrix. In the range dimension, CS of the analog radar signals involves
structured sampling systems, such as the Xampling system reported in [4,12]. This paper focuses
on the sub-Nyquist sampling in range dimension, so the azimuth-dimension CS is not considered.
Our work can be naturally extended to the case of azimuth-dimension CS.

In a sub-Nyquist SAR, the sub-Nyquist measurements of the l-th observation can be expressed as

ycs
l = Φlyl + nl , l ∈ [Na], (8)

where ycs
l and nl are the length-Mr sub-Nyquist measurement vector and the measurement noise

vector, respectively, and Φl is the Mr × Nr measurement matrix specified by the sampling system for
l-th observation. Let us collect the sample vectors to form a 2D measurement Ycs =

[
ycs

1 , · · · , ycs
Na

]
,
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and denote its vectorization by ycs = vec (Ycs) with length M = Mr Na. We can express the sub-Nyquist
measurements of (7) as

ycs = Ax + n, (9)

where A = diag (Φ1, · · · , ΦNa)D ∈ CM×K is the sensing matrix and n = vec([n1, · · · , nNa ]) ∈ CM×1

is the contaminating measurement noise.
Typically, the measurement dimension M is much smaller than the image size K, and then image

formation from the linear system (9) is an ill-posed problem. However, assuming that the image
vector x is sparse and the sensing matrix A satisfies the RIP, the image can be estimated by solving the
following basis pursuit denoising (BPDN) problem

min
x

1
2
‖Ax− ycs‖2

2 + λ‖x‖1, (10)

where λ > 0 is a regularization parameter used to trade off between sparsity and data fidelity.
For this optimization problem, the very high dimension of x precludes the direct application of
classical optimization methods, such as inner-point methods and greedy algorithms. However,
matrix-vector products involving A and its adjoint A∗, if they exist, can be used to speed up many
popular algorithms for solving (10), such as fast iterative shrinkage-thresholding algorithm (FISTA) [25].
In this sense, the sampling system is expected to have special structures for fast matrix-vector products.
Then, the recovery algorithm can be adapted for fast image formation.

3. Quadrature Compressive Sampling for SAR with Independent Measurements

In this section, we present the QuadCS-based sampling system for sub-Nyquist SAR.
For sequential SAR observations, we use independent chipping sequences to modulate the echoes;
thus, the measurement matrix Φl is different from one to another. We call this strategy as independent
measurements. Then, we provide the frequency-domain representation of this strategy for the
convenience of subsequent RIP analysis. As will be shown in Section 5, this strategy will lead to
smaller RICs and therefore better recovery performance.

3.1. Sampling SAR Echoes via QuadCS

The fundamentals of the QuadCS system [10] are shown in Figure 1, which consists of two
subsystems: a sub-Nyquist sampling subsystem and a digital quadrature demodulation subsystem.
Before inputting them into the system, the radar signal is down converted to intermediate frequency
(IF) f I . With an IF input signal, the first subsystem generates a compressive bandpass signal and its
bandpass samples, and then the second subsystem translates the bandpass samples into the complex
baseband samples by quadrature demodulation.

Let us take the l-th observation to illustrate its operating principle. In the first subsystem, the IF
radar echo Re

{
yl(t)ej2π f I t

}
is modulated by a chipping sequence pl (t) with the bandwidth not less

than that of yl (t). The mixing operation will spread the frequency content of the baseband signal
yl (t) to full spectrum of pl (t). The mixing output is filtered by a bandpass filter hbp (t) with center
frequency f0 and bandwidth Bcs � B. The filter outputs the compressive bandpass signal rl(t),

rl(t) =
∫ ∞

−∞
hbp (t− τ) pl (τ)Re

{
yl(τ)ej2π f I τ

}
dτ

= Re
{

ycs
l (t) ej2π f I t

}
,

(11)

where ycs
l (t) is the compressive complex envelope given by

ycs
l (t) =

∫ ∞

−∞
hbp (t− τ) e−j2π f I(t−τ)pl (τ)yl (τ) dτ, (12)
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with Ics
l (t) = Re

{
ycs

l (t)
}

and Qcs
l (t) = Im

{
ycs

l (t)
}

denoting the compressive I and Q components
of ycs

l (t), respectively. The filter output ycs
l (t) is then sampled by a low-rate ADC to generate a

sub-Nyquist sequence ycs
l [k] = rl (k/ fcs), which is the baseband sample of ycs

l (t). The sampling rate fcs

is set according to bandpass sampling theorem as fcs = (4 fL + 2Bcs)/(4k + 1), where fL = f I − Bcs/2
and k is a positive integer satisfying k ≤ b fL/2Bcsc. The second subsystem is to extract digital I and
Q sequences from the sub-Nyquist sequence ycs

l [k]. Its operation is the same as classic quadrature
sampling [20]. Because of the down-sampling operation, the rate of the digital I and Q sequences,
Ics
l [m] = Ics

l (mTcs) and Qcs
l [m] = Qcs

l (mTcs), is half that of ycs
l [k], Tcs = 2/ fcs. In a PRI, we obtain

Mr = bT/Tcsc sub-Nyquist complex samples ycs
l [m] = Ics

l [m] + jQcs
l [m] or 2Mr samples of I and Q

components, which is much less than 2BT by the classical Nyquist sampling.
Although the QuadCS system works on analog bandpass signals, its output ycs

l [m] can be
characterized as a linear combination of the sparse coefficient vector x = [σ1, · · · , σN ]

T . Inserting (5)
and (6) into (12), we have

ycs
l (t) =

K

∑
n=1

σn

∫ ∞

−∞
hbp (t− τ) e−j2π f I(t−τ)

× pl (τ) Dl,n (τ) dτ

=
K

∑
n=1

σn Al,n (t),

(13)

where Al,n (t) is the compressive signal of Dl,n (t)

Al,n (t) =
∫ ∞

−∞
hbp (t− τ) e−j2π f I(t−τ)pl (τ)Dl,n (τ) dτ. (14)

Then, the sub-Nyquist complex samples can be expressed as

ycs
l [m] =

K

∑
n=1

σn Al,n (mTcs). (15)

To get a standard CS formulation, let us define the sub-Nyquist measurements vector of the l-th
observation as

ycs
l = [ycs

l [0] , · · · , ycs
l [Mr − 1]]T , (16)

collect all Na observations as Ycs =
[
ycs

1 , ycs
2 , · · · , ycs

Na

]
or its vector form ycs = vec (Ycs), and define

the sensing matrix A as
(A)m+(l−1)Mr ,n = Al,n (mTcs) , (17)

for m ∈ [Mr], l ∈ [Na] and n ∈ [N]. Then, we have the sub-Nyquist measurements model ycs = Ax
as given by (9) in the noisy case. However, the structure of the sensing matrix A here is not as clear
as that in (2). To decompose the sensing matrix into an explicit structured form, we next analyze the
QuadCS in frequency domain, which is also important for subsequent discussions on the fast imaging
algorithm and RIP.

3.2. Frequency-Domain Representation

From (11), we can see that the QuadCS involves a time-domain product and a bandpass filtering
operation. The time-domain product is equivalent to frequency-domain convolution, which can be
described by the product of a Toeplitz matrix by a vector, and the bandpass filtering can be modelled
by a truncation operation in frequency domain under the assumption of idea frequency response.
Based on the above-mentioned view, we have the frequency-domain measurement model of QuadCS
as studied in [10].
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Since each observation interval has a duration T, the chipping sequences pl (t) can be expressed
in Fourier series as

pl(t) =
Lp

∑
i=−Lp

ρi,lej2π fpit, (18)

where fp = 1/T, ρi,l is the Fourier coefficient of pl (t), and Lp ≥ BT is a positive integer. Denoting the
discrete Fourier transform (DFT) of ycs

l by ŷcs
l , it can be given by [29]

ŷcs
l =

√
1

Mr
TlFryl , (19)

where Fr is a Nr × Nr normalized DFT matrix after fftshift (fftshift is to shift zero-frequency component
to the center of spectrum), and Tl is a Mr × Nr Toeplitz matrix defined by the Fourier coefficients as

Tl =


ρ−L0+Nr−1,l ρ−L0+Nr−2,l · · · ρ−L0,l

ρ−L0+Nr ,l ρ−L0+Nr−1,l . . . ρ−L0+1,l
...

...
. . .

...
ρL0,l ρL0−1,l · · · ρ−L0+Mr−1,l

 , (20)

where L0 = Mr + Nr − 1. The Toeplitz structure of Tl results from the convolution between the
spectrums of the chipping sequence and the input signal. Due to bandpass filtering, Tl does not
contain all Fourier coefficients of pl(t). Next, according to (19), we can describe the time-domain
sub-Nyquist measurements as

ycs
l = F∗mŷcs

l =

√
1

Mr
F∗mTlFryl , (21)

where Fm is a Mr ×Mr normalized DFT matrix after fftshift. Then, the measurement matrix Φl can be
described as

Φl =

√
1

Mr
F∗mTlFr, (22)

which is independent from one observation to another due to the adoption of different chipping
sequences. Finally, according to (8) and (9), we can rewrite the sensing matrix as a structured form,
A = diag (Φ1, Φ2, · · · , ΦNa)D. The first factor of A is a block diagonal matrix with independent
diagonal blocks. Therefore, the sensing matrix A has more randomized structures, which better meets
the principle of random measurement in CS. In addition, the block diagonal and Toeplitz structures
are also helpful for deriving a fast sparse recovery algorithm, as will be shown later.

3.3. Remarks

The QuadCS generates independent measurement matrices while does not complicate hardware
implementation. In the system, chipping sequences are realized by a pseudo-random number generator,
which can be implemented using a MLFSR. The MLFSR has the benefit of providing a random
sequence of ±1 with zero average, and it offers the ability of regenerating the same sequence by a
given initial seed [6]. This technique has been widely used in modern radio communication, such as
CDMA. During sequential observations of SAR, the initial seeds are easily assigned to different values,
which can be set in advance or in real-time. On the contrary, in the Xampling system [4,12], it is
not allowed to generate varied measurement matrices among different observations, because four
bandpass filters with different passbands are utilized to perform sub-Nyquist measurement and the
measurement matrix is inherently fixed when the hardware is built. Moreover, bandpass filters cannot
sample SAR echoes randomly enough in frequency domain and thus often generate bad sensing
matrices, as observed in the following simulations. As for non-uniform sampling, it often imposes
strict timing requirements on the digital circuits to preserve timing information [8,30], which makes it
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difficult to interface with synchronous digital circuits. In fact, it is easier to build a high-rate modulator
via mixer/chipping sequence combination than a specially designed non-uniform sampler [31].

4. Fast Sparse Imaging with QuadCS Measurements

As a standard sparse recovery problem in CS, we model our imaging problem as the BPDN
formulation in (10). For the large-scale problem, the very high dimensions of A often precludes the
direct application of off-the-shelf optimization methods because of two limitations: the matrix A
cannot be stored explicitly, and the matrix-vector products involving A and its adjoint A∗ cannot be
quickly calculated. If these two limitations are well resolved, several popular solvers can be used to
solve (10), such as FISTA [32], SpaRSA [33], TFOCS [26] and L1LS [22]. In the proposed sampling
system, we exploit the block and Toeplitz structure of the sensing matrix A and decompose the
matrix-vector products into several fast operations. Then, the matrix A does not need to be stored
explicitly, and the matrix-vector products can be fast calculated. By inserting the decomposition into
above-mentioned solvers, we derive a FISTA-based fast SAR imaging algorithm for the proposed
sub-Nyquist SAR system, and analyze the algorithm complexity.

4.1. Fast Matrix-Vector Products

As we have discussed, the sensing matrix A = ΦD consists of two parts: measurement matrix
Φ and basis matrix D. To obtain the desired fast matrix-vector products for A and A∗, we are
going to exploit the inner structures of the two matrices. The following content is to expand the
derivations in detail.

Let us first discuss the Toeplitz structure as shown in the frequency-domain model (21). Since Tl
is a Toeplitz matrix, it can be viewed as a submatrix of a (2L0 + 1)× (2L0 + 1) circulant matrix Cl
defined as

Cl =


ρL0, l ρL0−1, l · · · ρ−L0, l

ρ−L0, l ρL0, l · · · ρ−L0+1, l
...

...
. . .

...
ρL0−1, l · · · ρ−L0,l ρL0, l

 . (23)

Specifically, Tl is exactly the right Nr columns and top Mr rows of Cl . Let us define row and
column truncation matrices as

∆r =
[
IMr 0Nr−1

]
, (24)

and

∆a =

[
0Mr−1

INr

]
, (25)

respectively. Then, we embed Tl into Cl as follows:

Tl = ∆rCl∆a. (26)

Since circulant matrices can be diagonalized by DFT matrices, there exist fast matrix-vector
products for circulant matrices via FFT and the computational complexity is O(Nlog(N)). The goal
of (26) is to extend this property to the Toeplitz matrix Tl . Specifically, let us define an integer
L = 2L0 + 1, and a vector ρl =

[
ρL0, l , ρ−L0, l , · · · , ρL0−1, l

]T which is the first column vector of Cl , and
denote the L× L DFT matrix as FL. Then, the circulant matrix Cl can be diagonalized as

Cl = FLdiag (Lθl) F∗L, (27)

where θl = FLρl . Inserting (26) and (27) into (21), we have
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ycs
l =

√
L

Mr
F∗m∆rFLdiag (θl) F∗L∆aFryl . (28)

Defining Θ = [θ1, · · · , θNa ], then the 2D QuadCS measurement Ycs can be written as

Ycs =

√
L

Mr
F∗m∆rFL (Θ ◦ F∗L∆aFrY) , (29)

which mainly involves FFTs and thus has a low complexity. Note that, from (29), we find that the
random matrix Θ performs “Hadamard scrambling” to inject randomness into the measurements.

Next, we analyze the inner structure of the basis matrix D. It has been suggested that conventional
imaging algorithms, such as CSA, can be exploited to derive its fast matrix-vector product for D [5,34],
which demonstrate that the matrix is also highly structured. We assume that the SAR operates in
stripmap mode and the transmitted pulses are linear frequency modulated (LFM); then, CSA can be
used to obtain the SAR image, which can be described in a compact form as

XCSA = (H3 ◦ F∗r (H2 ◦ Fr (H1 ◦ YFa))) F∗a . (30)

In this equation, XCSA is the SAR image output by CSA, H1, H2, H3 are phase compensation
matrices (i.e., their entries lie in the unit circle in C, for more details, cf. chapter 6 in [35]), and Fr, Fa are
the range and azimuth DFT matrices, respectively. Because CSA is a high precision algorithm, XCSA is
a valid approximation of the reflectivity map X. For ease of discussion, we omit the approximation
error, i.e., we take X = XCSA, and in this sense, X and Y have the same size, i.e., Kr = Nr and Ka = Na.
After simple derivation, the inversion of (30) is given by [5]

Y =
(
H1 ◦ F∗r

(
H2 ◦ Fr

(
H3 ◦ XFa

)))
F∗a . (31)

It is easy to see that the linear system (31) is equivalent to y = Dx with proper reshape operations.
Furthermore, since the involved FFTs and Hadamard products in (30) and (31) are unitary operators,
the matrix D is also unitary [5].

4.2. FISTA-Based Fast Imaging Algorithm

FISTA is an accelerated variant of the iterative shrinkage-thresholding algorithms (ISTA),
and it has a quadratic rate of convergence thanks to the generalized Nesterov’s method [23,25].
Each iteration of FISTA involves matrix-vector product involving A and its adjoint A∗ followed by a
shrinkage/soft-threshold step as follows:

xk+1 = Tλ/L f

(
zk −A∗ (Azk − ycs)/L f

)
, (32)

where xk+1, zk are iterative variables, L f is the Lipschitz constant for the gradient ∆ f of the function
f (x)= ‖Ax− ycs‖2

2, and Tλ/L f
(·) is the soft shrinkage operator defined as

Tτ(x)i =

{
(|xi| − τ) x

|xi |
, |xi| > τ;

0, otherwise.
(33)

From (32), we know that the matrix-vector products involving A and its adjoint A∗ dominate the
computational cost in each iteration. The previous subsection shows that the matrix-vector products
can be fast calculated through matrix decomposition. Now, we merge this calculation strategy into
FISTA and thus provide a FISTA-based fast imaging algorithm, as shown in Algorithm 1.
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Algorithm 1 Fast sparse imaging with QuadCS measurements

Input:
OperatorsM, D and their adjoints; QuadCS measurement Ycs; number of iterations Niter; λ;

Output:
Sparse SAR image X#;

1: initial: take λ, L f ∈ R, Z0 = X0 = 0, q0 = 1, k = 1;
2: repeat
3: Zk = Zk−1 − 1

L f
D∗M∗ (MDZk−1 − Ycs);

4: Xk = Tλ/L f
(Zk);

5: qk =
1
2 + 1

2

√
1 + 4q2

k−1;

6: Zk = Xk +
qk−1−1

qk
(Xk − Xk−1);

7: k = k + 1;
8: until k ≥ Niter;
9: return X# = Xk−1;

For ease of description, we denote the right sides of (29) and (31) by operators as MY and
DX, respectively, and denote vec(·) by an operator V . With these notations, we can express the
matrix-vector product of A as

Ax = VMDV∗x. (34)

Similarly, the matrix-vector product of the adjoint A∗ is given by

A∗ycs = VM∗D∗V∗ycs, (35)

where the adjoint operator D∗ is given by the operations on the right side of (30) andM∗ is given by

M∗Ycs =

√
L

Mr
Fr
∗∆T

a FL

(
Θ ◦ F∗L∆T

r FmYcs
)

. (36)

It is clear that the involved operations in the right sides of (34) and (35) mainly consist of FFTs
and Hadamard products. Therefore, we can conclude that A and its adjoint A∗ both admit fast
matrix-vector products.

4.3. Complexity

Without fast matrix-vector products for A and A∗, we need to store the M× N matrix A explicitly
and compute the involved matrix-vector products directly. For a small scene of 1024 × 1024 pixels
and compression ratio M/N = 1/8, it requires 1024 GB to store the matrix A with double
precision, and roughly 1.3744× 1011 complex multiplications to compute the matrix-vector product
Ax. Obviously, the image recovery will be numerically intractable. With the fast matrix-vector
multiplications (34) and (35), we only need to store Nr × Na matrices H1, H2, H3 and Θ. It only
requires 32 MB to store the four matrices and roughly 8.2× 104 complex multiplications to compute
Ax for a scene of 1024× 1024 size, which are significantly smaller than the previous requirements. In
general, the storage cost is reduced form O(MN) to O(N), and the computational cost is reduced
from O(MN) to O(Nlog(N)) per iteration, respectively.

Looking back to the traditional imaging algorithm, CSA, it only needs to evaluate (30) once to
form a SAR image. Specifically, it involves 2Nr Na (log (Nr) + log (Na)) + 3Nr Na complex products,
or in a compact form, O (N log (N)) complexity. The proposed iterative algorithm exhausts more
overhead compared to CSA, depending on the number of iterations. Indeed, the essence of CS is to
sacrifice the computational cost in return for the reduction of sampling/data rate.
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5. Restricted Isometry Property (RIP) Analysis

In this section, we derive the RIP of the sensing matrix A resulting from the proposed sampling
system. The established RIP condition shows that the strategy of independent measurements provides a
“diversity gain”, which is up to Na. Therefore, the sensing matrix A has smaller RICs with independent
measurements compared to that with fixed measurements (i.e., with equal chipping sequences),
and thus leads to lower sampling/data rate and smaller recovery error.

Our derivation is based on the concentration of measure (CoM) inequality [36], which is one of the
leading techniques for the RIP analysis of random sensing matrices in CS. The CoM inequalities have
been established for the random matrix with i.i.d. entries and other structured matrices. However,
these results are not applicable to the proposed sensing matrix A because of its special factornizatio.
In the following, we first derive a CoM inequality of the matrix A, and then establish a RIP condition
on it. The CoM inequality of A is formulated in Lemma 1.

Lemma 1. Let x be a s-sparse vector in CN . For an arbitrary 0 < δ < 1, we have

P
(∣∣∣‖Ax‖2

2 − ‖x‖
2
2

∣∣∣ ≥ δ ‖x‖2
2

)
≤ 4 exp

(
− δξv2M

16χs

)
, (38)

where M is the number of sub-Nyquist measurements, χ denotes two settings of chipping sequences and is
defined as

χ =

{
1, independent chipping sequences,
Na, equal chipping sequences.

(39)

ξ is the duty cycle of radar transmitted signals, and v is the maximum value of the normalized antenna beam
pattern defined as

v=
wa (0) Ta√∫ Ta/2
−Ta/2 w2

a (η) dη
, (40)

where Ta is the antenna footprint time.

Proof. The proof is given in Appendix A.1.

Lemma 1 points out that, with independent measurements, the probabilistic tail bounds of
the CoM decays exponentially Na times faster than that with fixed measurements. Since the
CoM inequalities quantify how well a random matrix preserve the norm of a high-dimensional
signal in the mapped low-dimensional space [37], the independent measurements result in a better
distance-preserving property for the sensing matrix A, which is the essence of RIP.

Based on the CoM inequality in Lemma 1, we can derive a uniform tail bound of
∥∥A∗SAS − Is

∥∥
2

for a fixed subset S ⊂ [N] with card (S) = s using the covering number estimate [38]. Then, we take
the union bound over all subsets S ⊂ [N] of cardinality s, to derive the following RIP condition.

Theorem 1. The restricted isometry constant δs of the sensing matrix A satisfies δs < δ for some constant
0 < δ < 1 with probability exceeding 1− η provided that

M ≥ 32χs
δξv2

(
s ln

(
eN
s

)
+ 4s ln (3) + ln

(η

4

))
. (41)

Proof. The proof is given in Appendix A.2.

Theorem 1 gives the RIP condition on the sensing matrix A. The key parameters in (41) are M
and χ, which describe the measurement amount and the setting of chipping sequences, respectively.
If M (or equivalently, compression ratio) is properly chosen according to the sparsity s and the
imaged scene size N, the sensing matrix A will satisfy RIP with high probability in both settings of
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chipping sequences. However, the measurement amounts required by the two settings vary somewhat
surprisingly, up to a multiplicative factor Na. This variance suggests that the strategy of independent
measurements provides a diversity gain, which is similar to the waveform diversity gain in MIMO
radar. For a given imaged scene, the diversity gain results in lower sampling/data rates. On the other
hand, the parameters ξ and v are often fixed in a given SAR operation mode, and they suggest that the
duty cycle and the antenna beam pattern have a direct influence on the RIP. Intuitively, for smaller ξ or
v, each column of the basis D will be localized in smaller regions, which is bad for the sensing matrix.

Another benefit of the diversity gain is that, with the same number of measurements, the RIC is
expected to be much smaller, as stated in the following corollary.

Corollary 1. Let δs and γs be the s-order RICs of the sensing matrices for the setting of equal and independent
chipping sequences, respectively. For fixed M and η, the RICs satisfy δs < δ and γs < δ/Na simultaneously for
some constant 0 < δ < 1 with probability exceeding 1− η.

Replacing δs by δs/χ in Theorem 1 will prove the corollary. According to CS theory, smaller RIC
means smaller recovery error. Thus, independent measurements have better performance than fixed
measurements, as revealed by Theorem 2.

Theorem 2. For a fixed number of measurements M and a fixed probabilistic guarantee 1− η, let s1 and s2 be
the maximum integers that satisfy δ2s1 < δ# and γ2s2 < δ# with equal and independent chipping sequences,
respectively, where δ# =

√
2− 1. Let x#

1 and x#
2 be the solutions of the constrained BPDN problem

min
x
‖x‖1 subject to ‖Ax− ycs‖ ≤ ε (42)

in the two settings of chipping sequences (39), respectively, then∥∥∥x− x#
2

∥∥∥
2
≤ C1

σs2(x)1√
s2

+ C2ε

≈ C1
σ√Nas1

(x)1√√
Nas1

+ C2ε

< C1
σs1(x)√

s1
+ C2ε ,

(43)

where the last line is exactly the error bound of ‖x− x#
1‖2.

Proof. The proof is shown in Appendix A.3.

Theorem 2 makes a comparison between the recovery error bounds about the two settings of
chipping sequences. In (43), the error bound consists of two parts: one is the best s-term approximation
error and the other comes from the measurement noise. As shown in Appendix A.3, we have a
gain factor s2/s1 ≈

√
Na, which results in much lower best s-term approximation error as shown in

(43). Therefore, we can recover more sparse targets in the case of high signal-to-noise ratio (SNR).
For example, when Na = 4096, the gain factor will be 64. Thus, the stability of image recovery is
significantly improved provided that the scene is not reasonable sparse. When the SNR decreases,
the noisy contribution C2ε gradually dominates the error bounds, and consequently, the relative errors
get closer. Namely, the advantage of QuadCS with independent measurement is weakened in this case.
However, there is no doubt that x#

2 always has a smaller recovery error than x#
1. Note that we recover

images by solving (10) instead of (42). In fact, the two problems are equivalent. If x# is a minimizer
of the (42) with some ε > 0, there necessarily exists λ ≥ 0 such that x# is a minimizer of (10) [39,40].
It should be pointed out that ε is related to the noise level and the optimal choice of λ is related to x#

and ε. In this paper, we assume that the noise level is known for (42), and λ is empirically chosen in
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(10) according to the noise level. In real SAR applications, the noise level can be measured when no
SAR echo arrives at the radar receiver. In future works, we will consider how to deal with unknown
noise level adaptively.

In summary, the above theoretical analysis shows that, using independent measurements,
the proposed sampling system has smaller recovery error and enables lower sampling/data rate.
This conclusion is of great importance since our goal is to achieve low-rate sampling and meanwhile
provide robust recovery performance for sub-Nyquist SAR.

6. Simulations

In this section, we conduct several simulations to evaluate the proposed QuadCS-based SAR
imaging performance. Results on both synthetic data and real SAR data collected by TerraSAR-X
and RADARSAT-1 missions are presented. Comparisons are made between Xampling and QuadCS
with equal or independent chipping sequences. The relative error, ‖x− x#‖2/‖x‖2, and the relative
root-mean-square error (RRMSE), E

{
‖x− x#‖2/‖x‖2

}
, are used as the imaging performance metrics.

The simulation scheme is shown in Figure 3 and main radar parameters are summarized in
Table 1. Given a synthetic image, real SAR single-look complex (SLC) image (as shown in Figure 4) or
a raw data matrix, we use the operations (29) or (34) to generate sub-Nyquist measurements. Similar
methods for SAR raw data generation can be found in [41,42]. To model the measurement noise,
an additive white Gaussian noise (AWGN) is added. The regularization parameter and the maximum
number of iterations are empirically set to 10−3 and 200, respectively. For visualization, the recovered
images are mapped to grayscale images by the following map

xgray
i =

{
|xi|/τ, |xi| ≤ τ;
1, else,

(44)

where τ is a threshold for preventing the image from being almost black due to the presence of strong
scattering points. A default value provided by a SAR image processing toolbox (code “plotimage_sar.m”
in PPB toolbox [43]) is adopted in our simulations, which is given by the sum of mean and triple
standard deviation of the amplitude image. For ease of description, we refer to QuadCS-IndSeq and
QuadCS-EquSeq as QuadCS with independent and equal chipping sequences, respectively, and denote
the compression ratio M/N by α.
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Figure 3. Block diagram of simulations. We take synthetic, real images and real raw data as input
data, respectively. The simulated data output by QuadCS and Xampling are processed by a sparse
recovery algorithm.
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Table 1. Simulation parameters.

Parameter Value

Carrier frequency 5.3 GHz
Fast-time frequency bandwidth 30.11 MHz

Pulse width 41.74 µs
Pulse repetition frequency 1256.98 Hz

Effective radar velocity 7062 m/s
Slant range of scene center 150.1 km

(a) (b) (c)

Figure 4. Scenes of interest in simulations. (a) a synthetic image; (b) a real SAR SLC image, collected
by TerraSAR-X on 1 May 2008, and the imaged area is near the coast of Barcelona; (c) an SLC image
focused from RADARSAT-1 raw data and the red-framed area is the Tsawwassen Ferry Port.

6.1. Simulations with Synthetic Data

Firstly, we use some synthetic geometries as a SLC image, as shown in Figure 4a, to evaluate
the imaging performance. The compression ratio is set to 1/8 and 1/16, respectively, and the SNR
equals 10 dB. As shown in the first column of Figure 5, QuadCS-IndSeq recovers these geometries
very well, while QuadCS-EquSeq and Xampling cannot reconstruct horizontal lines clearly. Namely,
QuadCS-EquSeq and Xampling cannot recover images in range dimension because of low sampling
rate and the usage of fixed measurement matrix in each observation. At the smaller compression ratio
1/16, QuadCS-IndSeq can still recover all geometries with some performance loss, but QuadCS-EquSeq
and Xampling cannot reconstruct the geometries correctly. Obviously, the proposed sampling system
has the best performance.

Next, we investigate the relationship between RRMSE and the image sparsity under different
compressive ratios and SNRs. We choose random subsets of the test image and set its entries to be i.i.d.
random variables obeying uniform distribution on [0, 1]. The image recovery conducts 100 times and
the resulting RRMSE curves are shown in Figure 6. All the figures show that, as the sparsity increases,
the recovery errors of all sampling schemes increases. This can be explained by (4) that the best s-term
approximation error increases as the sparsity increases. On the other hand, the figures also show that
QuadCS-IndSeq has the lowest recovery error in all simulation cases. This is because QuadCS-IndSeq
has better RIP, as disclosed in Theorem 2. Furthermore, QuadCS is superior to Xampling in all cases,
no matter what the independent measurement strategy is utilized. The reason is that Xampling
conducts frequency-domain random sampling by several bandpass filters, so that the randomness
is not enough and thus the RIP of corresponding sensing matrix is not very well. Hence, QuadCS is
superior to Xampling for sub-Nyqusit SAR.
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Figure 5. Recovery of the synthetic image in 10 dB AWGN. From top to bottom: QuadCS
with independent chipping sequences (Quad-IndSeq), QuadCS with equal chipping sequences
(Quad-EquSeq), Xampling. From left to right: recovered images and corresponding residuals with
compression ratios 1/8 and 1/16. Range and azimuth are along the horizontal and vertical axes,
respectively. The relative errors ( measured in dB) of these images are shown at the lower left corners
of their residual images, respectively.

According to each row subfigures, we find that QuadCS-IndSeq has more performance advantages
in the high SNR case (SNR = 20 dB), since the RMMSE relies on the best s-term approximation
error in this case. Specifically, as seen from the middle left subfigure in Figure 6, where SNR is
20 dB and compression ratio is 1/16, when the sparsity is 13‰, the RRMSE of QuadCS-IndSeq is
about −14.2 dB, while those of QuadCS-EquSeq and Xampling are about −8.8 dB and −4.4 dB,
respectively. On the other hand, according to each column subfigure, we know that the image
recovery performance degrades faster with the lower compressive ratio, which is the inherent
characteristic of sub-Nyquist sampling systems. However, QuadCS-IndSeq still has the best image
recovery performance. In summary, our sampling system considerably improves the imaging
performance under relatively large sparsity and low sampling rate. However, with the decrease of SNR,
the recovery errors mainly come from the noise, as shown in (43); then, the improved performance is
gradually diluted.
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Figure 6. RRMSE vs. sparsity (averaged by 100 times). From top to bottom: compression ratios,
denoted by α, are 1/8, 1/16, and 1/32, respectively. From left to right: SNR = 20 dB, SNR = 10 dB and
SNR = 3 dB, respectively. We can see that QuadCS-IndSeq has the smallest RRMSE in all cases.

6.2. Simulations with Real SAR Data

Now, we use a real SLC image, shown in Figure 4b, to evaluate the proposed sampling system.
The image with size 2048× 2048 is collected by TerraSAR-X on 4 July 2008, which contains several
ships near the coast of Barcelona. For a clear display, we show 200 × 200 area of the recovered
images in Figure 7. We find that QuadCS-IndSeq has a smaller recovery error than QuadCS-EquSeq
and Xampling.

We also use RADARSAT-1 raw data collected on 16 June 2002 to evaluate the proposed system.
Imaging results using the raw data is shown in Figure 4c. Because the scene is not reasonably sparse,
we consider larger settings of compression ratios, namely, 1/4 and 1/8 , respectively. Figure 8 shows a
500× 500 area of the recovered images. As we noted in Section 1, the recovery error greatly depends
on the sparsity of the image. Due to lack of sparsity, the recovery errors are large for all simulated
schemes as shown in Figure 8. However, QuadCS-IndSeq still has the lowest recovery errors.
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Figure 7. Recovery of the TerraSAR-X SLC image. From top to bottom: QuadCS-IndSeq, QuadCS-EquSeq,
Xampling. From left to right: recovered images and corresponding residuals with compression ratios 1/8
and 1/16. Range and azimuth are along the horizontal and vertical axes, respectively. The relative errors
for these images are shown at the lower left corners of their residual images, respectively. For the sparse
scene, QuadCS-IndSeq achieves−5.7 dB even at the compression ratio 1/16.
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Figure 8. Recovery of the RADARSAR-1 image. From top to bottom: QuadCS-IndSeq, QuadCS-EquSeq,
Xampling. From left to right: recovered images and corresponding residuals with compression ratios
1/4 and 1/8. Range and azimuth are along the horizontal and vertical axes, respectively. The relative
errors for these images are shown at the lower left corners of their residual images, respectively. Due to
lack of scene sparsity, all of the simulated systems cannot provide satisfactory performances.

7. Conclusions

In this paper, we presented an efficient sampling system for sub-Nyquist acquisition of SAR data.
The proposed system is based on the QuadCS, which is easy to insert randomness into the sensing
matrix. With independent measurements in each observation, our system has more randomness than
that with fixed measurements in all observations, and thus the corresponding sensing matrix has better
image recovery performance. Based on the RIP analysis, we showed that the proposed system has
smaller RIC, which can lead to lower sampling/data rate and smaller recover error.

Next, we provided a fast image formation method. Through the frequency-domain representation,
we found that the sensing matrix is a block and Toeplitz matrix and its matrix-vector products can be
decomposed into several fast operators. In virtue of matrix decomposition, we established a first-order
fast SAR imaging algorithm, whose storage and computational complexity are much less than that of
the off-the-shelf recovery methods. By using both synthetic data and real data, we made comparisons
among QuadCS with independent measurements, QuadCS with fixed measurements, and Xampling.
Numerical results showed that the QuadCS with independent measurements achieves much better
image qualities than the other simulated schemes.
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Abbreviations

The following abbreviations are used in this manuscript:

SAR Synthetic aperture radar
RIP Restricted isometry property
CS Compressive sensing
ADC Analog-to-digital converter
MLFSR Maximal-length linear feedback shift register
FFT Fast Fourier transform
PRI Pulse repetition interval
CSA Chirp scaling algorithm
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IF Intermediate frequency
DFT Discrete Fourier transform
FISTA Fast iterative shrinkage-thresholding algorithm
BPDN Basis pursuit denoising
RRMSE Relative root-mean-square error

Appendix A

Appendix A.1

We use the tail bound on Lipschitz functions of i.i.d. random variables to derive the
CoM inequality.

Firstly, we describe ‖Ax‖2 as a Lipschitz function. Let us decompose the vector θl in (27)
as follows:

θl = FLρl = FLS1FLpl = Jpl , (A1)

where pl is the discrete binary samples of pl (t), S1 circularly shifts the elements of FLpl from top to
bottom by one position, and J = FLS1FL. In (A1), the Fourier coefficient ρl is represented by the DFT of
the length-L sequence pl . The decomposition (A1) is to represent θl by the random Bernoulli sequence
pl . Let us define

U = F∗L∆aFrY, (A2)

we can rewrite (29) as

Ycs =

√
L

Mr
F∗m∆rFL (Θ ◦U) . (A3)

Define a matrix

Γ =

√
L

Mr
(INa ⊗ F∗m∆rFL)diag (Θ) , (A4)

and denote u = vec (U); then, (A3) can be written in a matrix-vector multiplication form as

ycs = Ax = Γu, (A5)

where u = (INa ⊗ F∗L∆aFr)Dx. In the following, we replace ‖Ax‖2 by ‖Γu‖2 for the convenience of
proof. With the equivalence between (A3) and (A5), ‖Γu‖2

2 can be represented as

‖Γu‖2
2 =

L
Mr
‖F∗m∆rFL (Θ ◦U)‖2

F

=
L

Mr
∑

l
‖F∗m∆rFLdiag (ul) θl‖2

2

=
L

Mr
∑

l
‖F∗m∆rFLdiag (ul) F∗LFLJpl‖2

2

=
L

Mr

∥∥∥∆̂RF̂L Ĵp
∥∥∥2

2
,

(A6)

where
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p = vec(P), (A7)

∆̂ = INa ⊗ ∆r, (A8)

F̂L = INa ⊗ FL, (A9)

Ĵ = INa ⊗ J, (A10)

R = diag (FLdiag (u1) F∗L, · · · , FLdiag (uNa) F∗L)

= F̂Ldiag (U) F̂∗L.
(A11)

P = [p1, p2, · · · , pNa ], and ul is the l-th column of U.
Let us define a function as

f (p) = ‖Γu‖2 =

√
L

Mr

∥∥∥∆̂RF̂L Ĵp
∥∥∥

2
. (A12)

For a fixed vector u, we prove that f (p) is a Lipschitz function of the random vector p or its
matrix form P. Let pI and pII be two independent copies of p, and we have∣∣∣ f (pI

)
− f

(
pII
)∣∣∣

=

√
L

Mr

∣∣∣∥∥∥∆̂RF̂L ĴpI
∥∥∥

2
−
∥∥∥∆̂rRF̂L ĴpII

∥∥∥
2

∣∣∣
≤

√
L

Mr

∥∥∥∆̂RF̂L Ĵ
(

pI − pII
)∥∥∥

2

≤

√
L

Mr

∥∥∥∆̂R
∥∥∥

2

∥∥∥F̂L Ĵ
∥∥∥

2

∥∥∥(pI − pII
)∥∥∥

2

=

√
L

Mr

∥∥∥∆̂R
∥∥∥

2

∥∥∥(pI − pII
)∥∥∥

2
.

(A13)

It can be seen that ∆̂R is a submatrix of R, so√
L

Mr

∥∥∥∆̂R
∥∥∥

2
≤

√
L

Mr
‖R‖2 =

√
L

Mr
‖u‖∞ := σ. (A14)

Hence, f (p) is a σ-Lipschitz function of p.
Secondly, we use the Talagrand concentration inequality (Theorem 2.1.13 of [44]), which is included

below for completeness, to derive the CoM inequality of ‖Ax‖2.

Lemma A1. Let β > 0, and let ζ = [ζ1, · · · , ζn] be a variable with independent entries |ζi| ≤ β for all
1 ≤ i ≤ n. Let f : Cn → R be a σ-Lipschitz convex function. Then, for any δ, one has

P {| f (ζ)−E f (ζ)| ≥ δ} ≤ C3exp
(
−C4δ2

σ2β2

)
, (A15)

for some universal positive constants C3, C4, where E f (ζ) is the expectation of f (ζ). In [45], available values
for the constants are given by C3 = 4, C4 = 1/16.
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In the setting of independent chipping sequences, p has i.i.d. ±1 Bernoulli entries. It can be seen
from (A1) that θl also has i.i.d entries. Observing (A4), we find that E{Γ∗Γ} = I. Without loss of
generality, let us assume ‖u‖2 = 1. Then, we have

E
{
‖Γu‖2

2

}
= ‖u‖2

2 = 1. (A16)

According to (A15),

P {| f (p)−E { f (p)}| ≥ δ} ≤ 4 exp
(
− δ2

16σ2

)
. (A17)

Since f (p) = ‖Γu‖2, we have

P {|‖Γu‖2 − 1| ≥ δ} ≤ 4 exp
(
− δ2

16σ2

)
. (A18)

As |‖Γu‖2 − 1| >
√

δ is sufficient to establish
∣∣∣‖Γu‖2

2 − 1
∣∣∣ > δ, we have

P
{∣∣∣‖Γu‖2

2 − 1
∣∣∣ ≥ δ

}
≤ 4 exp

(
− δ

16σ2

)
. (A19)

Now, for an arbitrary vector u, we have

P
{∣∣∣‖Γu‖2

2 − ‖u‖
2
2

∣∣∣ ≥ δ ‖u‖2
2

}
≤ 4 exp

(
− δ

16σ2

)
, (A20)

with

σ =

√
L

Mr

‖u‖∞
‖u‖2

. (A21)

In the setting of equal chipping sequences, each sequence pl has i.i.d. Bernoulli entries but pl ,
l ∈ [Na] are equal, i.e., P has identical columns,

P = [p1, p1, · · · , p1] . (A22)

Let pI
1 and pII

1 be the first columns of two independent copies PI and PII, respectively,
and pI = vec(PI), pII = vec(PII), then we have

∥∥pI − pII
∥∥

2 =
√

Na
∥∥pI

1 − pII
1

∥∥
2. We therefore have

∣∣∣ f (pI)− f (pII)
∣∣∣ ≤

√
L

Mr

∥∥∥∆̂R
∥∥∥

2

∥∥∥(pI − pII)
∥∥∥

2

=

√
NaL
Mr

∥∥∥∆̂R
∥∥∥

2

∥∥∥(pI
1 − pII

1 )
∥∥∥

2
,

(A23)

so f (p) is a
√

Naσ-Lipschitz function of p1. Following the same process from (A16) to (A20), we have

P
{∣∣∣‖Γu‖2

2 − ‖u‖
2
2

∣∣∣ ≥ δ ‖u‖2
2

}
≤ 4 exp

(
− δ

16σ2Na

)
. (A24)

Next, we derive the upper bound of σ for s-sparse vectors x. Let us define

K = (INa ⊗ F∗L∆aFr)D, (A25)

such that u = Kx. The upper bound of σ depends on the maximum amplitude of all entries in K, i.e.,
maxi,j |(K)i,j|.
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It is easy to know that (INa ⊗ F∗L∆aFr) in (A25) performs Fourier transform, zero-padding,
and inverse Fourier transform in range dimension. According to the principle of stationary phase
(POSP) [35], each column of K has the same envelope as the corresponding atom in D. Actually, K is
the resample of D at a higher rate followed by normalization. Thus, we have

max
i,j

∣∣∣(K)i,j

∣∣∣ = √Nr

L
max

i,j

∣∣∣(D)i,j

∣∣∣ . (A26)

Based on this consideration, we now determine maxi,j |(K)i,j| by analyzing D.
Let us denote the n-th column of D by the vector dn, and reshape dn into an Na-column matrix Dn.

As seen from (6), in range domain, each column of Dn is a LFM signal, while, in an azimuth domain,
the echo data is weighted by the antenna beam pattern. Since D is a unitary matrix, ‖Dn‖F = 1. Now,
we determine the maximum amplitude of all entries in Dn. With an ideal beam pattern, i.e., wa(η) = 1,
the amplitudes of all non-zero entries in Dn are

√
1/(ξN). In a practical case, the antenna beam

pattern will bring a weight into the non-zero amplitudes as w̃a(lT− ηn)
√

1/(ξN), where the weight is

w̃a(lT − ηn)=
wa(lT − ηn)Ta√∫ Ta/2
−Ta/2 w2

a (η) dη
. (A27)

Since the above discussion holds for all n columns, we have

max
i,j

∣∣∣(D)i,j

∣∣∣ = max
n,i,j

∣∣∣(Dn)i,j

∣∣∣ = v√
ξN

, (A28)

where v = w̃a(0). According to (A26) and (A28), we have

max
i,j

∣∣∣(K)i, j

∣∣∣ = v

√
Nr

ξNL
. (A29)

Let x be a s-sparse vector. Recalling the definition of σ in (A21), we have

σ =

√
L

Mr

‖u‖∞
‖u‖2

=

√
L

Mr

‖Kx‖∞
‖x‖2

≤

√
L

Mr
sup

‖x‖2=1, |supp(x)|≥s
‖Kx‖∞

≤

√
L

Mr
max

i,j

∣∣∣(K)i,j

∣∣∣√s ≤
√

s
v2ξM

.

(A30)

Finally, because ‖Ax‖2
2 = ‖Γu‖2

2 and ‖u‖2 = ‖x‖2, by combining (A20), (A24) and (A30), we have

P
(∣∣∣‖Ax‖2

2 − ‖x‖
2
2

∣∣∣ ≥ δ ‖x‖2
2

)
≤ 4 exp

(
− δξv2M

16χs

)
, (A31)

where χ denotes the two settings of chipping sequences as given in (39). The proof is completed.

Appendix A.2

Our proof below is rooted in Chapter 6 of [38]. However, some essential modifications are
necessary so as to adapt the results to our case.

Firstly, we derive a uniform bound for a fixed subset. Let S ⊂ [N] be a subset of
cardinality s. According to Proposition C3 in [38] which gives a bound of covering numbers of
unit ball, for ρ ∈ (0, 1/2), there exists finite subsets {Zi|i = 1, 2, · · · , card (Z)} of the unit ball
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BS =
{

x ∈ CN , supp (x) ⊂ S, ‖x‖2 ≤ 1
}

, which satisfies card (Z) ≤ (1 + 1/ρ)2s and
minz∈Z ‖x− z‖2 ≤ ρ, for all x ∈ BS. Let us choose one element from each subset Zi, i.e., zi ∈ Zi for
i = 1, 2, · · · , card (Z). According to Lemma 1, the concentration inequality gives for t ∈ (0, 1),

P
{
∃zi,

∣∣∣‖Azi‖2
2 − ‖zi‖2

2

∣∣∣ ≥ t ‖zi‖2
2

}
≤

card(Z)

∑
i=1

P
{∣∣∣‖Azi‖2

2 − ‖zi‖2
2

∣∣∣ ≥ t ‖zi‖2
2

}
≤ 4 card (Z) exp

(
− tξv2M

16χs

)
≤ 4

(
1 +

2
ρ

)2s
exp

(
− tξv2M

16χs

)
.

(A32)

Assume that the realization of the random matrix A yields∣∣∣‖Azi‖2
2 − ‖zi‖2

2

∣∣∣ ≤ t ‖zi‖2
2 , for all zi. (A33)

From (A32), this occurs with probability exceeding

1− 4
(

1 +
2
ρ

)2s
exp

(
− tξv2M

16χs

)
. (A34)

For a proper choice of ρ, t and δ, we prove that (A34) implies
∣∣∣‖Ax‖2

2 − ‖x‖
2
2

∣∣∣ ≤ δ for all x ∈ BS,

i.e.,
∥∥A∗SAS − Is

∥∥
2 ≤ δ. For simplicity, denote Q = A∗SAS − Is. Now, for any x ∈ BS, there exists a

vector z ∈ {zi|i = 1, · · · , card (Z)} satisfying ‖x− z‖2 ≤ ρ ≤ 1/2. It then follows that

|〈Qx, x〉| = |〈Qz, z〉+ 〈Q(x− z), x + z〉|
≤ |〈Qz, z〉|+ |〈Q(x + z), x− z〉|
< t + ‖Q‖2‖x + z‖2‖x− z‖2

≤ t + 2ρ‖Q‖2.

(A35)

Taking the maximum over all x ∈ BS gives

‖Q‖2 < t + 2ρ‖Q‖2, (A36)

and hence
‖Q‖2 ≤

t
1− 2ρ

. (A37)

Let us choose t = (1− 2ρ)δ, such that ‖Q‖2 < δ. According to (A34), we have

P
(
‖A∗SAS − Is‖2 ≥ δ

)
≤ 4

(
1 +

2
ρ

)2s
exp

(
− (1− 2ρ)δξv2M

16χs

)
.

(A38)

Next, we derive the RIP condition. Since δs can be equivalently described as
δs = supS⊂[N], card(S)=s

∥∥A∗SAS − Is
∥∥

2 [38], taking the union bound over all (N
s ) subsets S gives
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P (δs ≥ δ)

≤ ∑
S⊂[N], card(S)=s

P
(
‖A∗SAS − Is‖2 ≥ δ

)
≤ 4

(
N
s

)(
1 +

2
ρ

)2s
exp

(
− (1− 2ρ)δξv2M

16χs

)
≤ 4

(
eN
s

)s(
1 +

2
ρ

)2s
exp

(
− (1− 2ρ)δξv2M

16χs

)
.

(A39)

Then, we have

P {δs < δ}

> 1− 4
(

eN
s

)s(
1 +

2
ρ

)2s
exp

(
− (1− 2ρ)δξv2M

16χs

)
.

(A40)

Suppose

1− 4
(

eN
s

)s(
1 +

2
ρ

)2s
exp

(
− (1− 2ρ)δξv2M

16χs

)
≥ 1− η (A41)

for some η, and set ρ = 1/4, and then we have

M ≥ 32χs
δξv2

(
s ln

(
eN
s

)
+ 4s ln (3) + ln

(η

4

))
. (A42)

The proof is completed.

Appendix A.3

The choice of δ#=
√

2− 1 for establishing recovery error bounds in (43) refers to [46]. Under the
condition in Proposition 1, M, η, v, δ# and N are fixed constants. Then, according to Theorem 1,
we have

M = C5Na

(
s2

1 (C6 − ln (s1)) + C7s1

)
, (A43)

M = C5

(
s2

2 (C6 − ln (s2)) + C7s2

)
, (A44)

where C5 = 32(δ#)
−1

ξ−1v−2, C6 = ln (eN) + 4 ln(3) and C7 = ln (η)− 2 ln (2) are constants. Dividing
(A43) by (A44) gives

s2
1 (C6 − ln (s1)) + C7s1

s2
2 (C6 − ln (s2)) + C7s2

=
1

Na
. (A45)

In (A45), with relatively large s, the linear terms C7s1 and C7s2 can be ignored, and since ln (s1),
ln (s2)� C6, they also can be ignored, so we only need to keep the quadratic terms, C6s2

1 and C6s2
2, i.e.,

s2
1

s2
2
≈ 1

Na
, (A46)

which gives s2 ≈
√

Nas1. Finally, inserting this result into (4) completes the proof.
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