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Abstract: In 2013, the Committee on Earth Observation Satellites (CEOS) Working Group on
Calibration and Validation (WGCV) Infrared and Visible Optical Sensors Subgroup (IVOS) established
the Radiometric Calibration Network (RadCalNet), consisting of four international test sites providing
automated in situ measurements and estimates of propagated top-of-atmosphere (TOA) reflectance.
This work evaluates the ‘reliability’ of RadCalNet TOA reflectance data at three of these sites—RVUS,
LCFR, and GONA—using Landsat 7 ETM+, Landsat 8 operational land imager (OLI), and Sentinel
2A/2B (S2A/S2B) MSI TOA reflectance data. This work identified a viewing angle effect in the MSI
data at the RVUS and LCFR sites; when corrected, the overall standard deviation in relative reflectance
differences decreased by approximately 2% and 0.5% at the RVUS and LCFR sites, respectively.
Overall, the relative mean differences between the RadCalNet surface data and sensor data for the
RVUS and GONA sites are within 5% for ETM+, OLI, and S2A MSI, with an approximately 2% higher
difference in the S2B MSI data at the RVUS site. The LCFR site is different from the other two sites,
with relative mean differences ranging from approximately -10% to 1%, even after performing the
viewing angle effect correction on the MSI data. The data from RadCalNet are easy to acquire and use.
More effort is needed to better understand the behavior at LCFR. One significant improvement on the
accuracy of the RadCalNet data might be the development of a site-specific BRDF characterization
and correction.
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1. Introduction

The increasing number of Earth observing satellite sensors requires accurate SI-traceable
radiometric calibrations to ensure data consistency between them. On-orbit calibration approaches can
vary by sensor, operating agency, and available resources. While field campaigns are a proven method
for sensor vicarious calibration and validation, they can be costly and labor-intensive for any agency
actively supporting them [1]. The Committee on Earth Observation Satellites Working Group on
Calibration and Validation (CEOS-WGCV) established a working group to coordinate development of
the Radiometric Calibration Network (RadCalNet) for performing automated radiometric calibration
using member provided resources. RadCalNet currently contains four sites located in the continental
United State, France, China, and Namibia; these sites use automated in situ systems to increase the
number of sensor overpass dates with corresponding ground truth data. The automated measurements
include surface reflectance and atmospheric measurements acquired every 30 minutes between 09:00
and 15:00 local time. Nadir-viewing sensors with 10 nm spectral resolution acquire the surface
reflectance measurements at wavelengths between 400 and 2500 nm. Surface barometric pressure,
columnar water vapor, columnar ozone, aerosol optical depth at 550 nm, and Angstrom coefficient
measurements serve as inputs to a Radiative Transfer Model (RTM) that predicts the corresponding
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nadir-view top-of-atmosphere (TOA) reflectance. The RadCalNet data are available through the
RadCalNet portal [2].

The purpose of this study was to assess the accuracy of the RadCalNet data with respect
to the Landsat 7 ETM+, Landsat 8 operational land imager (OLI), and Sentinel 2A/2B MSI TOA
measurements. Three of the sites (the Railroad Valley Playa in the US (RVUS), the LaCrau site in France
(LCFR), and the Gobabeb (GONA) site in Namibia) were considered. The 48 m × 48 m total spatial
extent of the Baotou site in China (BTCN) was not large enough to avoid edge effects given the spatial
resolution of the sensors studied in this work (30 m for ETM+ and OLI, 10~60 m for MSI), and was not
considered further.

2. RadCalNet Site and Sensor Overview

2.1. RadCalNet Site Overview

2.1.1. Railroad Valley Playa

Railroad Valley Playa (RVUS) is currently maintained and operated by the University of Arizona
(UoA) Remote Sensing Group (RSG). It also hosts an earlier RSG-developed automated network
known as the Radiometric Calibration Test Site (RadCaTS) [3]. The instruments used to determine the
surface reflectance are multispectral ground-viewing radiometers (GVRs), which were developed by
the Remote Sensing Group at the UoA [4]. The RadCalNet TOA reflectance spectra are representative
of a square 1 km × 1 km area centered at latitude 38.497◦ N and longitude 115.690◦ W, as shown by
the yellow square in Figure 1a [4,5]. RVUS, located in Nevada, is a spatially homogenous section of
dry lakebed, consisting of compacted clay-rich lacustrine deposits forming a relatively smooth surface,
as seen in Figure 1b.
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Figure 1. (a) A 2017-07-04 operational land imager (OLI) image of RVUS and its surface measurement 

region (yellow square). (b) The site view of Railroad Valley [3]. 

Figure 2a,b shows the measured surface (bottom of atmosphere (BOA)) reflectance at RVUS on 

2015-07-15 and the associated uncertainties that are produced by the RadCalNet technical working 

group. The apparent change in reflectance throughout the day suggests a BRDF effect due to the 

changing position of the sun over time. Since BRDF effects come from variation in solar illumination 

and view geometries, on-orbit sensors acquiring data at off-nadir viewing angles should correct for 

them.  

Figure 1. (a) A 2017-07-04 operational land imager (OLI) image of RVUS and its surface measurement
region (yellow square). (b) The site view of Railroad Valley [3].

Figure 2a,b shows the measured surface (bottom of atmosphere (BOA)) reflectance at RVUS on
2015-07-15 and the associated uncertainties that are produced by the RadCalNet technical working
group. The apparent change in reflectance throughout the day suggests a BRDF effect due to the
changing position of the sun over time. Since BRDF effects come from variation in solar illumination
and view geometries, on-orbit sensors acquiring data at off-nadir viewing angles should correct
for them.
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Figure 2. (a) Measured surface reflectance acquired every 30 minutes between 09:00 and 15:00 local
time at RVUS on 2015-07-15 and (b) the associated uncertainties.

Figure 3a,b shows the TOA reflectance measured for cloud-free ETM+ overpasses between 2013
and 2018 at ~10:20 local standard time (~18:20 UTC) as well as the associated uncertainties that are
produced by the RadCalNet technical working group. It can be seen in Figure 3a that the variation
in measured TOA reflectance during this period is approximately 10% in the nonabsorption band
regions, indicating that TOA reflectances vary with solar zenith angle. The associated uncertainties
are consistently within 3% to 4%, indicating relative consistency in TOA reflectance measurements at
this site.

2.1.2. La Crau (LCFR)

LCFR is located within the Reserve Naturelle des Coussouls de Crau Regional Park in France.
The Centre National d’Etudes Spatiales (CNES) currently maintains and operates the instruments
deployed at the site. The instruments used to determine the surface reflectance is Analytic Spectral
Devices (ASD) FIELDSPEC-4 spectroradiometer mounted on a tripod with Spectralon panel as a
reference [6]. The TOA reflectance spectra are representative of a disk of 30 m radius centered at
latitude 43.552◦ N and longitude 4. 854◦ W, within a 1 km × 1 km area represented by the red square
in Figure 4a [6]. Figure 4b shows a surface view of the site, which consists primarily of thin, pebbly soil
with sparse vegetative cover.
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Figure 4. (a) 2017-04-20 OLI image of LCFR and its surface measurement region (red square). (b) Typical
LCFR surface cover at the beginning of summer [5].
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Figure 5a,b shows the surface reflectance measurements at LCFR acquired on 2015-06-02 and the
associated uncertainties that are produced by the RadCalNet technical working group. Measurements
from the atmospheric absorption wavelength ranges from 1820 nm to 2040 nm and 2410 nm to 2500 nm
were removed due to excessive noise in the data. The ground measured reflectance changes as much
as ~5% through the day due to changing solar illumination, suggesting again that BRDF effects
are significant.
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Figure 5. (a) Measured surface reflectance acquired every 30 minutes between 09:00 and 15:00 local
time at LCFR on 2015-06-02 and (b) the associated uncertainties.

Figure 6a,b shows the TOA reflectance spectra for all cloud-free ETM+ overpasses at LCFR
between 2015 and 2018 at ~10:20 local standard time (~10:20 UTC) as well as the associated uncertainties
that are produced by the RadCalNet technical working group. Even though the acquisition period is
shorter than that for RVUS, it is clearly seen in Figure 6a that the variation in TOA reflectance during
this period is as high as 20% in the nonabsorption band regions. The corresponding uncertainties
vary between approximately 2% and 6%, indicating that TOA reflectance at LCFR is less stable than at
RVUS. This is not surprising, given that LCFR is a (minimally) vegetated site and RVUS is not.
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Figure 6. (a) LCFR TOA reflectances derived from cloud-free ETM+ overpasses, 2015–2018; (b) the
associated uncertainty.

2.1.3. Gobabeb (GONA)

GONA is located near the Gobabeb Research and Training Centre in Namibia and is established
as a joint European Space Agency (ESA) and CNES site, with the instruments maintained and operated
by the National Physical Laboratory (NPL) in the UK on behalf of ESA. The instruments used to
determine the surface reflectance is ASD spectroradiometer mounted on a tripod with Spectralon panel
as a reference [7]. The TOA reflectance spectra are representative of a disk of 30 m radius centered
at latitude 23.612◦ S and longitude 15.120◦ E, within a 1 km × 1 km area represented by the yellow
square shown in Figure 7a [7]. The corresponding surface cover consists primarily of sand and gravel
with some widely scattered dry grass, as seen in Figure 7b.

Figure 8a,b show measured surface reflectance at nadir view for GONA on 2017-08-08 and the
associated uncertainties that are produced by the RadCalNet technical working group. Measurements
from the absorption wavelength regions from 1820 nm to 1910 nm and 2300 nm to 2500 nm were
excluded from the plot due to excessive noise in the data. The surface reflectance variation throughout
the day is minimal, suggesting there are minimal or no BRDF effects needing correction.
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Figure 9a,b show TOA reflectance spectra for all cloud-free ETM+ overpasses of GONA from 2017
to 2018 at ~10:59 local standard time (~08:59 UTC) and the associated uncertainties that are produced
by the RadCalNet technical working group. As with RVUS, the variation in TOA reflectance is within
10% during the acquisition period. The corresponding uncertainties are approximately 3% to 4%,
indicating that reflectance measurements at GONA are relatively consistent.
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2.2. Sensor Overview

Table 1 provides the relevant background information for each sensor used in this study.
Also included in the table are the equations used to convert the provided image data from calibrated
DN values to TOA reflectance.
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Table 1. Sensor overview.

Satellite and Sensor

Landsat 7 ETM+ Landsat 8 OLI S2A MSI S2B MSI
Launch date 1999-04-15 2013-02-11 2015-06-13 2017-03-07
Spectral bands (used in
this study) 7 (7) 9 (8) 13 (11) 13 (11)

Pixel size (m) 30 30 10, 20, 60 10, 20, 60
Conversion to TOA
reflectance equation * ρλ =

(Mρ×DN+Aρ)×d2

cos(θSZA)
[8] ρλ = DC/10000 [9]

* Mρ is a band-specific multiplicative rescaling factor, Aρ is a band-specific additive rescaling factor, d is Earth–Sun
distance in astronomical units, θSZA is the solar zenith angle for each pixel in the processed ROI, DN is the (calibrated)
pixel digital values, DC is the (calibrated) pixel digital count, and ρλ is the final TOA reflectance. A metadata file
included with the ETM+ and OLI image data products provides specific values for the rescaling factors.

3. Methodology

This section describes the methodology used to conduct the study. Most of the processing steps
are straightforward and require minimal description.

3.1. Data Selection

Each sensor’s imaging schedule was checked against the dates when RadCalNet data
measurements were acquired. Overpass dates were selected when the site was imaged by a sensor of
interest and RadCalNet acquired the corresponding surface measurements. The selected image datasets
were downloaded from the sensor operator; ETM+, OLI, and MSI image data were downloaded
through the US Geological Survey (USGS) EarthExplorer portal. All downloaded image data products
were preprocessed by the sensor operator’s ground processing system with full radiometric correction
and precision geometric registration/correction.

3.2. Cloud and Cloud Shadow Filtering

To screen out cloud effects, the maximum allowed cloud cover for the scenes retrieved from
Earth Explorer was set at 10%. As cloud shadows may not be readily identified in the filtering, all
downloaded images of the RadCalNet sites were visually inspected to ensure only cloud-free and
shadow-free image data were used.

3.3. Image ROI Reflectance Extraction

Given the spatial resolution of the sensors and the representative region of the RadCalNet TOA
reflectances, 30 pixel × 30 pixel (~1 km × 1 km) regions of interest (ROI) were selected for RVUS and
3 pixel × 3 pixel (~100 m × 100 m) ROI were selected for LCFR and GONA; these were centered at
the representative region’s latitude/longitude coordinates given in Section 2. The cloud-free pixels
from these ROIs were selected, then converted to TOA reflectances using the transformation equations
provided in Table 1.

3.4. Image View Angle Effect Corrections

The RVUS, LCFR, and GONA sites are located in the ETM+ and OLI scene centers and the sensor
zenith angles are no more than 0.1◦; for these sensors, BRDF effects due to the view angle could
be considered insignificant. However, for the MSI sensors, the RVUS and LCFR sites are located in
overlapping orbital swaths (Figure 10), thus requiring application of a viewing angle effect correction.
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The arrows indicate the sensor viewing direction.

A simple series of steps was performed to correct the viewing angle effect [10]. First, to obtain the
correction coefficients aλ and bλ, a linear regression was performed on the observed TOA reflectances
versus the variable x:

ρMSI
i,λ = aλ × x + bλ, (1)

where ρMSI
i,λ is the MSI TOA reflectance on date i measured for band λ, and the variable x is defined

as follows
x = sin θz cos θa, (2)

where θz and θa are the sensor viewing zenith and viewing azimuth angles, respectively. A “reference”
TOA reflectance ρr

λ was then estimated from the mean reflectance of band λ across all dates. Finally,
the corrected reflectance ρc

i,λ was calculated as the ratio of the observed and regression-predicted TOA
reflectances scaled by the “reference” reflectance:

ρc
i,λ =

ρr
λ × ρMSI

i,λ

aλ × x + bλ
, (3)

Note that in order to compare the effectiveness of this viewing angle effect correction method for
MSI sensors, a set of results were made without that correction as described in Sections 4.1 and 4.2,
and then this method was applied to the measurements.

3.5. RadCalNet Reflectance Extraction

First, the TOA reflectance data from each RadCalNet site were extracted. Second, the extracted
spectra were linearly interpolated to estimate the TOA reflectance at the sensor overpass times. Third,
interpolated the relative spectral response of the sensors from 1 nm to 10 nm to match the spectral
resolution of RadCalNet spectral data. Lastly, the RadCalNet spectral measurements were normalized
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to the corresponding multispectral value for the sensor of interest in order to allow direct comparison
to the sensor-measured TOA reflectance:

ρRCN =

λ2
∑
λ1

ρH
λ × SRFλ

λ2
∑
λ1

SRFλ

, (4)

where ρH
λ is the RadCalNet TOA spectral reflectance, SRFλ is the relative spectral response function

of the sensor, and λ1 and λ2 define the band of interest with 10 nm steps. ρRCN is the integrated
equivalent reflectance of the RadCalNet-predicted TOA reflectance in the specific sensor band.

3.6. Reflectance difference Analysis

In this study, both the relative TOA reflectance difference and the standard deviation of the
difference were used as an index to evaluate the reliability of the RadCalNet sites. The relative
difference (as a percentage) was calculated as

∆ρ% =
ρS − ρRCN

ρRCN
× 100% (5)

where ρS is the sensor-measured TOA reflectance, ρRCN is the corresponding RadCalNet-predicted
TOA reflectance, and ∆ρ% is the relative difference in TOA reflectance.

From the processing procedure described above, a time series of relative TOA reflectance
difference data points were generated for each RadCalNet site. To quantitatively indicate the variation
of the results for comparisons between the sites, the TOA reflectance difference standard deviation
was calculated as follows

σ =

√
1

n − 1

n

∑
k=1

(
∆ρk − ∆ρ

)2 (6)

where σ is the TOA reflectance difference uncertainty of the site and n is the number of overpass events
at each site.

3.7. TOA Reflectance Comparison Uncertaity Analysis

To quantitatively indicate the comparison results among the sites, the TOA reflectance comparison
uncertainties were performed considering five sources of uncertainties associated (i) uncertainty from
the RadCalNet predicted reflectance, (ii) uncertainty from spectral response function, (iii) uncertainty
from temporal linear interpolation, (iv) uncertainty from spectral interpolation, and (v) sensor
calibration uncertainties, which are approximately 5%, 3%, and 4% for ETM+, OLI, and both MSIs,
respectively, as reported in Chander, G., etc., Mishra, N., etc., and Czapla-Myers, J., etc. [11–13].
To calculate the total uncertainty, first, uncertainties (i) and (ii) were propagated through Equation (4)
using a Monte Carlo simulation method [14], assuming spectral correlation matrix (correlation between
the wavelengths) values were decreasing in the subdiagonal, adjacent to the main diagonal, ranging
from 0.9 to 0.1, with an interval of 0.1; the remaining correlation value used to fill up the matrix was
0.05 (the correlation in the main diagonal equal to 1). Second, for the uncertainty associated with
temporal linear interpolation, is was assumed that the RadCalNet predicted values before and after
the sensor over pass time are the variation limitations of the temporal interpolated TOA reflectance,
then the reflectance error between before/after values and the interpolated values are calculated,
the larger absolute error was indicated as the uncertainty associated with temporal interpolation.
Third, the spectral resolution uncertainty has been assumed as 0.25% for all bands based on previous
work [15]. Last, assuming independence among the uncertainty sources (except (i) and (ii)), the final
uncertainties were calculated.
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4. Results

4.1. Comparison of RVUS Results

Figure 11a–d shows scatterplots of the RadCalNet predicted TOA reflectances and the
corresponding sensor-measured TOA reflectances. The error bars in each figure represent the overall
uncertainty of each data point that discussed in Section 3.7. The blue line in each figure is a standard
1:1 line.Remote Sens. 2019, 10, x FOR PEER REVIEW  13 of 28 
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Figure 11. Scatterplots of RVUS RadCalNet predicted and measured TOA reflectances for (a) ETM+,
(b) OLI, (c) S2A MSI, and (d) S2B MSI.

In general, the 1:1 lines for ETM+ and OLI fall within the estimated uncertainty range in all
bands for most of the data points. However, the lines tend to lie at the lower ends of the range at
shorter wavelengths and at the upper end of the range at longer wavelengths. For the MSI sensors,
two states can be observed in the data: (i) a net offset above the 1:1 line in the water band (indicating
the RadCalNet-predicted TOA reflectance is greater than the value measured by the sensor) and (ii) a
net offset below the 1:1 line in the SWIR bands (indicating that the sensor-measured TOA reflectance is
greater than the RadCalNet-predicted value). The overall scatter of the data about the 1:1 line appears
to be more pronounced in the S2B MSI data, part of this reason may be due to the reduced amount of
data relative to the other sensors; the general pattern in its data is consistent with that observed for
S2A MSI.

Figures 12–15 show the relative TOA reflectance difference results between RadCalNet and ETM+,
OLI, S2A MSI, and S2B MSI, respectively, without viewing angle correction. In general, the relative
differences for ETM+, OLI, and S2A MSI are within ±10%; for the S2A MSI water band, the differences
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are within −20% and 0%. For S2B MSI, the relative differences are generally between 0% and 20%
in all bands except the water band, where the differences are within −20% and 0%. Interestingly,
the reflectance differences in the MSI sensors exhibit an “up and down” behavior not seen in the ETM+
and OLI reflectance differences.Remote Sens. 2019, 10, x FOR PEER REVIEW  14 of 28 
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Figure 15. Relative reflectance difference between S2B MSI and RadCalNet at RVUS without viewing
angle correction. The blue line with ‘*’ is the viewing azimuth angle.

Further investigation into the apparent oscillatory behavior in the MSI relative TOA reflectance
differences suggests that differences in the individual MSI viewing geometries is the most likely reason.
Figure 16a,b shows polar plots of the available sensor view angle (red asterisks) and solar illumination
angle (blue plus signs) for S2A and S2B at RVUS (with the zenith angles represented by circles of
increasing radii). The viewing azimuth angles for both MSIs are located in opposite directions due to
overlapping swaths from adjacent orbits. Figures 17 and 18 show the viewing azimuth angle (VAA)
against the relative reflectance difference of the two Sentinel sensors. The relationship between the
relative reflectance difference and the viewing azimuth is obvious. Therefore, the correction described
in Section 3.4 was applied.

Figures 17 and 18 show the MSI relative reflectance data after application of the view angle effect
correction method. The correction significantly reduces the impact of the viewing azimuth angle
related effect. Figures 19 and 20 show the average relative TOA reflectance differences with standard
deviation for each MSI at RVUS before and after application of the viewing angle effect correction.
The average relative difference before and after correction does not significantly change; however,
the standard deviation of the differences reduces to approximately 1% in all bands except the water
and SWIR 2 bands in S2B MSI. As indicated earlier, the higher variability in the S2B MSI data is most
likely due to its much smaller lifetime dataset compared to the other sensors.
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Figure 20. The average relative reflectance difference of S2B MSI and RadCalNet at RVUS before and
after viewing angle effect correction.

Figure 21 shows the relative TOA reflectance difference standard deviation between RadCalNet
and ETM+, OLI, and S2A/2B MSI (after application of the viewing angle effect correction) at RVUS.
Table 2 summarizes the number of overpasses and the corresponding mean and standard deviation of
the band-specific TOA relative reflectance differences for each sensor.
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Figure 21. The average relative reflectance difference of Landsat 7, Landsat 8, and S2A/S2B MSI after
viewing angle effect correction at RVUS.

Table 2. Number of overpass dates, mean relative reflectance difference, and standard deviation for
each sensor, RVUS.

Diff% ± Standard Deviation%

ETM+ OLI S2A MSI After Viewing
Angle Effect Correction

S2B MSI After Viewing
Angle Effect Correction

# of Overpasses 23 14 23 7
CA N/A −2.2 ± 1.7 −0.7 ± 4.4 7.3 ± 8.0
Blue −2.6 ± 3.9 −1.4 ± 1.7 −0.1 ± 4.9 8.4 ± 9.2

Green 0.7 ± 4.1 0.2 ± 1.9 0.2 ± 4.7 7.6 ± 8.8
Red 3.9 ± 3.9 1.8 ± 1.8 3.1 ± 4.3 9.4 ± 7.7
Veg1 N/A N/A 5.2 ± 4.1 11.2 ± 7.5
Veg2 N/A N/A 4.0 ± 3.9 8.9 ± 7.0
Veg3 N/A N/A 4.6 ± 3.7 13.3 ± 7.0
NIR 2.6 ± 3.6 3.0 ± 1.7 1.9 ± 3.3 7.3 ± 6.5
Veg4 N/A N/A 2.7 ± 3.3 8.4 ± 6.3
Water N/A N/A −11.0 ± 3.9 −8.2 ± 10.3

SWIR 1 4.4 ± 3.4 2.8 ± 2.8 4.4 ± 2.7 7.9 ± 5.8
SWIR 2 4.9 ± 4.5 3.3 ± 4.5 5.2 ± 5.2 11.9 ± 12.7

Pan 5.4 ± 3.8 0.5 ± 1.6 N/A N/A
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The mean relative TOA reflectance difference of ETM+, OLI, and S2A MSI are generally within
± 6% across all bands. This is not the case for the water band of S2A MSI, which has differences of
–11.0% ± 3.9%. The mean relative reflectance difference of S2B, however, is within 7% to 13.3% in all
bands except the water band, which has a difference of approximately –8.2% ± 10.3%. With respect to
the standard deviation, OLI has the smallest deviation, ETM+ and S2A MSI are comparable, and S2B
MSI has the largest standard deviation, which is not surprising given its small number of available
overpasses at RVUS.

Based on the consistency of results among ETM+, OLI, and S2A MSI, it could be concluded that
RVUS can yield consistent, NIST-traceable calibration results for both a sensor and the site itself.

4.2. Comparison of LCFR Results

Similar comparisons were made to evaluate the LCFR data. As is the case with RVUS, LCFR is
also located in the ETM+ and OLI scene centers and the sensor zenith angles are no more than 0.1◦.
For the MSI sensors, the site is also located in overlapping orbital swaths, thus requiring application of
the viewing angle effect correction.

Figure 22a–d shows scatterplots of the RadCalNet-predicted TOA reflectances and the
corresponding sensor-measured TOA reflectances at LCFR; as before, the blue line is the standard 1:1
line. Figure 22c,d shows the MSI scatterplots before application of the viewing angle effect correction.
For ETM+ and OLI, most of the data points consistently lie above the 1:1 line, indicating the predicted
TOA reflectance is higher than the measured ETM+ and OLI values. For MSI sensors, the data points
are not as concentrated in the longer wavelength bands.
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Figures 23 and 24 show the temporal relative reflectance differences between LCFR RadCalNet
predictions and the ETM+/OLI measurements, respectively. Figures 25 and 26 show the relative TOA
reflectance difference between the MSI sensors and RadCalNet before and after viewing angle effect
correction, respectively. Figure 27 shows the corresponding mean and standard deviation values.
The fluctuation of relative difference with respect to MSI viewing azimuth angle is generally reduced
after application of the viewing angle effect correction. As with the RVUS results, the viewing angle
effect correction preserves the mean relative difference. At LCFR, the correction reduces the scatter by
approximately 0.5% for most bands except both water bands and the S2B MSI SWIR 2 band.

Figure 28 shows the relative TOA reflectance differences at LCFR between ETM+, OLI, and both
MSIs after application of the viewing angle effect correction. Table 3 gives the number of overpasses
and band-specific TOA reflectance difference means and standard deviations. As mentioned above,
the value of standard deviation for all MSI bands is reduced by approximately 0.5% after the viewing
angle effect correction; however, they are still approximately 1% greater than the corresponding ETM+
and OLI standard deviations. The mean relative difference of all ETM+, OLI, and 2A MSI bands
are between approximately −10% and 1%; except the MSI water band, which is −12.8% ± 9.0%.
The corresponding differences for S2B MSI bands are approximately within −3.5% to 3%; the water
band difference is significantly greater, approximately −16.2% ± 10.8%.
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Table 3. Number of overpass dates, mean relative reflectance difference, and standard deviation for
each sensor, LCFR.

Diff% ± Standard Deviation%

ETM+ OLI S2A MSI After Viewing
Angle Effect Correction

S2B MSI After Viewing
Angle Effect Correction

# of Overpasses 26 24 48 17
CA N/A −1.8 ± 2.7 0.9 ± 3.8 2.8 ± 3.5
Blue −4.3 ± 2.3 −1.9 ± 3.4 −1.1 ± 4.6 1.5 ± 4.5

Green −4.4 ± 3.1 −5.0 ± 3.6 −2.8 ± 5.2 0.2 ± 5.3
Red −5.7 ± 3.3 −7.5 ± 3.6 −3.4 ± 5.6 −0.1 ± 5.9
Veg1 N/A N/A −0.8 ± 4.9 1.2 ± 4.6
Veg2 N/A N/A −1.9 ± 4.6 −0.4 ± 4.9
Veg3 N/A N/A −2.3 ± 4.3 3.0 ± 5.7
NIR −5.0 ± 3.4 −4.7 ± 4.4 −5.8 ± 4.2 −3.0 ± 4.6
Veg4 N/A N/A −4.0 ± 4.2 −1.4 ± 5.0
Water N/A N/A −12.8 ± 9.0 −16.2 ± 10.8

SWIR 1 −1.1 ± 2.7 −2.6 ± 2.9 0.2 ± 5.1 2.8 ± 5.8
SWIR 2 −5.3 ± 4.9 −6.2 ± 6.4 −5.5 ± 7.9 −3.5 ± 9.2

Pan −3.9 ± 2.8 −4.2 ± 3.2 N/A N/A
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Figure 28. The average relative reflectance difference of Landsat 7 and Landsat 8 before and after
viewing angle effect correction of Sentinel 2A on LCFR.

4.3. Comparison of GONA Results

A major difference between GONA and the other sites studied in this work is that it is not located
in adjacent swaths for the MSI sensors, and as a result a viewing angle effect correction is not needed.
Performing the same comparisons as for the previous sites, the scatterplots and the temporal results
for each sensor are shown in Figures 29a–d and 30, Figures 31–33, respectively. The average results are
shown in Figure 34 and Table 4.



Remote Sens. 2019, 11, 541 22 of 26

Remote Sens. 2019, 10, x FOR PEER REVIEW  23 of 28 

23 

 

# of 

Overpasses 
26 24 48 17 

CA N/A −1.8±2.7 0.9±3.8 2.8±3.5 

Blue −4.3±2.3 −1.9±3.4 −1.1±4.6 1.5±4.5 

Green −4.4±3.1 −5.0±3.6 −2.8±5.2 0.2±5.3 

Red −5.7±3.3 −7.5±3.6 −3.4±5.6 −0.1±5.9 

Veg1 N/A N/A −0.8±4.9 1.2±4.6 

Veg2 N/A N/A −1.9±4.6 −0.4±4.9 

Veg3 N/A N/A −2.3±4.3 3.0±5.7 

NIR −5.0±3.4 −4.7±4.4 −5.8±4.2 −3.0±4.6 

Veg4 N/A N/A −4.0±4.2 −1.4±5.0 

Water N/A N/A −12.8±9.0 −16.2±10.8 

SWIR 1 −1.1±2.7 −2.6±2.9 0.2±5.1 2.8±5.8 

SWIR 2 −5.3±4.9 −6.2±6.4 −5.5±7.9 −3.5±9.2 

Pan −3.9±2.8 −4.2±3.2 N/A N/A 

4.3. Comparison of GONA Results 

A major difference between GONA and the other sites studied in this work is that it is not located 

in adjacent swaths for the MSI sensors, and as a result a viewing angle effect correction is not needed. 

Performing the same comparisons as for the previous sites, the scatterplots and the temporal results 

for each sensor are shown in Figure 29a–d and Figures 30–33, respectively. The average results are 

shown in Figure 34 and Table 4.  

It can be seen from Figure 29 that the data points for each sensor are more concentrated at GNBA 

than at the other sites in all bands except the MSI water bands, where the data points are extremely 

scattered. The authors of this paper reviewed the estimated water vapor content from each overpass, 

and found them similar to the values at RVUS. Consequently, an explanation for the observed scatter 

is yet unknown. On the other hand, the reasons for the overall concentration at GONA may be due 

to fewer data points, no overlap region for the MSI sensors, and less variation in the sensor-measured 

TOA reflectances shown in Figures 8 and 9. 

 
(a)                                                     (b) Remote Sens. 2019, 10, x FOR PEER REVIEW  24 of 28 

24 

 

 
(c)                                                     (d) 

Figure 29. Scatterplots of GONA RadCalNet predicted and measured TOA reflectances for (a) ETM+, 

(b) OLI, (c) S2A MSI, and (d) S2B MSI. 

For the studied sensors, this site is much more consistent with respect to the mean relative TOA 

reflectance difference and standard deviation. It should be noted this site began active operation on 

2017-07-19, and thus has much fewer coincident overpasses than RVUS and LCFR (Table 4). 

 

Figure 30. Relative reflectance difference between ETM+ and RadCalNet at GONA. 

 

Figure 31. Relative reflectance difference between OLI and RadCalNet at GONA. 

Figure 29. Scatterplots of GONA RadCalNet predicted and measured TOA reflectances for (a) ETM+,
(b) OLI, (c) S2A MSI, and (d) S2B MSI.

Remote Sens. 2019, 10, x FOR PEER REVIEW  24 of 28 

24 

 

 
(c)                                                     (d) 

Figure 29. Scatterplots of GONA RadCalNet predicted and measured TOA reflectances for (a) ETM+, 

(b) OLI, (c) S2A MSI, and (d) S2B MSI. 

For the studied sensors, this site is much more consistent with respect to the mean relative TOA 

reflectance difference and standard deviation. It should be noted this site began active operation on 

2017-07-19, and thus has much fewer coincident overpasses than RVUS and LCFR (Table 4). 

 

Figure 30. Relative reflectance difference between ETM+ and RadCalNet at GONA. 

 

Figure 31. Relative reflectance difference between OLI and RadCalNet at GONA. 

Figure 30. Relative reflectance difference between ETM+ and RadCalNet at GONA.



Remote Sens. 2019, 11, 541 23 of 26

Remote Sens. 2019, 10, x FOR PEER REVIEW  24 of 28 

24 

 

 
(c)                                                     (d) 

Figure 29. Scatterplots of GONA RadCalNet predicted and measured TOA reflectances for (a) ETM+, 

(b) OLI, (c) S2A MSI, and (d) S2B MSI. 

For the studied sensors, this site is much more consistent with respect to the mean relative TOA 

reflectance difference and standard deviation. It should be noted this site began active operation on 

2017-07-19, and thus has much fewer coincident overpasses than RVUS and LCFR (Table 4). 

 

Figure 30. Relative reflectance difference between ETM+ and RadCalNet at GONA. 

 

Figure 31. Relative reflectance difference between OLI and RadCalNet at GONA. 
Figure 31. Relative reflectance difference between OLI and RadCalNet at GONA.Remote Sens. 2019, 10, x FOR PEER REVIEW  25 of 28 

25 

 

 

Figure 32. Relative reflectance difference between S2A MSI and RadCalNet at GONA. 

 

Figure 33. Relative reflectance difference between S2B MSI and RadCalNet at GONA. 

The trends of average relative reflectance difference as a function of band in each sensor shown 

in Figure 34 are similar, and are generally within ±5% in all bands except the S2B MSI water band, 

which is within approximately ±20%. These results are consistent with the corresponding RVUS 

results for ETM+, OLI and S2A MSI. Note that as shown in Figure 8, data from the 2300 nm to 2500 nm 

spectral region was removed. As this region lies within parts of the SWIR 2 bands in ETM+, OLI, and 

S2A MSI, an additional uncertainty will be introduced when calculating the relative difference, even 

though the mean relative difference in the SWIR 2 band of each sensor is within approximately 4.2%. 

Another factor to consider is that at GONA, the relative mean differences of S2B MSI are consistent 

with the other sensors. This intersensor difference is most likely due to the one viewing azimuth 

direction used at this site, which changes the relative mean difference and reduces the data scatter. 

Figure 32. Relative reflectance difference between S2A MSI and RadCalNet at GONA.

Remote Sens. 2019, 10, x FOR PEER REVIEW  25 of 28 

25 

 

 

Figure 32. Relative reflectance difference between S2A MSI and RadCalNet at GONA. 

 

Figure 33. Relative reflectance difference between S2B MSI and RadCalNet at GONA. 

The trends of average relative reflectance difference as a function of band in each sensor shown 

in Figure 34 are similar, and are generally within ±5% in all bands except the S2B MSI water band, 

which is within approximately ±20%. These results are consistent with the corresponding RVUS 

results for ETM+, OLI and S2A MSI. Note that as shown in Figure 8, data from the 2300 nm to 2500 nm 

spectral region was removed. As this region lies within parts of the SWIR 2 bands in ETM+, OLI, and 

S2A MSI, an additional uncertainty will be introduced when calculating the relative difference, even 

though the mean relative difference in the SWIR 2 band of each sensor is within approximately 4.2%. 

Another factor to consider is that at GONA, the relative mean differences of S2B MSI are consistent 

with the other sensors. This intersensor difference is most likely due to the one viewing azimuth 

direction used at this site, which changes the relative mean difference and reduces the data scatter. 
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It can be seen from Figure 29 that the data points for each sensor are more concentrated at GNBA
than at the other sites in all bands except the MSI water bands, where the data points are extremely
scattered. The authors of this paper reviewed the estimated water vapor content from each overpass,
and found them similar to the values at RVUS. Consequently, an explanation for the observed scatter
is yet unknown. On the other hand, the reasons for the overall concentration at GONA may be due to
fewer data points, no overlap region for the MSI sensors, and less variation in the sensor-measured
TOA reflectances shown in Figures 8 and 9.
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Table 4. The number of overpass cases, mean, and standard deviation of TOA relative reflectance
difference between three sensors and GONA site of all bands.

Diff% ± Standard Deviation%

ETM+ OLI S2A MSI After Viewing
Angle Effect Correction

S2B MSI After Viewing
angle Effect Correction

# of case 14 14 20 6
CA N/A −0.5 ± 1.7 0.7 ± 3.3 0.7 ± 3.3
Blue −3.1 ± 1.3 −1.1 ± 1.8 −0.9 ± 2.8 −1.9 ± 4.6

Green −1.8 ± 1.4 −2.7 ± 1.6 −1.9 ± 2.6 −3.5 ± 5.1
Red −0.2 ± 1.9 −2.2 ± 1.4 0.1 ± 2.8 −1.4 ± 3.7
Veg1 N/A N/A 2.3 ± 4.0 −0.0 ± 4.8
Veg2 N/A N/A 0.7 ± 3.4 −1.9 ± 4.5
Veg3 N/A N/A 1.7 ± 2.9 2.2 ± 5.1
NIR −0.8 ± 3.5 0.2 ± 1.7 −0.6 ± 3.6 −2.3 ± 4.0
Veg4 N/A N/A 1.3 ± 3.4 0.4 ± 2.5
Water N/A N/A −1.9 ± 55.1 −14.2 ± 35.5

SWIR 1 3.9 ± 2.7 2.5 ± 2.1 4.8 ± 3.8 5.8 ± 1.9
SWIR 2 0.8 ± 4.3 0.2 ± 2.9 4.2 ± 3.5 4.1 ± 3.7

Pan 0.3 ± 2.4 −2.9 ± 1.5 N/A N/A

For the studied sensors, this site is much more consistent with respect to the mean relative TOA
reflectance difference and standard deviation. It should be noted this site began active operation on
2017-07-19, and thus has much fewer coincident overpasses than RVUS and LCFR (Table 4).

The trends of average relative reflectance difference as a function of band in each sensor shown
in Figure 34 are similar, and are generally within ±5% in all bands except the S2B MSI water band,
which is within approximately ±20%. These results are consistent with the corresponding RVUS results
for ETM+, OLI and S2A MSI. Note that as shown in Figure 8, data from the 2300 nm to 2500 nm spectral
region was removed. As this region lies within parts of the SWIR 2 bands in ETM+, OLI, and S2A MSI,
an additional uncertainty will be introduced when calculating the relative difference, even though the
mean relative difference in the SWIR 2 band of each sensor is within approximately 4.2%. Another
factor to consider is that at GONA, the relative mean differences of S2B MSI are consistent with the
other sensors. This intersensor difference is most likely due to the one viewing azimuth direction used
at this site, which changes the relative mean difference and reduces the data scatter.

5. Conclusions

This work focuses on the performance comparison of the acquired surface measurements at
the RVUS, LCFR, and GONA RadCalNet sites using ETM+, OLI, and S2A/S2B MSI sensors. It has
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identified a significant viewing angle effect at RVUS and LCFR that affects the MSIs; this effect
manifests as differences in azimuth angle between overlapping swaths from adjacent orbits, and is
caused by BRDF effects due to the view angle. A correction has been developed and applied to the MSI
data; the resulting standard deviations in TOA reflectance between RadCalNet and S2A/S2B MSIs
were reduced by approximately 2% and 0.5%, respectively.

With application of the viewing angle effect correction to the MSI data, the average relative
reflectance differences at RVUS and GONA are consistently within ± 5% in all bands except the
S2A MSI water band and S2B MSI bands at RVUS, which are generally within a range of 7% to 13%.
These two sites, overall, provide comparable results among each of the studied sensors. The large
differences observed in S2B MSI at RVUS need to be further investigated, however.

The average relative reflectance differences observed at LCFR are different from those at RVUS
and GONA in general. For ETM+, OLI, and S2A MSI, the average relative reflectance difference of
all bands in each sensor is between approximately −10% and 1%. However, except the water band,
the corresponding S2B MSI average relative reflectance differences are within −3.5% and 3%, which is
consistently higher than other sensors. Some of this difference may be explained by the fact there are
less data.

An automated RadCalNet concept has been under consideration and development by the CEOS
IVOS WG for several years, and has demonstrated significant potential for use in sensor radiometric
calibration. The data from RadCalNet are easy to acquire and use. Considering the results shown
in this work, more effort is needed to better understand the behavior at LCFR, above and beyond
the obvious difference that it is a vegetative site. At this time, perhaps the most significant limitation
on the accuracy of the RadCalNet data is the development of an appropriate site-specific BRDF
characterization and correction.
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