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Abstract: The knowledge of rice nitrogen (N) requirements and uptake capacity are fundamental for
the development of improved N management. This paper presents empirical models for predicting
agronomic traits that are relevant to yield and N requirements of rice (Oryza sativa L.) through
remotely sensed data. Multiple linear regression models were constructed at key growth stages
(at tillering and at booting), using as input reflectance values and vegetation indices obtained
from a compact multispectral sensor (green, red, red-edge, and near-infrared channels) onboard an
unmanned aerial vehicle (UAV). The models were constructed using field data and images from two
consecutive years in a number of experimental rice plots in Greece (Thessaloniki Regional Unit), by
applying four different N treatments (C0: 0 N kg-ha~—!, C1: 80 N kg-ha~!, C2: 160 N kg-ha~!, and C4:
320 N kg-ha~1). Models for estimating the current crop status (e.g., N uptake at the time of image
acquisition) and predicting the future one (e.g., N uptake of grains at maturity) were developed and
evaluated. At the tillering stage, high accuracies (R> > 0.8) were achieved for N uptake and biomass.
At the booting stage, similarly high accuracies were achieved for yield, N concentration, N uptake,
biomass, and plant height, using inputs from either two or three images. The results of the present
study can be useful for providing N recommendations for the two top-dressing fertilizations in rice
cultivation, through a cost-efficient workflow.

Keywords: rice agronomic traits; multispectral UAV imagery; nitrogen uptake; nitrogen
concentration; yield; aboveground biomass; multiple linear regression modeling; lasso input selection

1. Introduction

Rice (Oryza sativa L.) is the second most cultivated cereal crop and the most consumed staple food
in the world, since more than three billion people rely on rice as their primary source of food. Although
it is predominant in Asia, rice has also been cultivated in Europe since the 15th century, mainly in
Mediterranean countries including Italy, Spain, Portugal, Greece, and France (FAO database 2018).
Rice is cultivated under a wide range of ecosystems, but more than 90% of the world’s rice production
is harvested from irrigated or rainfed lowland rice fields [1]. Thus, increase in rice production is
needed if the increased demand from population growth is to be met.

The use of nitrogen (N) fertilizer has changed the global N cycle markedly and has been causing
various negative environmental consequences, such as eutrophication of surface water, global warming,
and ozone layer depletion [2—4]. Modern production agriculture requires efficient, sustainable, and
environmentally-sound management practices. N is a key factor in achieving optimum lowland
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rice grain yields [5]. It is the nutrient input normally required in large quantities for achieving
high yields, but soils under these conditions are saturated, flooded, and anaerobic and, therefore,
N use efficiency is low [6]. However, more than 50% of the applied N is not assimilated by the rice
plant and it is lost through different mechanisms including ammonia volatilization, surface runoff,
nitrification-denitrification, and leaching [7-9]. N7O is the main greenhouse gas (GHG) related to
agricultural soil emissions, essentially due to microbial transformation of nitrogen in the soil. This
concerns N mineral fertilizers, manure spreading, and N from crop residues incorporated into the soil
or lixiviation of surplus nitrogen. N> O has high global warming potential (298 times higher than CO5)
and it should be minimized to reduce agricultural GHG emissions in total. The application of mineral
N in the form of chemical fertilizers can also increase the N,O emissions [10]. A recent study estimated
the seasonal direct emission of N,O from the paddy rice system in China (a country accounting for
approximately 30% of the global rice production) to be 31.1 Gg N,O-N for 2014, analyzing data from
multiple studies [11]. Another recent study reported that intermittent flooding practices in rice can
significantly increase N,O emissions [12], although there is an active debate on this issue [13,14].
Therefore, N fertilizer management strategies that increase crop productivity and N use efficiency,
while reducing negative environmental consequences, have to focus on parameters such as optimum
time, rate, and spatial distribution methods that synchronize plant N requirements with N supply, in
order to reduce N losses and maximize uptake of applied N in the crop [15]. Legislative measures
adopted to comply with the Directive 91/676/EEC concerning the “Protection of Waters against
Pollution caused by Nitrates from Agricultural Sources,” in some cases did not obtain the expected
results and are not always accepted (or complied with) by farmers [16,17].

A key contributor to yield increases will be the efficient and effective use of nitrogen (N) fertilizer,
which is relatively low in irrigated rice, because of rapid N losses from volatilization and denitrification
in the soil-floodwater system [18]. The “4R” nutrient stewardship—applying the right nutrient source
at the right rate, at the right time, and in the right place—is an innovative approach in fertilizer
management [19]. Precision agriculture also has a positive impact on farm productivity and economics,
as it provides higher or equal yields with lower production cost than conventional practices. The
adoption of precision agriculture techniques for N management has the potential for improving
agronomic, economic, and environmental efficiency in the use of such input [20].

Regarding the rest of the fertilization practices generally followed in Europe, phosphorous and
potassium are supplied in the pre-planting stage at 50-70 kg-ha~! and 100-150 kg-ha~!, respectively.
The first fertilization intervention usually provides a nitrogen—phosphorous-potassium complex; it is
carried out before the field flooding. The second supply is usually applied when rice plants are at the
3-5-leaf stage, at the beginning of tillering. A third fertilization can sometimes occur during panicle
initiation. Sulfur can be applied using sulfuric fertilizers (NHy4 or K) and zinc is generally needed
in soils with high pH, whereas calcium is needed in pathogenic soils with high salinity. The latter
elements are used in Europe occasionally or after deficiencies [21].

A major challenge in N management through precision agriculture techniques is the accurate
prediction and mapping of plant agronomic traits related to plant nutrient status and—most
importantly—to N content. The traditional soil-based testing methods widely used for upland crops
are not suitable for N recommendations in rice fields due to the flooding and complexity of N cycling
in the rice paddy’s soil during the growing period [22]. Even before flooding, the available soil-N
test is not accurate enough to lead to confident recommendations for N fertilizer applications [23].
Remote sensing technologies offer a viable alternative for deriving precise N recommendations in
rice fields through the dynamic non-destructive estimation of plant N status throughout the growing
season, along with predictions of other agronomic traits of interest (e.g., yield). Coupled with the
rapidly advancing technology of unmanned aerial vehicle (UAV) platforms, they are nowadays
starting to offer cost-effective solutions to various aspects of crop monitoring and sustainable crop
management [24-27].
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A few studies have proposed employing the traditional approach of active canopy sensors for
estimating yield-related agronomic traits of rice plants, which can help in supporting precision N
management [28-35]. For active field applications, these sensors could be installed on the machinery
for real-time sensing, but such systems are not common in rice cultivation [36]. Most importantly, their
use does become cost-inefficient (time and energy consuming) if the tractor must enter the rice paddy
just for monitoring the N status, at growth stages other than the appropriate for fertilizer application or
for weed and pest management. A substantial number of studies have also investigated the relationship
between narrow-band vegetation indices (VIs) and various agronomic traits of rice plants [22,37-54].
The Vs are calculated from the spectral signatures obtained from handheld spectrometers, which are
portable non-imaging hyperspectral sensors acquiring single spectral signatures from a small (typically
circular) surface over the canopy. Most of these studies construct empirical models through linear
regression for each possible pair of agronomic traits versus VlIs, thus identifying the individual VIs
that are highly correlated with each agronomic trait, but using the whole hyperspectral signatures as
input to multivariable N status prediction models has also been proposed [45,48].

The results of the aforementioned studies are important, since they have identified the spectral
wavelengths and/or VIs that are highly correlated with yield-related traits (e.g., [32,33,46,52]) or
even proposed N recommendation methodologies based on remotely sensed data [28]. However,
canopy-level spectral data from spectrometers becomes inappropriate for fine-scale precision farming,
since that would require an extremely time-consuming and cost-inefficient dense sampling. In addition,
the calculation of optimized VIs requires the sensor to incorporate bands at very specific wavelengths,
which are typically not available in most multispectral sensors. It is true that compact hyperspectral
sensors that can be mounted onboard UAVs (or movable structures above the canopy) have been
developed the last few years and have been successfully employed for estimating rice agronomic
traits [55-57]. Yet, the use of these systems is still limited in precision agriculture applications, their
cost is relatively high, and processing such large volumes of data is quite challenging, although they
have great potential for being operationally employed in the future.

Multispectral imaging sensors probably constitute the most appropriate system for precision
agriculture applications in rice cultivation. Traditionally, satellite imagery has been employed for
monitoring rice growth and agronomic traits. Medium-resolution satellite imagery (spatial resolution
of 20-30 m) has been employed for providing rather coarse estimations of rice crop traits [58—61] or
has been incorporated within rice growth simulation models [62]. High-resolution synthetic aperture
radar (SAR) data have been employed for estimating morphological traits (most notably height) [63].
Recently, Sentinel-2 data have also been employed for estimating leaf area index (LAI) and plant N
concentration of rice fields through empirical regression modeling, which were then used for producing
N nutritional index maps [64]. Finally, a few studies have used commercial high-resolution (spatial
resolution less than 10 m) satellite imagery to estimate N status [36,65,66] or within-field variability [61].
However, the most important drawback of high-resolution satellite images is their high cost for real-life
applications, as almost all vendors enforce a large minimum area that can be ordered for a single image.
If multiple images within the season are required for providing N recommendations and taking into
consideration that rice paddies in a single cultivation have variable sowing dates—typically up to
30 days difference (due to genotypic differences in plant stages etc.)—the cost increases exponentially.

With the rapid development of UAV platforms (load capacity and flying autonomy), compact
and lightweight multispectral sensors onboard UAVs seems to be the most direct and cost-efficient
approach to precision agriculture in rice today. However, very few studies have been published
that exploit such systems for estimating agronomic traits of rice plants. Initially, plain RGB cameras
were used for estimating N status of rice plants [67,68], but these cameras are difficult to calibrate for
different lighting conditions and they do not incorporate a near-infrared (NIR) channel that is required
for the calculation of most VIs. Modifying the camera with a polarizing filter could solve the latter
problem [69], but the sensor’s spectral response is still not appropriate for accurate calculation of most
VIs, which require specific ranges of wavelengths. Good correlations of specific VIs calculated from
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multispectral sensors (RGB plus NIR channel) and measurements from chlorophyll meters (SPAD
meter) have been reported [70,71]. However, estimating leaf N content from SPAD readings is not
straightforward, since significant variability has been observed between SPAD values and both leaf
chlorophyll [72-74] and leaf N [75-77] content. Finally, Lu et al. [78] has tested the potential of a 5-band
multispectral sensor (RGB plus red-edge (RE) and NIR channels) onboard a UAV for estimating LAI
and N content of rice plants, through simple linear regression. Medium to high correlations were
reported at the panicle growing stage—close to the second top-dressing fertilization (TdF)—with lower
coefficient of determination (R?) values reported for the stem elongation stage (close to the first TdF).
However, their experimentation considered field data from a single growing season, and the lower R?
values reported for the stem elongation stage suggest that multiple remote sensing variables must be
considered simultaneously for increasing the modeling accuracy.

The objective of the current paper is to present empirical models for predicting agronomic
traits of rice plants through remotely-sensed multispectral imagery. Models for predicting plant
height, aboveground biomass, N concentration, N uptake, grain yield, and harvest index have been
constructed following a multiple linear regression approach at different growth stages (at tillering
and at booting), using as input reflectance values and VIs obtained from a compact four-band sensor
(green, red, narrow-band RE, and NIR channels) onboard a UAV. The models were constructed using
field data and images from two consecutive years in a number of experimental rice plots in Greece,
employing different N treatments. Models for both estimating the current crop status (e.g., N uptake
at the time of image acquisition) and predicting the future one (e.g., N uptake of grains at maturity)
were developed and evaluated. To the best of our knowledge, this is the first study that presents such
a comprehensive analysis for estimating various yield-related agronomic traits of rice plants during
the growing season from UAV-collected multispectral data.

2. Materials and Methods

2.1. Field Experiments

Two field experiments were conducted in two consecutive years, 2016 and 2017, at the
Experimental Station of Kalochori, Thessaloniki, Greece (40°36/58.75”N, 22°49'51.16”E in WGS 84
spatial reference system). The size of each experimental plot area was 11 m? (5 x 2.5 m) and arranged
in a randomized complete block design with five replications for each treatment (Figure 1). The plots
were fertilized with a novel bio-fertilizer (RBBf), developed at the Hellenic Agricultural Organization
— DEMETER, in the framework of the H2020 project AGROCYCLE. The RBBf comprised 74% rice
industrial co-products, chicken manure, zeolite, a compost accelerator by adding Aspergilus spp.
(fungi), Bacillus spp. (bacteria), and larvae of the insects Hermetia illucens and Cetonia aurata. All
raw materials were placed into a custom-made automatic compost bin of 1.5 tons capacity and left
for at least 40 days to complete the composting process (i.e., when the C/N ratio reached a value
lower than 20). The experiment consisted of four fertilization treatments: 1) 0 N kg-ha~!—untreated
control (C0); 2) 80 N 1<g~ha’l of RBBf (C1); 3) 160 N 1<g~ha’l of RBBf—standard local practice for rice
cultivation (C2); and 4) 320 N kg-ha~! RBBf (C3). Seeds of the japonica type Greek commercial variety
DION—belonging to the European Core Collection (http://tropgenedb.cirad.fr)}—were directly seeded
into the flooded plots on 2 June 2016 and 9 June 2017, respectively. The fertilization scheme followed
the local and international standard practices for rice cultivation, where the amount is divided in three
increments: 40% of the N-P—K are incorporated as basal before flooding, 40% is applied at the tillering
stage, and similarly the rest (20%) at the panicle initiation stage. Besides fertilization, all the rest of the
common practices were applied. The whole experiment was harvested when the plants reached the
physiological maturity stage on October 6, 2016 and October 10, 2017, respectively.
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Figure 1. Location of the experimentation station (red rectangles) in Greece (top left), overview of
whole Experimental Station in Kalochori (top right), and the setup of the experimental plots (bottom).
In the latter, the color of each plot denotes each treatment’s amount of nitrogen (N) applied (CO:
0 kg-ha™!, C1: 80 kg-ha!, C2: 160 kg-ha~!, and C3: 320 kg-ha™1).

Soil sampling was carried out prior to flooding, with three samples being collected as bulk from
different field points according to standard soil field sampling methods. The soil analysis average
results were sand = 30%, silk = 18%, loam = 52%, pH = 7.6, organic matter = 2%, N = 0.05%, P = 0.012%,
K =0.24%, Ca = 0.2%, and Zn = 0.012%. However, no significant variations within the different samples
collected from the whole experimentation area were observed. Standard cultural practices for rice
cultivation were conducted including harrowing, tillage, and lazier leveling. The plot embankments
were made by hand, as were the RBBf application and sowing. Weed control was performed chemically
in the whole period of herbicide application according to the local standard practices. The irrigation
water is of a very good quality (0.7 dS) in the area, without any traces of agrochemical residuals
since it is checked very frequently from the local irrigation organization. After harvesting, the whole
plants were removed from the paddies, whereas the crop residuals—including 2-3 cm culm and the
roots—remained in the soil and were incorporated for decomposition until the next year. In the second
year of the experimentation, we chose not to alter the position of each paddy-treatment, to avoid
mixing of the different treatments throughout the experimentation.

During the experimentation period, the following traits were assessed at the appropriate
BBCH-scale stages [79,80]: (1) plant height (PH; cm), by measuring the main stem of 30 random
rice plants per plot; (2) total biomass (BT; tn-ha~!), by cutting 0.25m? square plots of the whole
aboveground plant biomass and weighing it after 48 h of air oven drying at 70 °C until constant
weight; (3) N concentration (NC; %), determined by the macro-Kjeldahl procedure [81]; (4) N uptake
(NU; kg-ha’l), estimated as total biomass x N concentration [36]; (5) grain yield (Yield; tn-ha™1);
and (6) harvest index (HI), estimated as grain yield / (total dry matter + grain yield). Harvest index
is the ratio of grain yield to total biomass and is considered as a measure of biological success in
partitioning assimilated photosynthate to the harvestable product [82]. The traits that change during
the season (PH, BT, NC, and NU) were measured at BBCH scale: stage 25 (before the first TdF), stage
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45 (at booting, approximately 5 days before the second TdF), and stage 99 (harvesting). The timings
of the first two measurements coincided with the first and last UAV image acquisitions (see next
subsection). At harvesting, NC and NU of stem and leaves only (NCSL and NUSL, respectively) and
of grain (NCG and NUG, respectively) were also assessed. Similarly, biomass of stem and leaves
only (BSL) was considered as an additional independent trait. Conversely, PH at maturity was not
considered, since the parameter does not change after the full heading stage (BBCH 59 to 60). Table 1
summarizes all agronomic traits considered in this study, which are used as dependent variables of the
predictive models.

Table 1. Summary description of the rice agronomic traits considered in this study.

Abbreviation = Description Units
PHy5 Plant height at BBCH 25 cm
PHys Plant height at BBCH 45 cm
BT»s5 Total aboveground biomass at BBCH 25 tn-ha—!
BTys Total aboveground biomass at BBCH 45 tn-ha~1
BTy Total aboveground biomass at maturity tn-ha—!
BSLgg Biomass of stem and leaves at maturity tn-ha—!
Yield Yield tn-ha™!
HI Harvest index —
NCps Plant N concentration at BBCH 25 %
NCys Plant N concentration at BBCH 45 Y%
NCy Plant N concentration at maturity Y%
NCSLoo N conFentration of stem and leaves at %

maturity
NCG N concentration of grains at maturity %
NUys Plant N uptake at BBCH 25 kg-ha™!
NUjgs Plant N uptake at BBCH 45 kgha™!
NUgg Plant N uptake at maturity l(ghef1
NUSLgg N uptake of stem and leaves at maturity kg-haf1
NUG N uptake of grains at maturity kg-ha™!

2.2. UAV Imagery and Preprocessing

We used the Parrot® Sequoia™ multispectral imaging sensor (Parrot Drones S.A.S, Paris, France),
which captures the reflected light at four spectral bands with a field of view of 70.6°: green (G; 550 nm;
40 nm bandwidth), red (R; 660 nm; 40 nm bandwidth), red-edge (RE; 735 nm; 10 nm bandwidth),
and near-infrared (NIR; 790 nm; 40 nm bandwidth). The camera was mounted on a DJI Phantom 4
quadcopter (DJI, Shenzhen, China) and it was also equipped with an irradiance sensor for measuring
incident light, in order to correct for variable lighting conditions during the flight. Prior to each flight,
ground images from a calibration target (AIRINOV Aircalib; AIRINOYV, Paris, France) were acquired,
in order to derive accurate reflectance values. The latter was a polyvinyl chloride (PVC) board with a
gray target area silkscreen printing and ArUco tags for the albedo measurements of each band, which
have been measured specifically for the Sequoia sensor. The flight plan was created automatically
through the Atlas Flight application (MicaSense, Inc., Seattle, USA), choosing 80% overlap for both
front-lap and side-lap, in order to assure an accurate orthomosaic creation. The single images were
subsequently combined to create an orthophotomosaic using Pix4Dmapper Pro (Pix4D S.A., Lausanne,
Switzerland), which employs an advanced structure from motion (S5fM) workflow to derive accurate
orthophotomosaics in absolute reflectance values. The derivation of absolute reflectance values is
achieved by Pix4D taking into consideration both the calibration target images and the readings from
the irradiance sensor in an automated workflow, without the need for the user to calibrate or otherwise
process the original images. An overview of the typical acquisition procedures and required processing
of UAV imagery can be found in [83].
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During each growing season, three images were acquired over the study area (Table 2). The drone
was flown at a height of 30 m above ground level, resulting in an orthophotomosaic with spatial
resolution of approximately 2.5 cm. A total of 35 VIs were calculated from each image (Table 3), which
have been considered in rice-related studies for the estimation of agronomic traits. Subsequently, the
area within each experimental plot was manually delineated (approximately 10 m?), taking care not to
include the plots’ boundaries (the paddy’s embankments). For each plot, the average value of all pixels
within the delineated area was calculated for each camera band and VI, which were subsequently used
for the analysis. The final dataset comprised 40 samples, since the experiment comprised 20 plots (five
replications for each of the four N treatments) and measurements were acquired for the two years of
experimentation (2016 and 2017).

Table 2. Dates, equivalent days after sowing (DAS), and BBCH stage code for the major treatments, field
data collection, and unmanned aerial vehicle (UAV) image acquisitions performed in the experimental
plots during the two years.

Treatment or Data Acquisition Date DAS BBCH
2016
Basal fertilization 2 June 2016 0 —
Sowing 2 June 2016 0 —
1st image acquisition and field data collection 5 July 2016 33 25
1st TdF 8 July 2016 36 26
2nd image acquisition and field data collection 15 July 2016 43 31
3rd image acquisition and field data collection =~ 17 August 2016 76 45
2nd TdF 22 August 2016 81 49
Harvesting 6 October 2016 126 99
2017
Basal fertilization 8 June 2017 -1 —
Sowing 9 June 2017 0 —
1st image acquisition and field data collection 16 July 2017 37 25
1st TdF 18 July 2017 39 26
2nd image acquisition and field data collection 25 July 2017 46 31
3rd image acquisition and field data collection =~ 18 August 2017 70 45
2nd TdF 23 August 2017 75 49
Harvesting 10 October 2017 123 99

Table 3. Summary of vegetation indices considered in this study. Camera channels are reported as G:
green, R: red, RE: red-edge, and NIR: near-infrared.

Acronym Name Formula Introduced in
DVI Difference Vegetation Index (VI) NIR — R [84]
NDVI Normalized difference VI (NIR — R)/(NIR + R) [85]
RVI Ratio VI (also simple ratio (SR)) NIR/R [86]
mSR Modified simple ratio (NIR/R —1)/+/(NIR/R+1) [87]
TNDVI Transformed NDVI V/(NIR—R)/(NIR+R) + 0.5 [84]
RDVI Renormalized DVI (NIR — R)/+/(NIR +R) [88]
SAVI Soil-adjusted VI 1.5- (NIR — R)/(NIR + R + 0.5) [89]
OSAVI Optimized SAVI 1.16 - (NIR — R)/(NIR + R + 0.16) [90]
MSAVI2 Modified SAVI 2 05- [ZNIR +1 — (2NIR+1)? — 8y/NIR — R} [91]
gDVI Green DVI NIR — G [84]
gNDVI Green NDVI (NIR — G)/(NIR + G) [92]
gRDVI Green RDVI (NIR - G)/+/(NIR+ G) [32]
mSRg Modified green simple ratio (NIR/G—-1)/+/(NIR/G+1) [32]
GSAVI Green SAVI 1.5 (NIR — G)/(NIR+ G +0.5) [93]
MGSAVI Modified GSAVI 0.5- [ZNIR +1- \/(2NIR + 1)2 —8(NIR — G)] [32]
NGI Normalized green index G/(NIR + RE + G) [93]

[

GWDRVI Green wide dynamic range VI (0.12-NIR — G)/(0.12 - NIR + G)
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Table 3. Cont.
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Acronym Name Formula Introduced in
Clg Green chlorophyll index NIR/G -1 [94]
Clgrg Red-edge chlorophyll index NIR/RE — 1 [94]
Transformed chlorophyll ) oy B
TCARI absorption ratio index 3-[(RE—R) —0.2(RE — G)(RE/R)] [95]
MCARI1 Modified chlorophyll absorption 1.2 [25(NIR - R) — 1.3(NIR - G)] [96]
in reflectance index 1
MCARI2 Modified chlorophyll absorption 15-[25(NIR —R) — 13(NIR — G)]/ [96]
in reflectance index 2 \/(ZNIR + l)2 — [6NIR — 5\/?} —05
TCARI/ OSAVI TCARI to OSAVI TCARI/OSAVI [95]
REDVI Red-edge DVI NIR — RE [32]
NDRE igzr)r(lahzed difference red-edge (NIR — RE)/(NIR + RE) [97]
RERDVI Red-edge RDVI (NIR — RE)/ /(NIR + RE) [32]
NNIR Normalized NIR index NIR/(NIR + RE + G) [93]
REGNDVI Red-edge GNDVI (RE—G)/(RE +G) [32]
REWDRVI Sfd'edge wide dynamic range (0.12 - NIR — RE)/(0.12 - NIR + RE) 1321
MSRgg Modified red-edge simple ratio (NIR/RE —1)/+/(NIR/RE + 1) [32]
MEVI Modified enhanced VI 25 (NIR — RE)/(NIR + 6RE — 7.5G + 1) [32]
RESAVI Red-edge SAVI 1.5 (NIR — RE)/(NIR + RE + 0.5) 132]
05-
MRESAVI Modified RESAVI INIR+1— \/(ZNIR 17— 8(NIR - RE) 1321
MTCARI Modified TCARI 3. [(NIR — RE) — 0.2(NIR — G)(NIR/RE)] [32]
MRETVI Modified RETVI 1.2 [1.2(NIR — G) — 2.5(RE — G)] [32]

2.3. Regression Models

The union of the camera’s four bands and the 35 VIs were used as inputs for building the
empirical models. The samples used for the analysis were the average value of the VIs and the
camera’s bands—as mentioned in the previous section—together with the corresponding field data
values (one of the traits for each model) for each plot and for the two years of experimentation. In order
to maintain the models’ interpretability, we chose to create them through the simple least-square
multiple linear regression [98] approach. All VIs were considered as potential inputs for the models,
since N treatments affect, simultaneously, biomass, leaf area index, and chlorophyll content of all
plants and, as such, any VI could possibly increase the accuracy of a model built for each trait. In
other words, we cannot a priori assume that some VI is irrelevant with an agronomic trait. However,
since the number of possible inputs was high (39 for the models built for the tillering stage and 78 or
117 for those built for the booting stage, as will be explained in the following), a subset of predictors
had to be selected, in order to maintain the models’ interpretability and increase their generalization
capabilities. Input selection was performed through the lasso (least absolute shrinkage and selection
operator) [99], which is a regularization technique for performing linear regression. Lasso solves the
minimization problem:

) 1 N T 2 N P
onin ﬂg(yi—ﬁwxi )+ ];’51" : (1)

where N is the number of data samples, P is the number of predictors (input variables), x; is the input
vector (P-dimensional column vector) for the ith data sample, y; is the corresponding output value, S
is the P-dimensional column vector of linear coefficients, B is the intercept term, and A is the positive
regularization parameter. Lasso incorporates the L! norm of B into the minimization task, which forces
anumber of coefficients to become zero, thus identifying the redundant predictors. Prior to the analysis,
the input data were standardized to zero mean and variance of one. The regularization parameter A
was determined through a five-fold cross-validation procedure, considering a geometric sequence of
100 values, with the largest value being the one that produces a null model. The largest A value such
that the mean squared error (MSE) was within one standard error of the minimum MSE was ultimately
selected. The predictors with non-zero coefficients were maintained and a multiple linear regression
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model was constructed considering those predictors only. To increase the model’s interpretation, only
linear terms were considered, without interactions. The whole analysis was performed within the
statistical software MATLAB® (MathWorks Inc., MA, USA).

For each agronomic trait, regression models at two crop stages were created using the field data
from both years, following the image acquisition scheme presented in Table 2. The first category of
models was built for the crop stage with BBCH 25, which corresponds to two to three days before
the first TdF (at the tillering stage). The second category was built for the crop stage with BBCH
45, which corresponds to approximately five days before the second TdF (at the booting stage). For
the former category of models, the models were built considering the input variables from only the
first image, captured at stage with BBCH 25. For the latter category of models, two approaches were
tested. The first one used the union of input variables from two images, those captured at BBCH 25
and BBCH 45. The second also considers the input variables from the intermediate image acquisition
at BBCH 31, which corresponds approximately 7-10 days after the first TdF (see the DAS values in
Table 2). The rationale for the latter was to include an intermediate input after the fertilization, in order
to indirectly capture the effectiveness of the treatment, which could potentially increase the model’s
predictive capabilities.

For each of the agronomic traits that changes during the season (plant height, N concentration, N
uptake, and total biomass), one model was constructed for each stage considered, that is, for BBCH 25,
45, and 99 (harvested product, apart from plant height that does not change after booting). Obviously,
for the models constructed before the second fertilization (BBCH 45, considering two or three images),
predicting agronomic traits in previous stages (i.e., BBCH 25) has no practical use, since we actually
try to predict a past state from the current status (which is not always possible). Hence, no models
predicting agronomic traits at BBCH 25 were constructed at the booting stage. The models” accuracy
was assessed by means of the regression’s adjusted coefficient of determination (Adj. R?), as well as
the root mean square error (RMSE). Since RMSE’s magnitude depends on the magnitude of the data,
we also report a relative measure of the modeling errors’ dispersion, namely, the coefficient of variation
of the RMSE (CVRwmsE), expressed as a percentage:

RMSE
CVrumse = 100 - 5 (%), @)

where ¥ is the mean of the observed output values, that is, the mean of the field measurements for the
agronomic trait the model is built for.

The Sequoia sensor incorporates a RE channel, which is an advantage for agronomic remote
sensing studies, since it is sensitive to smaller changes of leaf health and plant stress in general.
However, many other sensors do not have such a channel, but rather follow the channel configuration
of many high-resolution satellite sensors (blue, green, red, and NIR). Since it would be interesting to
apply our methodology with such sensors as well, we also conducted a second experiment where
the whole process (lasso input selection and linear model building) was repeated without the VIs
relying on RE. In this case, the number of possible inputs was 23, namely, Sequoia’s green, red, and
NIR channels and the following VIs: DVI, NDVI, SR, mSR, TNDVI, RDVI, SAVI, OSAVI, MSAVI2,
gDVI, gNDVI, gRDVI, mSRg, GSAVI, MGSAVI, GWDRV], CIg, MCARI1, MCARI2, and MTCARI
(see Table 3).

3. Results

During both rice cultivation periods, temperature and relative humidity were constantly recorded
in order to compare the meteorological data sets. Table 4 reports monthly averages of temperature
and relative humidity during the two growing seasons of the experimentation. The second year (2017)
was slightly colder and less humid; however, these differences were minor and it can be concluded
that they could not induce alterations in the morphophysiology of the rice plants between the two
experiments over the two years.
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Table 4. Monthly temperature and relative humidity during the growing seasons of the two years that
the experiments were conducted. Minimum, maximum, and average values of each year are reported,
averaged over each month.

Temperature (°C) Relative Humidity (%)
Year  Month Minimum Maximum Average Minimum Maximum Average
June 20 32 26 38 95 74
July 20 33 26 48 97 78
2016  August 18 34 25 52 99 85
September 16 29 21 51 98 83
October 13 25 18 48 80 66
June 18 32 25 50 84 61
July 19 34 26 53 96 73
2017  August 18 34 24 60 98 79
September 14 32 21 52 97 78
October 13 28 19 43 89 69

Figure 2 presents the differences of selected agronomic traits with respect to the fertilization
treatment. Biomass, N uptake, and yield exhibit a rather expected trend, that is, higher values with
increased amount of N fertilizer applied. Yield also exhibits the expected saturation with N fertilization,
that is, the great differences in NU and BT between C2 (standard local practice) and C3 (double amount)
at BBCH 45 were not fully reflected in yield differences. The variability was much higher at BBCH 25
(at tillering), since the canopy was not yet fully closed, due to the fact that the tillers were not completely
developed and no TdF had been applied yet. As the growing season continued, the differences became
more pronounced. The aforementioned trend was not clearly exhibited for N concentration and HI,
which was also reflected in the modeling process that resulted in generally low predictive accuracy for
those traits, as will be shown in the following. A possible explanation for this behavior is provided in the
Discussion section. For completeness, Table 5 reports the results of a one-way ANOVA statistical analysis,
followed by Tukey’s honest significant difference (HSD) post-hoc test [100]. The results of the latter are
compactly presented by means of labeled groups (letters), with two treatments that include the same
letter denoting statistically non-significant differences between the mean values of the corresponding
agronomic trait (e.g., treatments C1 and C2 for the Yield trait were not found to exhibit statistically
significant differences, whereas treatments CO and C1 for the same trait did).

Table 5. Results of the one-way ANOVA test and Tukey’s honest significant difference (HSD) post-hoc
test for the field-measured trait values against the different N treatments. The latter is presented
by means of labeled groups, with two treatments that include the same letter denoting statistically
non-significant differences between the mean values of the corresponding agronomic trait.

Trait p-Value for ANOVA Tukey’s HSD Group
F-test co C1 C2 C3
PHys 0.3664 a a a a
PHys 1.62:10720 c b b a
BTps 0.0918 a a a a
BT5 2.69-10713 c b b a
BTgg 3.59:10713 c b b a
BSLgg 8.25-107° b a a a
Yield 4.76-10~11 c b ab a
HI 0.8591 a a a a
NCps 0.0342 ab b ab a
NCys 0.0418 b ab ab a
NCyg 0.1044 a a a a
NCSLgg 0.0451 a a a a
NCG 0.0315 ab b ab a
NUjs 0.0498 b ab ab a
NUys 1.31:10°18 c b b a
NUgg 0.0002 b ab a a
NUSLygy 0.0067 b ab a a
NUG 6.3-1078 c b ab a
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Figure 2. Box plots of selected agronomic traits against the fertilization treatment: (a) BTs, (b) BTys,
(¢) Yield, (d) NUss, (e) Nys, (f) NUG, (g) NCps, (h) NCys, (i) NUG, (j) PHys, (k) PHys, and (1) HI (see
Table 1 for the description of agronomic traits).

Table 6 reports the accuracy measures (adjusted R2, RMSE, and CVgpsg) of all linear models
constructed considering all 39 possible inputs (before input selection), along with the number of
predictors (input variables) selected by means of the lasso approach. At the tillering stage (BBCH 25),
high correlations were only observed for BT»5 and NUjs. Thus, this time point appeared to be too
soon for predicting the future development of the plants, particularly, when the first TdF had not been
applied yet. Nevertheless, BT,5 and NUj5 were considered the two most important traits to support
N fertilization dose (units/ha) at tillering. The linear models constructed for the booting stage using
two UAV images (at BBCH 25 and 45) exhibited high correlations for most of the agronomic traits.
The models for biomass (BTg9 and BSLg9) and N concentration (NCgg9, NCSLgg, and NUG) at maturity
achieved relatively lower accuracies, but in most cases the adjusted R? values were higher than 0.7,
with exception to HI. The linear models constructed for the booting stage, using three UAV images
(at BBCH 25, 31, and 45), generally resulted in increased accuracies compared to the corresponding
models constructed with only two images, although this was not always the case. The models that did
exhibit an increase in accuracy always comprised a higher number of predictors than those with two
images, which means that they exploited the additional information provided by the image at BBCH
31, as intuitively expected. Notable exceptions were the models for NUSLgg and NUG, which resulted
in higher accuracy with two images, but with overly complex models. In this case, the additional
information provided by the image at BBCH 31 enabled the simplification of the models, but with a
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penalty in accuracy at the same time. It is worth noting that for most of the agronomic traits (PHys,
BTys, yield, NCys, and all NU traits), the models with only two images could achieve competitive
performance. In all cases, the number of predictors selected by lasso was low, especially if we took into
consideration the very high number of available predictors (see Section 2.3). Specifically, the average
number of predictors for all models was 4.39, with a median value of 4. For the models constructed for
the tillering stage, 10.83% of the available predictors were used on average by the models, 5.77% for
the models at booting with two images, and 3.85% for those at booting with three images. As such, the
models could be easily visualized and the most important input variables could be identified, whereas
the computational and—perhaps most importantly—storage requirements remained relatively low.

Table 6. Summary statistics of the derived linear models, built considering all 39 possible inputs (before
input selection). Adjusted coefficient of determination (R2), root mean square error (RMSE), coefficient
of variation of the RMSE (CVRrpmsg) (%), and number of predictors (#P) participating in each model
are reported.

Trait Models at Tillering (1 image) Models at Booting (2 images) Models at Booting (3 images)
Adj.R> RMSE C‘:},}i‘)‘“ #P ‘;‘?' RMSE C‘:{,}:;ISE #P Adj.R*> RMSE C‘I},Z“;‘SE #P
PHps 0.12" 2.59 8.95 1 — — — — — — — —
PHys 0.50 5.97 9.74 2 084 343 5.59 3 0.84 341 5.57 2
BTy 0.86 0.43 23.09 7 — — — — — — — —
BTy 0.56 1.03 22.51 3 087 055 12.01 2 0.87 0.55 12.01 2
BTog 0.39 3.17 23.12 1 074 2.07 15.07 3 0.74 2.07 15.07 3
BSLgg 0.54 1.99 25.89 3 072 1.54 20.07 3 0.72 1.55 20.23 4
Yield 0.61 1.47 19.12 4 0.77 1.13 14.73 5 0.80 1.06 13.73 6
HI 0.24 0.05 9.21 1 031 0.04 8.75 1 0.31 0.04 8.75 1
NCps 0.16 0.26 744 1 — — — — — — — —
NCys5 0.68 0.32 14.23 3 088 0.20 8.87 6 0.88 0.20 8.67 7
NCyg 0.77 0.22 17.67 5 070 0.25 19.98 3 0.85 0.18 14.29 6
NCSLgg 0.70 0.28 30.97 5 086 0.20 21.49 11 0.80 0.23 25.43 6
NCG 0.57 0.08 6.49 3 064 0.08 5.95 3 0.72 0.07 5.24 4
NUzs 0.80 19.70 29.84 3 — — — — — — — —
NUys 0.50 31.88 30.51 3 08 1672 16.00 3 0.86 16.72 16.00 3
NUgy 0.68 60.63 33.10 4 069 5924 32.34 3 0.75 53.94 29.45 4
NUSLgg 0.68 40.20 48.97 5 093 1848 22.51 12 0.82 29.85 36.37 7
NUG 0.58 24.79 24.53 5 075  19.02 18.81 5 0.83 15.89 15.72 8

* Statistically significant at a level of 0.05; all other models are statistically significant at a level of 0.01.

In order to give a visual representation of the models” errors, Figure 3 depicts the scatter plots
of predicted versus observed values for some indicative models constructed in each stage. The gray
dashed line represents the ideal perfect linear relationship, whereas the continuous red line is the
simple linear regression line of the predicted versus observed data. Models with high adjusted R?
values exhibited, generally, uniform distribution of data around the ideal prediction line, with the
regression line being very close to the latter and very few outliers observed in a few cases. For
completeness, the scatter plots for all models constructed are provided as Supplementary Materials.

Table 7 presents the linear models constructed at the tillering stage, whereas Tables 8 and 9 present
the models constructed at the booting stage using features extracted from two and three UAV images,
respectively. For convenience, the adjusted R? and RMSE values of Table 6 are replicated in these tables
as well. Focusing on the models constructed at the tillering stage that exhibit high accuracy (BT»s,
NCgg, and NUys5 in Table 7), they mostly exploited chlorophyll-sensitive vegetation indices (gRDVI,
Clg, Clgg, TCARI, MCARI, MRETVI) together with the green and red reflectance channels. At the
BBCH 25 stage, the canopy was not fully closed, introducing strong background soil /water effects.
This in turn decreased the efficiency of traditional biomass-sensitive VIs (e.g., NDVI, SR, and mSR) for
estimating agronomic traits at the tillering stage. Conversely, chlorophyll-sensitive VIs incorporated
the green or RE channel (or both), which rendered them more sensitive to small variations of biomass.
The latter was also true for the model built for yield, although the latter exhibited relatively lower
accuracy (Adj. R? = 0.61; RMSE = 1.47 tn-ha™!) than the aforementioned ones.
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Figure 3. Scatter plots of predicted versus observed values, for selected agronomic traits. Models
constructed (considering all 39 possible inputs before input selection) at tillering for (a) BT5, (b) NUjs,
and (c) Yield; models constructed at booting using features extracted from two unmanned aerial vehicle
(UAV) images for (d) PHys, (e) BTys5, (f) NUys, (g) NUG, and (h) Yield; models constructed at booting
using features extracted from three UAV images for (i) NUG, (j) Yield, (k) NCy45, and (1) NCG. The
gray dashed line represents the ideal perfect linear relationship, whereas the continuous red line is the
simple linear regression line of the predicted versus observed data.
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Table 7. Linear models constructed at the tillering stage, before the first top-dressing fertilization
(TdF), built considering all 39 possible inputs (before input selection). G, R, RE, and NIR represent,
respectively, the green, red, red-edge, and near-infrared reflectance values.

Model Formula Adj. R? RMSE
PHps = 33.51 — 55.25 - G5 0.12 2.59
PHy5 = 64.07 — 352.2 - Ros + 8.09 - mSRys 0.50 597

BTy5 = 0.50 +10.09 - Gos + 0.2 - SRps + 12.43 - gRDVIys — 0.32 - Clg o5

+1.65 - Clgg 5 — 11.35 - TCARI5 — 6.84 - MCART15 086 043

BTys = 7.91 — 117.3 - Rps — 2.88 - MCARI2y5 + 44.39 - MTCARD5 0.56 1.03

BTo9 = 25.10 — 263.0 - Ros 0.39 3.17

BSLgg = 12.63 — 167.4 - Ros -+ 12.57 - MCARI2,5 + 64.32 - MRETVI5 0.54 1.99

Yield = 13.46 — 218.8 - Rys — 0.56 - Cl 25 + 11.48 - TCARIps5 + 47.14 - MTCARIy5 0.61 147

HI = 0.63 —1.44 - Gys5 0.24 0.05

NCps = 4.01 — 6.43 - Gos 0.16 0.26

NCys5 = 2.71 — 1347 - G5 + 2.43 - REGNDVIy5 — 0.45 - MRETVI,5 0.68 0.32

NCoy = 2.70 — 20.81 - Gps — 5.68 - Rys — 1.35 - Clg o5 + 7.63 - MCARI2)5 077 02
—4.49 - MRETVIy5 ’ ’

NCSLgg = 2.12 — 27.46 - Rgs — 0.72 - Clg 55 + 2.38 - TCARI5 070 028
+1.94 - MCARI1p5 — 0.59 - MTCARDys : :

NCG = 1.52 — 5.52 - Rp5 + 0.35 - MCARI2y5 + 3.86 - MRETVI,5 0.57 0.08

NUas = 47.88 — 1187.6 - Gos + 1295.2 - Ros + 41.47 - Clg 55 0.80 19.70

NUy5 = 84.04 — 1610.1 - Ros + 169.9 - NDVIp5 — 42.58 - TCARI/OSAVL5 0.50 31.88

NUgg =

449.1 — 7260.7 - Rp5 — 133.1 ~CI{G,25} + 752.5 - MCARI2y5 + 113.6 - MTCARI,5 0.68 6063

NUSLgo = 273.0 — 40269 - Rps — 103.4 - Cl; 25 + 137.1 - MCARI1 5 068 1020
+263.6 - MCARI2p5 + 37.87 - MTCARIy5 ’ :

NUG = 164.8 — 3148.8 - Ros + 256.8 - TCARDs + 133.7 - MCARI2s 058 2179

+52.60 - MTCARIy5 + 447.1 - MRETVIp5

Table 8. Linear models constructed at the booting stage, before the second TdF, using features extracted
from two UAV images (at BBCH 25 and 45), built considering all 39 possible inputs (before input
selection). G, R, RE, and NIR represent, respectively, the green, red, red-edge, and near-infrared
reflectance values.

Model Formula Adj. R? RMSE
PHys — —28.34 + 93.89 - NDVI45 + 29.20 - MTCARI5 + 20.43 - NNIR5 0.84 343
BTy = —7.79 + 11.97 - NDVly5 + 0.96 - mSRys 0.87 055
BTog — —7.83 — 91.63 - Ros + 23.35 - NDVIs + 30.35 - NDREys 0.74 2.07
BSLgo = 10.52 — 221.1 - Rys — 1.68 - NDVI,5 + 23.12 - NDREy5 0.72 1.54
Yield = 447 — 62.02 - Ros — 90.98 - Rys + 6.26 - NDVIy5 — 0.18 - mSRy5 - 13
41856 - NDRE5 : '
HI = 0.39 4 3.80 - Ry5 0.31 0.04
NCis= ~097 +021-Gas — 639 MTCARIs — 281 - MRETVDs + 3605 Res (oo 020
—7.41-NGls + 6.44 - NNIR5 : :
NCog = 2.55 — 0.17 - Clg 25 — 32.92 - Rys -+ 2.30 - MRETVI 5 0.70 0.25
NCSLgo = 0.39 — 11.45- Rys + 1.36 - NDVlps — 0.87 - CIG 55 + 1.20 - MCARI1 5
—2.89 - MRETVIys — 0.01 - SRy5 — 0.93 - mSRys + 6.11 - gNDVI, 0.86 0.20
—4.49 - gRDVI 5 — 2.71 - TCARI/OSAVIys5 + 11.90 - NDREy5
NCG = 1.54 +1.18 - MRETVIy5 — 6.57 - Ry45 + 0.88 - MRETVIy5 0.64 0.08
NUys = —328.0 + 142.1 - OSAVIy5 + 115.3 - gNDVI 5 + 518.0 - NNIRys 0.86 16.72
NUgo = 258.8 — 5637.6 - Rys + 37.94 - mSRy5 + 654.4 - MRETVIy5 0.69 59.24
NCSLgg = —2520.1 + 1557.7 - TNDVI5 — 959.5 - GWDRVIy5 + 25.68 - MEVIy5
3968 MRETVIy5 + 6817.3 - Rys — 968.7 - DVIys +5199- gNDVI,g oo 1548
+98.08 - gRDVI5 +3687.2 - MTCARIy5 — 346.2 - TCARI/OSAVlys5 ' '
—4979.4- REDVI,5 + 1076.2 - NDREy5
NUG =  152.3 — 1000.2 - Rys — 2254.3 - Rys — 4.98 - mSRy5 + 333.8 - NDRE,5 s 1902

+25.22 - MRETV,5

Regarding the models built at the booting stage (Tables 8 and 9), models for biomass-related
traits (height and biomass) tended to exploit traditional biomass-sensitive VIs such as NDVI, SR, mSR,
or NDRE. Indeed, those VIs were found to exhibit high correlations with biomass in a number of
vegetation monitoring studies. At the booting stage, the canopy was fully closed and those VIs could
provide the necessary information for the differences in biomass, since no significant background
effects were observed. The models created for yield also comprised biomass-sensitive Vls, together
with the red and/or green channels. Conversely, the models built for N-related traits (NU and NC)
comprised mostly VIs sensitive to chlorophyll (e.g.,, MTCARI, MCARI2, and TCARI/OSAVI) and VIs
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incorporating the green channel (e.g., CIg and gNDVI), along with the traditional biomass-sensitive
VIs in some cases. Plant N content was highly correlated with its chlorophyll content and, hence,
chlorophyll-sensitive Vls increased the predictive capabilities of models for N-related traits. Moreover,
the recently developed VIs [32], incorporating the RE together with the green channel, were frequently
selected (most notably MRETVI and REGNDVI) for all model categories. Finally, the original green
and red channels (reflectance values) were also frequently selected at both stages, which shows that
the original image could increase the model’s accuracy.

Table 9. Linear models constructed at the booting stage, before the second TdF, using features extracted
from three UAV images (at BBCH 25, 31, and 45), built considering all 39 possible inputs (before
input selection). G, R, RE, and NIR represent, respectively, the green, red, red-edge, and near-infrared
reflectance values.

Model Formula Adj. R? RMSE
PHys = —42.01 4 96.08 - NDVly5 + 49.09 - NNIRy5 0.84 3.41
BT45 = —7.79 +11.97 - NDVIy5 + 0.96 - mSRy5 0.87 0.55
BTg9 = —7.83 —91.63 - Rp5 + 23.35 - NDVIy5 + 30.35 - NDREy5 0.74 2.07
BSLgg = 6.73 —233.7 - Ry5 + 6.06 - NDVIy5 — 1.17 - mSRy5 + 28.70 - NDREy5 0.72 1.55
Yield = —11.42 — 59.80 - Rys +29.90 - Ga +2.55 - Rys +21.97 - NDVI,5 0580 L6
—0.77 - mSRys5 + 15.74 - NDREy5 ’ ’
HI =0.3943.80 - Rys 0.31 0.04
NCys = —6.90 — 4.00 - Gps — 2.50 - Gay — 5.26 - MTCARIy; — 057 - REGNDVIy 058 020
+35.75 - Ry5 + 11.16 - gNDVIy5 + 18.53 - NGlys ’ ’
NCyg9 = —0.77+4 6.87 - G31 + 1.40 - TCARI3; + 2.45 - MRETVI3; + 3.69 - Ry5 0.85 0.18
+0.42 - mSRy5 — 1.14 - MRETVIy5 ’ ’
NCSLgg = —0.60 +3.21-Ggz; — 0.18 - Clg 31 + 0.83 - TCARI3; + 0.56 - MRETVI3; 0.80 023
40.35 - mSRy5 + 2.00 - NDRE5 ’ :
NCG =1.2741.59 - G31 +0.70 - MRETVI3; — 2.66 - Rg5 + 0.93 - MRET V145 0.72 0.07
NU,5 = —328.0 + 142.1 - OSAVIy5 + 115.3 - gNDVI5 + 518.0 - NNIRy5 0.86 16.72
NUgg = —112.3 +1659.4 - G31 — 1777.8 - Ry5 + 73.40 - mSRys5 + 281.0 - MRET V5 0.75 53.94
NUSLgg = —170.1+4319.2- Gy — 51.17 - Clg 31 — 29.78 - TCARI/OSAVI3; 0.82 2985
+84.55 - MRETVI3; + 1922.8 - Ry5 + 71.83 - mSRys5 + 276.9 - NDREys5 ’ ’
NUG = —219.3 —821.1-Rp5 +413.3 - G31 +73.23 - TCARI3; + 72.67 - MRET VI3 083 15.89

+569.6 - Ry5 +303.7 - NDVIy5 + 3.19 - mSRy5 + 189.8 - NDRE,5

Since the agronomic traits’ estimation was performed using inputs derived from UAV imagery,
the models’ output or errors could be displayed on the spatial domain, in order to support decision
making. Figure 4 provides such an example, depicting each experimental plot’s yield prediction errors
in 2017, for the models constructed at the tillering and the booting stage. Error values were calculated
as predicted minus field-measured yield (tn-ha—!). For most plots, the errors greatly decreased (in
absolute terms) from the tillering to the booting stage, as expected from the numerical results presented
so far. Using three images for the models built at the booting stage further decreased the absolute
errors, that is, more plots exhibited error values closer to zero. A notable exception was the top row’s
fifth plot from the left, for which the absolute error increased significantly, but this was a rather isolated
case. Similar maps of the models” outputs can directly support decision making, in order to efficiently
adapt the applied treatment during the growing season.

Finally, Table 10 reports the accuracy measures of all linear models constructed considering the
23 possible inputs (before input selection) that do not depend on the RE channel, in a similar format
with Table 6 above. For some models, the accuracy measures’ values equaled those of Table 6, which
was observed when the original models did not include any RE-related input. For most of the rest,
their accuracy was inferior, but the difference was usually small (relative decrease in Adj. R? below
10%). This indicates that multispectral sensors without a RE channel can be used for employing
the proposed methodology, with perhaps a small penalty in predictive accuracy. In a few cases, the
accuracy achieved by the non-RE-dependent model was even higher than the RE-dependent ones,
which is a result of the higher number of inputs selected by the lasso process for the former models.
This is possible since no input selection methodology is perfect or, more precisely, lasso solves the
minimization problem of equation (1), but that does not guarantee the maximization of the linear
model’s accuracy built independently in a subsequent step. Nevertheless, this behavior was observed
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rather rarely, at least for the models that exhibit high correlations with the observed data (e.g., Adj. R?
greater than 0.7). For brevity in the presentation here, the non-RE-dependent models’ formulas are

provided as Supplementary Materials.

Color coding of yield error values (predicted minus field-measured yield, in tn-ha):

-105

1.05

2.1

Figure 4. Yield prediction errors of each experimental plot in 2017, considering the linear models
constructed at (a) the tillering stage, (b) the booting stage with two images, and (c) the booting stage
with three images. Error values are expressed in tn-ha~! and have been calculated as predicted minus

field-measured yield. The N treatment identifier is also reported for each experimental plot, following

the representation of Figure 1.

Table 10. Summary statistics of the derived linear models, built considering the 23 possible inputs
(before input selection) that do not depend on the RE channel. Adjusted coefficient of determination
(R%), root mean square error (RMSE), coefficient of variation of the RMSE (CVRrnmsg) (%), and number

of predictors (#P) participating in each model are reported.

Trait Models at Tillering (1 image) Models at Booting (2 images) Models at Booting (3 images)

Adj. R* RMSE CV§MSE #P A‘i" RMSE CV}}MSE #P Adj.R> RMSE CV},‘MSE #P
(%) R (%) (%)

PHys 0.12" 2.59 8.95 1 — — — — — — — —
PHys 0.50 5.97 9.74 2 084 3.39 5.53 2 0.84 3.39 5.53 2
BTs 0.85 0.45 24.12 3 — — — — — — — —
BTys 0.56 1.03 22.51 3 087 0.55 12.01 2 0.87 0.55 12.01 2
BTy 0.39 3.17 23.12 1 0.70 2.23 16.22 2 0.70 2.23 16.22 2
BSLgg 0.59 1.88 24.45 4 069 1.61 20.99 2 0.69 1.61 20.99 2
Yield 0.61 1.48 19.19 3 075 1.18 15.27 4 0.79 1.08 14.04 4
HI 0.24 0.05 9.21 1 0.31 0.04 8.75 1 0.31 0.04 8.75 1
NCys 0.16 0.26 7.44 j E— — — — — — — —
NCys5 0.69 0.32 14.11 2 087 021 9.22 3 0.88 0.20 8.79 5
NCyg 0.71 0.25 19.82 4 075 0.23 18.43 3 0.83 0.19 15.02 5
NCSLgy 0.69 0.29 31.57 5 086 0.19 21.04 9 0.80 0.23 25.50 3
NCG 0.59 0.08 6.29 4 0.60 0.08 6.27 4 0.63 0.08 5.98 2
NUys 0.75 21.90 33.18 2 — — — — — — — —
NUys 0.49 31.92 30.54 3 088 15.60 14.93 4 0.85 17.28 16.54 2
NUgg 0.68 60.63 33.10 4 066 6241 34.07 3 0.84 43.19 23.58 4
NUSLgg 0.70 38.92 47.41 5 088 2470 30.09 10 0.82 29.86 36.38 3
NUG 0.62 23.77 23.52 4 084 15.55 15.38 9 0.82 16.33 16.15 6

* Statistically significant at a level of 0.05; all other models are statistically significant at a level of 0.01.
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4. Discussion

Estimating N requirements and biomass-related traits in rice plants is crucial for adopting efficient
precision agriculture management practices. The analysis conducted showcased that it is possible
to estimate at least BT and NU at key stages within the growing season (that is, a few days before
the two TdFs) using UAV-collected multispectral images and derivative VIs. At the booting stage,
estimating PH, yield, and NC was also achieved with low fractions of variance unexplained. However,
estimating NC before the canopy closes when the plant biomass is less compact (i.e., at tillering) is a
great challenge, as observed in a number of previous studies [22,31,32,65]. Plant biomass dominates
canopy reflectance before the heading stage, making the estimation of chlorophyll and N concentration
at early growth stages difficult [65]. Nevertheless, an R? value of 80% was achieved for NU by the
model built at tillering, which is an encouraging result. Due to the contribution of biomass and canopy
structure before the heading stage and given that NU is the combination of biomass and NC, NU is
more closely associated with VIs at the early growth stages [22].

Conversely, no acceptable accuracy was able to be achieved for HI at any growth stage. The
improvement in HI is a consequence of increased grain population density coupled with stable
individual grain weight, both of which are genotypic. Its high heritability was showcased by examining
its rather weak response to variation in management practices (fertilization, population density,
application of growth regulators) in the absence of severe stress [101]. Management practices that have
been proposed for increasing HI of rice are based on special water treatments [102], none of which
was applied in our experimentation setups. As such, no significant variations in HI across different N
treatments was observed in the field data, as shown in Figure 21.

Our modeling approach was based on multivariate linear regression exploiting several biomass-
and chlorophyll-sensitive VIs, since the use of reflectance in individual bands alone has limitations
due to the overlap of the effect of different nutrients and the influence of leaf and structural canopy
parameters [103]. The linear regression approach in combination with lasso was selected so that the
derived models are interpretable. The analysis showed that chlorophyll-sensitive VIs comprising the
green and/or the RE bands are required for estimating N content at all stages and biomass at the early
growth stages, whereas traditional biomass-sensitive VIs are useful for estimating biomass-relevant
traits after canopy closure, which is in line with previous studies (e.g., [32,34,37]). Moreover, the
reflectance values of the camera green and red bands were selected for most models at both the tillering
and booting stages.

The modeling approach design tried to minimize the image acquisitions during the growing
season. As such, only two images were required for estimating BT and NU a few days before each of
the two TdFs. Yield prediction accuracy was higher at the booting stage (R? from 0.61 at tillering to
0.77 at booting with two images), which is consistent with a recent study [39] that showed that the
best timing for predicting yield from hyperspectral measurements was indeed the booting stage. The
alternative approach of using an intermediate image approximately seven to ten days after the first
TdF is useful only in certain cases and, especially, if one is required to predict the plant’s N content
(NU or NC) at the maturity stage. Yield prediction accuracy is also slightly increased (R? from 0.77 to
0.80) with the use of the additional image data. Nevertheless, two UAV images will be required in
most real-world scenarios. It should be noted that the image acquisition stages reported here (BBCH
25, 31, and 45) are mostly indicative; the results are not expected to change if images at plus/minus
one value of the BBCH scale are used instead, since the plant’s physiology changes marginally in a
two-3-day period of time.

The results presented in this study can be very useful for providing N recommendations for the
two TdFs in rice. One possibility is to employ the approach of Xue et al. [28], which uses the plant’s
NU at each stage and the soil N supply, which can be estimated indirectly from a treatment with no
N applied (CO in our experimentation). Taking into consideration that the soil initial N supply is
mandatory, since the amount of N not accounted for N recovery efficiency should not be interpreted as
N that is lost without utilization from the soil-plant system. It has been reported that the recovery
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efficiency of N fertilizer by rice generally ranges from 20% to 80% with an average of about 30%
to 40%, whereas 16% to 25% of the total applied N fertilizer could be recovered in the soil organic
fraction between panicle differentiation and maturity of rice [104]. An alternative approach is to use
the models’ estimations of biomass and NU or NC to calculate the plant’s N nutrition index (NNI),
provided that a critical N dilution curve for the region of application and selected rice variety exists
or can be calibrated [34,36,65]. A third alternative is to use the N concentration estimations derived
from the models to calculate the so-called nitrogen sufficiency index (NSI), which can be directly
used to provide N fertilization recommendations [105]. This approach requires the establishment of
reference strips within the rice field, which receive an amount of N equal or slightly higher than that
recommended by standard soil tests [106].

No matter which of the aforementioned approaches is selected for providing fertilization
recommendations, the methodology presented in this study provides a cost-effective alternative
to sampling approaches (either in-situ SPAD measurements or N concentration or uptake calculated in
the laboratory) for estimating the rice plant’s N status. Moreover, the use of UAV-collected spatial data
highlights the within-field variability of N requirements directly, since the agronomic traits estimations
from the models are produced for all image pixels, thus resulting in a detail map of the whole field. The
traditional approach of field sampling requires spatial interpolation between the sampled positions
for obtaining equivalent maps, which generally introduces large errors in the estimations unless an
unrealistically dense sampling is performed. It should be stressed that our approach does not provide
any insights on the most appropriate timing to apply the TdFs. In this study we have followed the
local and international standard practices for rice cultivation, with the two TdFs being performed at
tillering and at booting according to the international standards. If more precision with respect to
the optimal timing for applying the TdFs is required, growth simulation models that are based on
meteorological predictions [107], time-series of remotely sensed data [62], or both [108] can be used.

The models presented in this study were constructed considering small experimental plots, in
order to facilitate field sampling and to assure that each sampling area is homogeneous, at least as
much as possible. For real-world field-level applications, one has to also address the issue of accurate
geo-referencing of the orthomosaic derived from the original UAV imagery. The sensitivity of global
navigation satellite system (GNSS) receivers and inertial measurement units (IMU) integrated within
compact sensors, such as Parrot Sequoia, will typically result in geolocation errors of 3-5 m in the
orthorectified mosaic produced by most SfM software, which may be unacceptably high for precision
agriculture applications, especially in smaller rice paddies. This issue can be addressed through the use
of ground control points (GCPs) during image acquisition [83,109], the location of which is either fixed
or measured with specialized equipment more accurate than the camera integrated one (e.g., differential
GNSS). Since the latter could prove quite cumbersome and time-consuming for large-scale applications
(especially in rice fields which are flooded), automatic registration methods using a reference image
can be applied instead, which is an active research topic with many methods having been proposed
recently [110-113]. The latter can reduce the geolocation errors to approximately 1 m or even less,
which is sufficient for precision agriculture applications and variable rate fertilization in particular.
From our experience, the Pix4D Mapper Pro software—that fuses SfM techniques with Sequoia’s GNSS
and IMU readings during the flight and known camera/image acquisition parameters—was able to
produce accurate orthomosaics in relative terms, that is, the distances between points were accurate
but the whole orthomosaic exhibited shifts of 1-3 m and a very slight rotation in some cases. The
subject of accurate UAV image registration is very broad and outside the scope of the current study. To
this end, we actually shifted the polygons used to derive the average pixels value within each plot
manually for each image, so that they corresponded to the same locations in all UAV image mosaics.
Differences of a few centimeters that may have been introduced by this process are insignificant for
our analysis, since the experimental plots are considered homogeneous.

For large-scale applications (big farms with scattered fields or regional level), high-resolution
satellite imagery could be considered for applying our models, if UAV image acquisition is deemed to
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be too time or resource inefficient. For large rice fields, Sentinel-2 imagery is an obvious candidate, since
it comprises a RE channel and has a short revisit cycle (five days). However, the level of analysis would
be much coarser than ours, since the RE channel is provided at a spatial resolution of 20 m. Alternatively,
only the 10 m bands of Sentinel-2 could be used in the analysis, employing the models built with
only the 23 inputs not dependent on the RE channel (Table 10 and Tables S1-S3 in the Supplementary
Materials). Commercial, very high-resolution satellite imagery is another viable alternative, at least
within the framework of a commercial fertilization recommendation service provision. The models
constructed with only the VIs that do not require the existence of a RE channel are useful in such a
scenario, since most commercial, very high-resolution satellite sensors do not comprise an RE channel.
In the latter theme, it is worth mentioning the products that have started to be offered recently by
Planet (https://www.planet.com), a company that operates a large constellation of small satellites
(Cubesats) that acquire daily images of the whole earth. Both PlanetScope (spatial resolution of 3 m;
images acquired daily) and SkySat (spatial resolution of 0.8-1 m; sub-daily acquisitions are possible)
analysis-ready data could prove useful for establishing a fertilization recommendation service based on
the proposed modeling approach, since their spatial and temporal resolution is sufficient for obtaining
cloud-free imagery at the required growth stages for every rice field in a broader region.

Perhaps the most important novelty of our study is the use of a cost-effective multispectral
imaging sensor onboard UAVs for estimating rice agronomic traits. Most other studies for estimating
rice agronomic traits employ near-ground measurements, either using hyperspectral sensors or active
canopy ones, which however do not need to account for the complex background phenomena arising
for the lower resolution of the UAV-collected imagery. In the latter case, techniques for removing the
background [57] are difficult to be employed. This also means that the results of previous studies are
not necessarily transferable to UAV-collected multispectral data. In this study we showcase that some
similarities with previous results do exist, at least in terms of the most important VIs for estimating
rice agronomic traits. Arguably, our study provides a more applied approach that could be integrated
to any workflow or budget and can be easily adapted to a wide range of applications, even commercial
ones, at least with the current technological standards.

The predictive models presented in this study were developed following field experimentation in
Greece using a japonica-type rice variety. Rice in Europe is mainly cultivated in the South Mediterranean
countries, which are characterized by very similar climatic conditions, whereas the cultivation treatments
are also similar. Provided that no extreme variations in meteorological conditions are observed during the
growing season, the results of this study should be readily applicable to other rice producing European
countries, although this needs to be testified with additional experimentation in the future. Moreover,
the sensor used (Parrot® Sequoia™) was selected because it provides a generally affordable solution that
is readily supported by most flight planning and orthomosaic generation software, without the need of
any additional configuration on the user side. However, its bands’ spectral response is very similar with
that of other alternatives or even very-high resolution satellite imagers. Therefore, our workflow could
be applied considering a number of alternative sensors.

5. Conclusions

This study presented empirical models for predicting agronomic traits of rice plants through
remotely-sensed multispectral imagery at key growth stages of the cultivation (at tillering and at
booting). Multiple linear regression models for predicting PH, aboveground biomass, NC, NU, grain
yield, and HI were constructed, using as input reflectance values and VIs obtained from a compact
and cost-efficient four-band sensor onboard a UAV. The models were constructed using field data
and images from two consecutive years in a number of experimental rice plots in Greece, employing
different N treatments. The results showed that high accuracies can be achieved for NU and biomass
at the tillering stage and for all traits but HI at the booting one. The proposed workflow is cost-efficient
and can be easily adapted to a wide range of applications, at least with the current technological
standards. To the best of our knowledge, this is the first study that presented such a comprehensive
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analysis for estimating various yield-related agronomic traits of rice plants during the growing season
from UAV-collected multispectral data, under a flexible and easily repeatable framework.

In the future, we intend to continue the work assimilating new field data in the modeling process
and assessing the performance of state-of-the-art machine learning modeling techniques. Moreover,
we intend to devise N recommendation methodologies for TdFs, based on the predictions provided
by the models, and assess their validity in real rice fields with precision agriculture machinery. We
will also try to verify the effectiveness of our approach in other European rice producing regions.
Finally, a future endeavor will be the experimentation and development of similar predictive models
for indica-type rice varieties.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2072-4292/11/5/545/s1,
Table S1: Linear models constructed at the tillering stage, before the first top-dressing fertilization (TdF), built
considering the 23 possible inputs (before input selection) that do not depend on the RE channel; Table S2. Linear
models constructed at the booting stage, before the second TdF, using features extracted from two UAV images (at
BBCH 25 and 45), built considering the 23 possible inputs (before input selection) that do not depend on the RE
channel; Table S3. Linear models constructed at the booting stage, before the second TdF, using features extracted
from three UAV images (at BBCH 25, 31, and 45), built considering the 23 possible inputs (before input selection)
that do not depend on the RE channel; Figure S1: Scatter plots of predicted versus observed values for all lineal
models constructed at the tillering stage; Figure S2: Scatter plots of predicted versus observed values for all lineal
models constructed at the booting stage, using features extracted from two UAV images; Figure S3: Scatter plots
of predicted versus observed values for all lineal models constructed at the booting stage, using features extracted
from three UAV images.
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