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Abstract: Remote sensing images have been applied to a wide range of fields, but they are often degraded
by various types of stripes, which affect the image visual quality and limit the subsequent processing tasks.
Most existing destriping methods fail to exploit the stripe properties adequately, leading to suboptimal
performance. Based on a full consideration of the stripe properties, we propose a new destriping model
to achieve stripe detection and stripe removal simultaneously. In this model, we adopt the unidirectional
total variation regularization to depict the directional property of stripes and the weighted `2,1-norm
regularization to depict the joint sparsity of stripes. Then, we combine the alternating direction method of
multipliers and iterative support detection to solve the proposed model effectively. Comparison results
on simulated and real data suggest that the proposed method can remove and detect stripes effectively
while preserving image edges and details.

Keywords: alternating direction method of multipliers; destriping; iterative support detection; joint
sparsity; remote sensing images

1. Introduction

Remote sensing images have been widely used in many fields, such as urban planning, environment
monitoring, and precision farming [1]. Unfortunately, remote sensing images are often contaminated by
noises. One common and important noise is the stripe noise, which is mainly due to lines being dropped
during scanning, differences between forward and reverse scanning [2], and variations in calibrations
across sensor arrays in multisensor instruments. In real applications, stripe noise in remote sensing images
not only reduces the image visual quality, but also lowers the accuracy of further processing tasks, such as
classification [3], superresolution [4], and unmixing [5,6]. Therefore, the task of destriping is an important
problem before further applications. Destriping aims at removing the stripes while maintaining image
features, such as edges and details.
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1.1. Existing Methods

Existing destriping methods can be categorized into three classes: filter-based, statistics-based,
and optimization-based.

Filtering-based methods assume that stripes are periodic and can be distinguished from the power
spectrum. Therefore, they suppress the specific frequencies caused by stripe noise in the transform domain,
such as low-pass filter [2], wavelet analysis [7–10], and the Fourier transform [2,11]. Although these
methods are easy to implement and perform well in specific cases, they generally lead to blurry artifacts in
the resulting images due to the shrinkage of the frequencies of image details. To overcome this drawback,
Munch et al. [12] proposed a combined Fourier and wavelet filter-based method to exploit the directional
property of stripes via wavelet decomposition, achieving results with less blurry artifacts.

Statistics-based methods depend on the statistical characteristic of the digital numbers of each sensor
[13–18], such as moment matching [14,17] and histogram matching [15,18]. The histogram matching
assumes that the probability distribution of scene radiances seen by each sensor is the same and performs
well only for single-type sensors competitively. To solve this problem, Wegner [18] proposed calculating
the statistics only over homogeneous image regions; Gorsini et al. [19] applied the radiometric equalization
to remove non-periodic stripes. In general, the main problem of statistics-based methods is that these
methods greatly depend on the pre-established reference moment or histogram.

The optimization-based methods formulate destriping as an ill-posed problem [20–23], in which
the true image and stripes are characterized by prior information [24,25]. For example, Shen and
Zhang [22] proposed a maximum a posteriori method based on Huber–Markov regularization for image
destriping and inpainting. Bouali and Ladjal [20] used the unidirectional total variation (UTV) to exploit
the direction features of stripes in Moderate-Resolution Imaging Spectroradiometer (MODIS) images.
Subsequently, UTV [26,27] and its variants have been widely used for destriping [21,23,28–31]. For example,
Dou et al. [28] proposed a non-convex destriping model by employing the `0-norm variant of UTV and the
global sparsity regularization, which is depicted by the `1-norm to constrain the stripe noise. The method
performs well, but it fails to consider the inner structure among the stripes. Compared with Dou’s
model, we excavate the directional property of strips more deeply and use a joint sparsity regularization,
which is depicted by the weighted `2,1-norm (`w,2,1-norm), to constrain the stripe component. Recently,
some researchers addressed multispectral and hyperspectral image [32–34] destriping by exploiting the
high coherence between different image bands adequately [35,36]. There are several commonly-used
sparsity metrics [37] to describe the sparsity of stripes, e.g., `0-norm, `1-norm, `2,0-norm, and `2,1-norm.
Here, `0-norm and `1-norm penalize, respectively, the number and the magnitude of non-zero elements,
which describes the global sparsity. On the other hand, `2,0-norm and `2,1-norm penalize, respectively,
the number and the magnitude of non-zero columns, which describes the group sparsity to explore the
structural sparsity of stripes. As summarized in Table 1, we discuss the differences and relations among
several state-of-the-art optimization-based methods.
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Table 1. A comparison of the related optimization-based methods and their properties. UTV, unidirectional
total variation.

Method Stripe Prior Image Prior Algorithm
Sparsity Low-Rankness Smoothness Smoothness

IRUV[29] — —
UTV for

factors(`p norm)
UTV for

factors(`p norm)
an iterative reweighted
least squares algorithm

WDSUV [30] `0 norm —
UTV (the combination

of the weighted
`1 norm and `0 norm)

the weighted
UTV

(`1 norm)

an alternative direction
multiplier method algorithm

LRSID [38] — nuclear norm — anisotropic TV
an alternative direction

multiplier method algorithm

GSLV [39] `0 norm —
UTV

(`1 norm)
UTV

(`1 norm)
an alternative direction

multiplier method algorithm

DSM [28] `1 norm —
UTV

(`0 norm)
UTV

(`1 norm)
a proximal alternative direction

multiplier method algorithm

GSUTV [40] `2,1 norm —
UTV

(`1 norm)
UTV

(`1 norm)
an alternative direction

multiplier method algorithm

JSUTV `w,2,1 norm —
UTV

(`1 norm)
UTV

(`1 norm)

a combined algorithm of
the alternative direction multiplier method

and iterative support detection

1.2. Motivation

Most existing destriping methods concentrate on estimating the clean image directly from the
observed image, while paying little attention to the stripe component. Besides the directional and structural
properties of the stripes, the stripe position is also an important feature, and effective exploitation of this
feature can significantly improve the destriping performance.

In this paper, we propose a novel destriping model that can detect the stripe position and remove
the stripes simultaneously, by fully exploiting the properties of the stripes. Our model exploits both
the structural and the directional properties of stripes. On the one hand, we use the `w,2,1-norm to
characterize the joint sparsity (structural property) of stripes. In addition, we use the iterative support
detection (ISD) [41,42] to calculate the weight vector in the `w,2,1-norm, which shows the stripe position
in the observed image. On the other hand, we use UTV to characterize the directional property of
stripes. We apply the alternating direction method of multipliers (ADMM) [6,43–45] algorithm to solve the
proposed model efficiently. In summary, our contributions are as follows:

(1) We propose a non-convex optimization model to characterize the position properties and the joint
sparsity of stripes using the `w,2,1-norm, which can significantly improve the destriping performance.

(2) We combine ADMM and ISD to solve the proposed model effectively. Under specified conditions,
the convergence of the proposed method can be guaranteed. In the solving process, we achieve
stripe detection by calculating the weight vector. Meanwhile, we design new indices to analyze the
accuracy of detection.

The remainder of this paper is organized as follows. Section 2 gives the proposed model with analyses
of the stripe properties. Section 3 presents the optimization algorithm. Section 4 shows the experimental
results and provides the comparisons with other methods. Section 5 concludes this paper.

2. The Proposed Model

Without loss of generality, we consider each stripe as a column, since we can rotate the image to make
the stripe vertical if the stripe is horizontal. We consider the following additive degradation model [20,38]:
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F = U + S, (1)

where F ∈ Rm×n, U ∈ Rm×n, and S ∈ Rm×n represent the observed image, the ground-truth image,
and the stripe noise, respectively. This degradation process is shown in Figure 1.
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Figure 1. Destriping results in Terra MODIS by GSUTV. The first line: (a) Degraded image. (b) Destriping
image. (c) Stripe component. The second line: (d) Horizontal gradient of the observed image. (e) Vertical
gradient of the observed image. (f) Horizontal gradient of the destriping image. (g) Vertical gradient
of the destriping image. (h) Horizontal gradient of the stripe component. (i) Vertical gradient of the
stripe component. The third line: (j) Histogram of horizontal gradient. (k) Histogram of vertical gradient.
The fourth line: (l) `2-norm values of the stripe component.
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From a degraded image F, we detect the stripe position and estimate the stripe S simultaneously by
solving the following model:

min
S
‖DyS‖1,1 + λ1‖S‖ω,2,1 + λ2‖DxF− DxS‖1,1, (2)

where ‖DyS‖1,1, ‖DxF− DxS‖1,1, and ‖S‖ω,2,1 are denoted as:

‖DyS‖1,1 :=
n

∑
j=1
‖DyS:j‖1, (3)

‖DxF− DxU‖1,1 :=
n

∑
j=1
‖DxF:j − DxU:j‖1, (4)

‖S‖ω,2,1 :=
n

∑
j=1

ωj‖S:j‖2, (5)

where the subscript : j denotes the jth column; Dy and Dx are linear second-order difference operators
along the vertical direction and the horizontal direction, respectively; λ1 > 0 and λ2 > 0 are regularization
parameters balancing the three terms; ω = [ω1, · · · , ωn]> is a weight vector. After estimating the stripe S
from (2), the ground-truth image U is obtained by F− S.

We explain in detail the motivation of each term in our model. To illustrate the stripe properties
appropriately, we use GSUTV [40], which achieves the destriping by estimating the stripe component,
to remove stripes in the Terra MODIS image and explore the stripe properties in results. Figure 1a–c
presents the degraded image, the destriping result, and the stripe component, respectively. Figure 1d–i
shows the gradients of the observed image, the destriping image, and the stripe image in two directions:
horizontal (across the stripes) and vertical (along the stripes), respectively.

We analyze the gradient statistical distribution before and after the degradation process firstly. It is
easy to see that the horizontal gradient mapping between Figure 1d,f differs greatly in the image domain,
while the vertical gradient mapping between Figure 1e,g is similar. In addition, we plot their corresponding
gradient histograms in Figure 1j,k. We observe that the gradient distributions of Figure 1d,f are absolutely
different, while the gradient distributions of Figure 1e,g are almost the same. Such an observation is not
surprising, since the stripe noise has significantly directional feature. As shown in Figure 1c, we observe
that the stripe noise possesses a significant structural property. Furthermore, we plot `2-norm values of
the stripe component (shown in Figure 1l).

The smoothness along the vertical direction of the stripe: The first term ‖DyS‖1,1 penalizes the
gradient of the stripe image along the vertical direction. Figure 1c shows the great smoothness along the
vertical direction of the stripe image, and Figure 1i shows that the vertical gradient of the stripe image
has significant sparsity. Thus, we chose the `1-norm of the vertical gradient of stripe image to keep the
stripe component smoothness well. Although the `p-norm (0 < p < 1) [39,46] can depict sparsity more
accurately than the `1-norm [28], here we did not adopt them because they are nonconvex and have a high
possibility of affecting the convergence of the algorithm.

Joint sparsity of the stripe: The second term ‖S‖ω,2,1 characterizes the joint sparsity of stripes.
As shown in Figure 1c, the stripe component has a special column structure. As Chen et al. [40] pointed
out, the stripe component is composed by column vectors, and each column can be considered as a group.
Moreover, we observe that the structure of the stripe component exhibited joint sparsity in the sense
that the non-zeros of S1:, · · · , Sm: absolutely appeared in the same position. This motivated us to use a
joint sparsity regularization. As shown in Figure 1l, most of the `2-norm values of columns are close
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to zero, while the other values are much bigger than them. This explains again that the joint sparsity
regularization is more appropriate to depict the structural property of stripes than the normal group
sparsity [47] regularization.

Compared with GSUTV, the main difference of the proposed model is the weight parameter vector
ω. We can remove some columns from the regularization by setting the weighted vector ω, if we regard
them as true stripe columns. Therefore, the `ω,2,1-norm can depict joint sparsity more appropriately than
the `2,1-norm. It is worth mentioning that unlike most of the present weighted models, which acquire ω:j
from the set of positive real numbers, we adopt ω:j from {0, 1} due to the specific property of the stripes.
This means that if we regard S:j as the true non-zero column (true stripe column), we can forbid it from
moving nearer to zero, and set ω:j as zero. Because the position information about non-zero is unknown,
ωj is not given beforehand. Therefore, we used ISD [42], as a self-learning scheme, to explore partial
support information gradually.

The smoothness along the horizontal direction of the ground-truth image: The third term ‖DxF−
DxS‖1,1, in the proposed model, penalizes the difference between the gradient of the ground-truth image
and the stripe image along the horizontal direction, which enhances the constraint on the smoothness
of the ground-truth image along the horizontal direction. Generally speaking, the ground-truth image
exhibits smoothness along both horizontal and vertical directions, resulting in sparsity in the gradient
domain. However, the stripe noise mainly damages the sparsity along the horizontal direction (Figure 1d),
rather than the vertical direction (Figure 1e). Therefore, we chose the `1-norm of the horizontal gradient of
the ground-truth image to make the desired ground-truth image smoother along the horizontal direction.

The framework of the proposed method is illustrated in Figure 2, and the details of the optimization
method are shown in the next section.

Remark 1. The proposed model is non-convex due to the multiplicative nature of ω and S in the regularization
term ‖S‖ω,2,1. It is worth mentioning that the proposed model is convex with respect to the stripe S.

The observed image The estimated stripe image     The estimated 
ground-truth image

Estimation of  stripe image

Input Final output

ADMM  ISD
   The  intermediate
          estimated

 The weighted                 
vector

Input

Figure 2. The framework of the proposed model. ADMM, alternating direction method of multipliers; ISD,
iterative support detection.
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3. The Optimization Algorithm

To solve the proposed model, we alternately used ISD [42], a self-learning scheme to explore true
non-zeros gradually, and ADMM [43,48,49], a useful approach to deal with a non-smooth, but convex
optimization model. The optimization method that combines ISD and ADMM is reasonable. The model
is hard to solve due to the non-convex regularization term ‖S‖ω,2,1 and the nature of the remainder
non-smooth regularization terms. To overcome the solving difficulty caused by ‖S‖ω,2,1, we extended the
idea of ISD in our method from normal sparsity to joint sparsity. We can detect the position of non-zeros
and update the value of the weight vector based on ISD. It is easy to see that when the weight parameter
vector is a constant, the proposed model degrades to an ordinary convex model in terms of S, and we call
it the joint sparsity model. The joint sparsity model, which is non-smooth, but convex, is simple to deal
with by ADMM. Therefore, we used ADMM to handle the problem caused by the non-smooth regularizer.
Therefore, we solved this model by executing the following two steps:

(1) Step 1: Keep the weight vector fixed, and solve the joint sparsity model by ADMM. In the first
iteration, we set the initial value of ω as [1, · · · , 1]> and obtained an estimation S1 by solving the
joint sparsity model.

(2) Step 2: Using the estimated S from Step 1, update ω via a support detection operation.

The details of the two steps are shown as follows.

3.1. Solving the Joint Sparsity Model

The main idea of ADMM is, by introducing auxiliary variables, to transform the unconstrained
optimization model into a constrained optimization model with the splitting structure of variables.
By introducing three auxiliary variables X, Y, and Z, we rewrite (2) as follows:

min
S,X,Y,Z

‖X‖1,1 + λ1‖Y‖ω,2,1 + λ2‖Z‖1,1

s.t. X = DyS,

Y = S,

Z = DxF− DxS.

(6)

The augmented Lagrangian function of (6) is as follows:

Lβ(S, X, Y, Z, A1, A2, A3) = ‖X‖1,1 + λ1‖Y‖ω,2,1 + λ2‖Z‖1,1 + 〈A1, DyS− X〉+ 〈A2, S−Y〉

+ 〈A3, DxF− DxS− Z〉+ β

2
‖DyS− X‖2

F +
β

2
‖S−Y‖2

F +
β

2
‖DxF− DxS− Z‖2

F, (7)
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where A1, A2, and A3 are the Lagrange multipliers and β > 0 is a penalty scalar. ADMM iterates as follows:

X(k+1) = argmin
X

Lβ(S(k), X, Y(k), Z(k), A(k)
1 , A(k)

2 , A(k)
3 ),

Y(k+1) = argmin
Y

Lβ(S(k), X(k+1), Y, Z(k), A(k)
1 , A(k)

2 , A(k)
3 ),

Z(k+1) = argmin
Z

Lβ(S(k), X(k+1), Y(k+1), Z, A(k)
1 , A(k)

2 , A(k)
3 ),

S(k+1) = argmin
S

Lβ(S, X(k+1), Y(k+1), Z(k+1), A(k)
1 , A(k)

2 , A(k)
3 ),

A(k+1)
1 = A(k)

1 + β(DyS(k+1) − X(k+1)),

A(k+1)
2 = A(k)

2 + β(S(k+1) −Y(k+1)),

A(k+1)
3 = A(k)

3 + β(DxF− DxS(k+1) − Z(k+1)).

(8)

The details of solving the four subproblems are shown as follows:

(1) The X-subproblem can be rewritten by completing the square as follows:

argmin
X

‖X‖1,1 + 〈A1, DyS− X〉+ β

2
‖DyS− X‖2

F

= argmin
X

‖X‖1,1 +
β

2
‖DyS− X +

A1

β
‖2

F,
(9)

whose solution can be given by the following column-wise vector-soft threshold function [50,51]:

X(k+1)
ij = shrink((DyS(k) +

A(k)
1
β

)ij,
1
β
)

= max{|(DyS(k) +
A(k)

1
β

)ij| −
1
β

, 0}
(DyS(k) +

A(k)
1
β )ij

|(DyS(k) +
A(k)

1
β )ij|

.

(10)

Considering the matrix X ∈ Rm×n, the cost of computing X is O(mn).

(2) The same as the X-subproblem, the Z-subproblem can be solved by the shrinkage operator:

argmin
Z

λ2‖Z‖1,1 + 〈A3, DxF− DxS− Z〉+ β

2
‖DxF− DxS− Z‖2

F

= argmin
Z

λ2‖Z‖1,1 +
β

2
‖DxF− DxS− Z +

A3

β
‖2

F,
(11)

so:

Z(k+1)
ij = max{|(DxF− DxS(k) +

A(k)
3
β

)ij| −
λ2

β
, 0}

(DxF− DxS(k) +
A(k)

3
β )ij

|(DxF− DxS(k) +
A(k)

3
β )ij|

. (12)

The same as the X-subproblem, the cost of computing Z is also O(mn).

(3) The Y-subproblem is:

argmin
Y

λ1‖Y‖ω,2,1 + 〈A2, S−Y〉+ β

2
‖S−Y‖2

F, (13)
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which also can be solved by a shrinkage operator [49–51]:

Y(k+1)
:j = max{‖(S(k) +

A(k)
2
β

):j‖2 −
λ1

β
ωj, 0}

(S(k) +
A(k)

2
β ):j

‖(S(k) +
A(k)

2
β ):j‖2

. (14)

The cost of computing Y is also O(mn).

(4) The S-subproblem:

argmin
S

β

2
‖DyS− X +

A1

β
‖2

F +
β

2
‖S−Y +

A2

β
‖2

F +
β

2
‖DxF− DxS− Z +

A3

β
‖2

F (15)

is a quadratic optimization, which has the solution:

S(k+1) = (D>y Dy + I + D>x Dx)
−1[D>y (X(k+1) −

A(k)
1
β

)+

(Y(k+1) −
A(k)

2
β

) + D>x (DxF− Z(k+1) +
A(k)

3
β

)].

(16)

We assume that the boundary of S is periodic in this paper; thus, D>y Dy, D>x Dx are both block cyclic
system matrices. Therefore, (16) can be efficiently solved by fast Fourier transforms [42].

S(k+1) = F−1 ξ

F (Dy)⊗F (Dy) + 1 +F (Dx)⊗F (Dx)
, (17)

where:

ξ = F (Dy)⊗F (X(k+1) −
A(k)

1
β

) +F (Y(k+1) −
A(k)

2
β

) +F (Dx)⊗F (DxF− Z(k+1) +
A(k)

3
β

),

F (·) and F (·)−1 denote the fast Fourier transform and its reverse transform, respectively. The symbol
⊗ means component-wise multiplication, the the same as the division, and the symbol (·) means
component-wise complex conjugate. The cost of computing S is O(mn log mn) by using fast Fourier
transform. At each iteration, the cost of computing all the variables X, Y, Z, and S is O(mn log mn).

3.2. Update the Weight Vector ω via ISD

In this step, we used ISD to detect the position of stripes and update the weight vector ω based on
the current intermediate solution S.

Firstly, we give the definition of the set whose elements are indices of detected nonzero columns
as follows:

I(v+1) := {j : |s(v)j | > ε(v)}, v = 1, 2, · · · , (18)

where sj = ‖S:j‖2, s is a sequence containing |s1|, · · · , |sn|.
Secondly, we chose threshold ε(v) by the “first significant jump”. In detail, after sorting sequence s(v)

from small to large, the “first significant jump” scheme finds the smallest j satisfying the inequality:

|sk
j+1(v)
| − |sk

j(v)
| > τ(v), (19)
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where skj
is the jth number of s(v), which is sorted. There are several easy methods [42] to define τ(v);

in this case, we set it as the average value of |s1|, · · · , |sn|.
Thirdly, we set ε(v) = |sk

j(v)
|. It is easy to see that the true stripe entries of |s(v)| are large in magnitude

and small in number, and the false ones are large in number and small in magnitude. Therefore, the “first
significant jump” scheme spread out the magnitudes of the true stripe entries and clustered those of the
false ones.

Finally, we can obtain the index set I(v+1) and give the definition of the set whose elements are indices
of detected nonzero columns as follows:

T(v+1) := (I(v+1))c = {{1, 2, · · · , n}\I(v+1)}. (20)

We update the weight vector ω(v+1) according to the two index sets as follows:ω
(v+1)
j = 1, j ∈ T(v+1),

ω
(v+1)
j = 0, j ∈ I(v+1).

(21)

The main computational cost of the weight vector ω stems from computing the S in the inner
loop. Moreover, the iteration number is small empirically, as per the following discussion in Section 4.1.
Therefore, the total complexity of the proposed algorithm is O(mn log mn).

The pseudocode of the algorithm combining ADMM and ISD is summarized in Algorithm 1.

Algorithm 1 The optimization algorithm combining ADMM and ISD.

Input: The observed image F, the parameters λ1, λ2, the penalty parameter β, the
outer iteration number V, and the inner iteration number Kmax.

Initialize: ω
(0)
j = 1, (j = 1, · · · , n).

Iteration:
1: for v = 0 to V do
2: for k = 0 to Kmax do
3: Initialize for inner loop: ω = ω(v), S(0) = 0, X(0) = 0, Y(0) = 0, Z(0) = DxF,

A(0)
i = 0(i = 1, 2, 3), and ε = 10−4.

4: Update X(k+1), Y(k+1), Z(k+1) by column-wise vector-soft threshold via (10)
(14), and (12).

5: Update S(k+1) by (16).

6: Update the multiplier A(k+1)
i (i = 1, 2, 3) by (8).

7: Check the convergence condition:
‖(F− S(k+1))− (F− S(k))‖/‖(F− S(k))‖ ≤ ε.

8: end for
9: Estimate the intermediate ground-truth image U(v) = F− S(k).
10: Calculate the index set I(v+1) by the method of threshold choice for S = S(k).
11: Update the weight vector ω(v+1) by (21).
12: end for

Output: The final weight vector ω(V) and the estimation of the ground-truth image U.

Remark 2. Although we set ω from the set of {0, 1}, we can consider ω from real continuous values as an alternative.
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4. Experiments

In this section, we conduct experiments on both simulated and real data to test the efficiency
of the proposed method. Five state-of-the-art destriping methods were chosen for comparison: the
filtering-based method [12] (WAFT), the statistics-based method [13] (SLD), and optimization-based
methods such as the weighted UTV-based method [29] (WDSUV), the low-rank decomposition-based
method [38] (LRSID), and the group sparsity regularization-based method [40] (GSUTV). In the simulated
experiments, the original MODIS Image Band 32 of size 400 × 400, which is available at https://
ladsweb.nascom.nasa.gov/, and the IKONOS image of size 377× 331, which can be downloaded from
https://openremotesensing.net/, were used by adding synthetic stripe noises to the clean image. In the real
experiments, we used two real MODIS images, which are available at https://ladsweb.nascom.nasa.gov/,
degraded by different types of stripes. For the convenience of quantitative evaluation and parameter
selection, the gray value of the test images was normalized to [0,1]. We used a desktop of 16 GB RAM,
Intel (R) Core (TM) i5-4590U CPU, @3.30 GHz to run all codes in MATLAB (R2017a).

To evaluate the results of both simulated and real experiments, we chose several qualitative and
quantitative assessments. The qualitative assessments include the visual effect of destriping image and the
mean cross-track profile [38]. In the simulated experiments, we chose full-reference evaluation indices:
the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) [52]. Moreover, to evaluate
the correctness of stripe detection, we defined two indices called the detection error rate (DER) and the
detection missing rate (DMR) as follows:

DER(S, W) =
a
n

,

DMR(S, W) =
b
n

,
(22)

where S is the synthetic stripe component, W is the last weight vector, a is the number of error detected
stripe columns, and b is the number of missing detected stripe columns. In real experiments, we selected
two no-reference indices including noise reduction (NR) [16,22,36] and mean relative deviation (MRD)
[16,36], since the ground-truth image was unavailable. NR depicts the ratio of stripes reduction in the
frequency domain; MRD evaluates the ability of the method to retain the pixel value in stripe-free regions.
In short, larger values of PSNR, SSIM, and NR indicate better destriping performance, and smaller values
of MRD indicate better destriping performance.

4.1. Parameter Setting

In the inner loop, there are two regularization parameters λ1, λ2 and the penalty parameter β.
We empirically found that the optimal values of λ1 and λ2 varied for different test images. Therefore,
we used the hand-tuning strategy to tune them. To show the effects of the three parameters on the
destriping performance, we performed an analysis by using a simulated experiment (Case 3) as an example.
Figure 3 shows the corresponding PSNR index for different λ1, λ2, and β, respectively. From Figure 3,
we find that the PSNR curves reached the highest point at λ1 = 0.004 (λ2 = 0.001, β = 0.1), λ2 = 0.0005
(λ1 = 0.004, β = 0.1), and β = 0.1 (λ1 = 0.004, λ2 = 0.0005). In our experiments, we set the λ1 ∈
[0.001, 0.01] with increments of 0.001 and λ2 ∈ [0.0001, 0.001] with increments of 0.0001. In theory [43],
the penalty parameter β does not impact the convergence of ADMM greatly, so we set β ∈ [0.1, 1] with
increment of 0.1 by experience.

In the outer loop, the key index is the iterative number that decides the threshold. Fan et al. [41]
pointed out that the threshold value will not change much, even if the iterative number goes to infinity.

https://ladsweb.nascom.nasa.gov/
https://ladsweb.nascom.nasa.gov/
https://openremotesensing.net/
https://ladsweb.nascom.nasa.gov/
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Empirically, we set the iterative number as five to stabilize the threshold. For the compared methods,
we set the parameters as the suggested values in the references.

(a) (b) (c) 

Figure 3. Parameter analysis of Case 3. The PSNR curve as a function of: (a) λ1; (b) λ2; (c) β.

4.2. Simulated Experiments

In the simulated experiments, we added both periodical and non-periodical types of synthetic stripe
based on the observed model (1) to two different remote images. We denoted the periodic stripe level by
using a vector with three elements, e.g., (period, intensity, and rate), where “period” denotes the number
of columns between each stripe column (denoted p), “intensity” denotes the absolution value of pixels
of each stripe column (denoted I), and “rate” denotes the rate of the stripe area within the ground-truth
image (denoted r). Similar to the periodic stripe, we denoted the non-periodic stripe level by using a
vector with two elements, e.g., (intensity and rate), where “intensity” and “rate” have the same definition
as the elements listed above. In our simulation experiments, p is in the set of {10, 15}, I is in the set of
{50, 100}, and r is in the set of {0.2, 0.5, 0.8}. For both periodic and nonperiodic cases, the stripe locations
were randomly distributed on the image, and the absolute value of the stripe column pixels was the
same. From Case 1–3, we gradually increased the rate of the stripes with p = 10, I = 50, leading to some
different striping effects. From Case 4–6, we gradually increased the rate of the stripes with p = 15, I = 50.
From Case 7–9, the rate also has been increased with I = 50. From Case 10–12, the rate also has been
increased with I = 100.

As shown in Figures 4 and 5, the visual results of Case 9 and Case 3 are displayed as examples.
In Figure 4, we observe that the WAFT method blurred the boundaries and many residual stripes still
existed; the IRUV method lost the detailed information; the LRSID method blurred the whole image.
Although the stripes were well removed by the SLD and GSUTV methods, some blurred regions are shown
in the red circle. As a comparison, the proposed method achieved better visual performance.

Figures 6 and 7 show the estimated stripe images of different methods and the corresponding
error images. The error images of the five comparative methods show that they failed to estimate the
stripe component precisely. In contrast, the error image of the proposed method had fewer stripe detail
information, which suggests that the proposed method had a better destriping performance.

The quantitative results of all the cases are listed in Table 2. Moreover, to test the effect of stripe
position detecting, we show the results of DER and DMR in Table 3. From Table 2, we observe that the
proposed method obtained better PSNR and SSIM values in the simulation experiments. From Table 3,
with the striping effect increasing, the DER values increased gradually, and most of the DMR values were
zero. In general, it is clear that the proposed method could detect the stripe position almost precisely.
In summary, the quantitative comparison conformed with the above visual results presented.

In addition, Figures 8 and 9 show the mean cross-track profiles of Figures 4 and 5, respectively.
Figure 8 shows that the proposed method kept a right curve tendency, and the column mean values of the
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destriping image were almost as the same as the true image. This illustrates that the proposed method can
preserve the edges and details of the image, while it can accurately estimate the stripe component.

(a) Original (b) Degraded (c) WAFT (d) SLD

(e) IRUV (g) GSUTV (h) JSUTV(f) LRSID

Figure 4. Simulated destriping results of Case 9. (a) Original image; (b) degraded image; destriping images
of: (c) WAFT; (d) SLD; (e) IRUV; (f) LRSID; (g) GSUTV; (h) JSUTV.

（a）Original （b）Degraded （d）SLD（c）WAFT

（e）IRUV （f）LRSID （g）GSUTV （h）JSUTV

Figure 5. Simulated destriping results of Case 3. (a) Original image; (b) degraded image; destriping images
of: (c) WAFT; (d) SLD; (e) IRUV; (f) LRSID; (g) GSUTV; (h) JSUTV.
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(a) Stripe (b) WAFT (c) SLD (d) IRUV (e) LRSID (f) GSUTV (g) JSUTV

(h) Stripe (i) WAFT (j) SLD (k) IRUV (l) LRSID (m) GSUTV (n) JSUTV

Figure 6. The estimated stripe of Case 9. (a) The true stripe. Estimated stripe images by (b) WAFT, (c) SLD,
(d) IRUV, (e) LRSID, (f) GSUTV, and (g) JSUTV. The corresponding error images of (h) the true stripe,
(i) WAFT, (j) SLD, (k) IRUV, (l) LRSID, (m) GSUTV, and (n) JSUTV.

(a) Stripe (b) WAFT (c) SLD (d) IRUV (e) LRSID (f) GSUTV (g) JSUTV

(h) Stripe (i) WAFT (j) SLD (k) IRUV (l) LRSID (m) GSUTV (n) JSUTV

Figure 7. The estimated stripe of Case 3. (a) The true stripe. Estimated stripe images by (b) WAFT, (c) SLD,
(d) IRUV, (e) LRSID, (f) GSUTV, and (g) JSUTV. The corresponding error images of (h) the true stripe,
(i) WAFT, (j) SLD, (k) IRUV, (l) LRSID, (m) GSUTV, and (n) JSUTV.

(a) WAFT (b) SLD (c) IRUV

(d) LRSID (e) GSUTV (f) JSUTV

Figure 8. Column mean cross-track profiles of Figure 4. Column mean cross-track profiles’ comparison
between the original image and the estimated stripe by: (a) WAFT; (b) SLD; (c) IRUV; (d) LRSID; (e) GSUTV;
and (f) JSUTV.
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(a) WAFT (b) SLD (c) IRUV

(d) LRSID (e) GSUTV (f) JSUTV

Figure 9. Column mean cross-track profiles of Figure 5. Column mean cross-track profiles’ comparison
between the original image and the estimated stripe by: (a) WAFT; (b) SLD; (c) IRUV; (d) LRSID; (e) GSUTV;
and (f) JSUTV.

Table 2. Quantitative results (PSNR (dB), SSIM values, and CPU time) of the simulated experiments.

Stripe Type Case Index Degrade WAFT SLD IRUV LRSID GSUTV JSUTV

Case 1 PSNR 17.62 38.07 41.27 40.58 40.26 53.50 54.78
(p= 10, r = 0.2, I = 100) SSIM 0.403 0.991 0.998 0.997 0.994 0.999 0.999

CPU time — 0.433 0.139 2.877 6.890 4.507 5.142
Case 2 PSNR 13.57 33.22 30.31 30.28 29.76 53.27 54.26

(p = 10, r = 0.5, I = 100) SSIM 0.183 0.980 0.980 0.978 0.968 0.999 0.999
CPU time — 0.372 0.322 18.260 7.916 5.070 5.343

Case 3 PSNR 11.57 34.23 37.45 34.86 34.53 49.39 51.30
Periodical (p = 10, r = 0.8, I = 100) SSIM 0.137 0.986 0.997 0.992 0.983 0.998 0.999

(image: CPU time — 0.523 0.278 2.783 6.655 4.996 5.503
IKONOS) Case 4 PSNR 17.52 32.48 33.05 32.96 32.87 52.33 54.73

(p = 15, r = 0.2, I = 100) SSIM 0.409 0.981 0.989 0.988 0.982 0.999 0.999
CPU time — 0.441 0.288 3.083 7.685 2.690 4.382

Case 5 PSNR 13.90 33.22 34.72 34.41 33.86 51.39 53.93
(p = 15, r = 0.5, I = 100) SSIM 0.194 0.981 0.992 0.989 0.979 0.998 0.999

CPU time — 0.457 0.449 2.824 7.692 3.599 4.996
Case 6 PSNR 11.50 34.38 40.07 35.88 34.25 48.81 50.12

(p = 15, r = 0.8, I = 100) SSIM 0.134 0.983 0.998 0.993 0.975 0.998 0.998
CPU time — 0.288 0.180 2.782 7.059 5.498 5.298

Case 7 PSNR 19.79 36.39 44.20 37.59 38.97 51.00 52.60
(r = 0.2, I = 50) SSIM 0.398 0.986 0.998 0.999 0.993 0.999 0.999

CPU time — 0.222 0.318 11.030 7.499 3.490 3.678
Case 8 PSNR 16.10 31.00 34.40 36.55 35.08 50.57 51.89

(r = 0.5, I = 50) SSIM 0.223 0.975 0.991 0.996 0.983 0.999 0.999
CPU time — 0.273 0.200 8.056 9.837 5.311 5.765

Case 9 PSNR 14.21 30.78 37.78 34.33 33.90 45.17 47.78
Non-periodical (r = 0.8, I = 50) SSIM 0.182 0.975 0.998 0.994 0.978 0.997 0.999

(image: CPU time — 0.287 0.316 7.250 8.147 5.558 5.982
MODIS) Case 10 PSNR 17.35 33.21 43.93 38.88 38.04 50.75 51.61

(r = 0.2, I = 100) SSIM 0.266 0.982 0.997 0.995 0.991 0.999 0.999
CPU time — 0.232 0.078 7.250 8.837 3.909 4.092

Case 11 PSNR 13.55 30.07 33.62 33.33 32.45 46.45 49.231
(r = 0.5, I = 100) SSIM 0.154 0.976 0.993 0.996 0.988 0.999 0.999

CPU time — 0.241 0.076 8.906 9,873 5.121 5.738
Case 12 PSNR 11.57 29.35 32.25 32.14 31.32 42.67 46.76

(r = 0.8, I = 100) SSIM 0.117 0.974 0.997 0.997 0.973 0.998 0.999
CPU time — 0.289 0.248 8.376 8.983 6.004 6.839
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Table 3. The detection error rate (DER) and detection missing rate (DMR) results of simulated experiments.

Case Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12

DER 0.0000 0.0000 0.0030 0.0000 0.0000 0.0000 0.0025 0.0050 0.0250 0.0075 0.0125 0.0075
DMR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030 0.0025 0.0125 0.0100 0.0000 0.0000 0.0000

a 0 0 1 0 0 0 1 2 10 3 5 3
b 0 0 0 0 0 1 1 5 4 0 0 0

4.3. Real Experiments

In this subsection, Figures 10 and 11 show the results from all six methods on two real remote sensing
images. The real images of different stripe noise were selected from Terra MODIS and Aqua MODIS,
as shown in Figures 10a and 11a. The Terra MODIS image was highly influenced by non-periodical stripe
noise, and the Aqua MODIS image was gravely contaminated by a periodical one.

（a）Degraded （b）WAFT （c）SLD （d）IRUV

（f）GSUTV（e）LRSID （g）JSUTV

Figure 10. Destriping results of the Terra MODIS image. (a) Degraded image; destriping images by:
(b) WAFT; (c) SLD; (d) IRUV; (e) LRSID; (f) GSUTV; (g) JSUTV.

As shown in Figure 10, the WAFT and SLD methods blurred the boundaries, and many residual
stripes still existed; the IRUV method removed the stripes completely, while blurring some regions;
the LRSID method had a bad performance in preserving the stripe-free information, and some residual
stripes still existed. For the GSUTV method, all stripes could be removed completely, but some edge
regions are shallower in Figure 10f. The proposed method successfully suppressed the stripe noise with
fewer artifacts. Figures 10 and 11 show that the JSUTV method was better than the five compared methods
in terms of removing stripes and preserving the stripe-free information.

Moreover, in Table 4, we list the quantitative NR and MRD indices’ values of the real experiments.
In order to avoid the affect of external factors, five 10× 10 homogeneous regions were selected to calculate
MRD, then to obtain the mean value of MRD. For the NR and MRD indices, we can see that the proposed
method achieved better results. In summary, the proposed method can obtain both a better visual effect
and quantitative indices.
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（a）Degraded （b）WAFT （c）SLD （d）IRUV

（f）GSUTV（e）LRSID （g）JSUTV

Figure 11. Destriping results of the Aqua MODIS image. (a) Degraded image; destriping images by:
(b) WAFT; (c) SLD; (d) IRUV; (e) LRSID; (f) GSUTV; (g) JSUTV.

Table 4. Quantitative results on real data using NR and mean relative deviation (MRD).

Image Index WAFT SLD IRUV LRSID GSUTV JSUTV

Terra MODIS image NR 2.94 2.98 4.82 4.90 3.44 3.71
MRD 0.1101 0.0475 0.0153 0.9961 0.0758 0.0101

Aqua MODIS image NR 3.45 2.44 3.53 3.73 3.56 3.60
MRD 0.1087 0.0076 0.1140 0.9960 0.0101 0.0387

4.4. Numerical Convergence of the Proposed Algorithm

Since our model was convex for a fixed ω, and the convergence of the S subproblem could be
guaranteed according to the convergence result of ADMM. We give the following Figure 12 to numerically
illustrate the convergence of our algorithm. Figure 12 shows the relative error curves of the successive
estimated stripes S(k) and S(k+1), and the relative error kept decreasing as the iteration number increases,
which illustrates that the proposed algorithm was convergent numerically.

(a) (b) 

Figure 12. Curves of relative error values versus: (a) inner iterations; (b) outer iterations.
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5. Conclusions

In this paper, we have proposed a new destriping model to achieve the stripe detection and stripe
removal simultaneously. The proposed model exploits both the stripe directional property and the stripe
structural property and utilizes the joint sparsity prior to describe the structural property. We have
proposed a multi-stage alternative optimization method, which combines ISD and ADMM, to solve
the minimization problem. The proposed method has been compared with WAFT, SLD, IRUV, LRSID,
and GSUTV, and experimental results show the superiority of the proposed method in terms of both
quantitative and qualitative assessments. Moreover, simulated experimental results show the accuracy of
the stripe detection.

Although the proposed method removes both periodic and nonperiodic stripes well in the horizontal
or vertical direction, it still has a shortcoming: it cannot remove oblique stripes. Thus, we will focus on
improving our method to overcome the mentioned challenge.
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