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Abstract: When the spatial distribution of winter wheat is extracted from high-resolution remote
sensing imagery using convolutional neural networks (CNN), field edge results are usually rough,
resulting in lowered overall accuracy. This study proposed a new per-pixel classification model
using CNN and Bayesian models (CNN-Bayesian model) for improved extraction accuracy. In this
model, a feature extractor generates a feature vector for each pixel, an encoder transforms the feature
vector of each pixel into a category-code vector, and a two-level classifier uses the difference between
elements of category-probability vectors as the confidence value to perform per-pixel classifications.
The first level is used to determine the category of a pixel with high confidence, and the second
level is an improved Bayesian model used to determine the category of low-confidence pixels. The
CNN-Bayesian model was trained and tested on Gaofen 2 satellite images. Compared to existing
models, our approach produced an improvement in overall accuracy, the overall accuracy of SegNet,
DeepLab, VGG-Ex, and CNN-Bayesian was 0.791, 0.852, 0.892, and 0.946, respectively. Thus, this
approach can produce superior results when winter wheat spatial distribution is extracted from
satellite imagery.

Keywords: winter wheat; convolutional neural network; Visual Geometry Group Network; Bayesian
model; per-pixel classification; high-resolution remote sensing imager; Gaofen 2 image

1. Introduction

Wheat is the most important food crop in the world, comprising 38.76% of the total area cultivated
for food crops and 29.38% of total food crop production in 2016 [1]. In China, these numbers are 21.38%
and 21.00%, respectively [2]. Accurate estimations of crop spatial distribution and total cultivated area
are of great significance for agricultural disciplines such as yield estimation, food policy development,
and planting management, which are of great importance for ensuring national food security [3,4].

Traditionally, obtaining crop area required large-scale field surveys. Although this approach
produces high-accuracy results, it is time-consuming, labor-intensive, and often lacking in spatial
information [5]. The use of remotely sensed data is an effective alternative that has been widely used
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over the past few decades at regional or global scales [6–8]. As extraction of crop spatial distribution
mainly relies on pixel-based image classification, correctly determining pixel features for accurate
classification is the basis for this approach [9–12].

The spectral characteristics of low- and middle-resolution remote sensing images are usually
stable. Vegetation indexes are generally used as pixel features in studies using data from sources
including the Moderate Resolution Imaging Spectroradiometer (MODIS) [6,13–16], Enhanced Thematic
Mapper/Thematic Mapper [13,17], and Systeme Probatoire d’ Observation de la Terre [7,10]. These
indices include the normalized difference vegetation index (NDVI) [5,6,13–15], relationship analysis of
NDVI [8], and enhanced vegetation index (EVI) [3,18], which are extracted from band values. Common
classification methods include decision trees [5,11,13], linear regression [6], statistics [7], filtration [13],
time-series analysis [14,15], the iterative self-organizing data analysis technique (ISODATA) [16], and
the Mahalanobis distance [17]. Texture features can better describe the spatial structure of pixels, the
Gray-Level Co-Occurrence Matrix is a commonly used texture feature [19], and Gabor [20] and wavelet
transforms [19,21] are often used to extract texture features. Moreover, object-based image analysis
technology is also widely used in pre-pixel classification [22,23]. Such methods can successfully extract
the spatial distribution of winter wheat and other crops, but limitations in spatial resolution restrict
the applicability of the results.

The spatial resolution and precision of crop extraction can be significantly improved by using
high-resolution imagery [8,24,25]. However, as the spectral characteristics of such imagery are not as
stable as those of low- and middle-resolution imagery, traditional feature extraction methods struggle
to extract effective pixel features [26,27]. Neural networks [28,29] and support vector machines [30,31]
have been applied to this problem, but both are shallow-learning algorithms [32] that have difficulty
effectively expressing complex features, producing unsatisfactory results.

Convolutional neural networks (CNN) were developed from neural networks. The standard
CNN follows an “image-label” approach, and its output is a probability distribution over different
class. Typical examples include AlexNet [33], GoogLeNet [34], Visual Geometry Group Network
(VGG) [35], and Resnet [36]. Due to their strong feature extraction ability, these networks have
achieved remarkable results in camera image classification [37,38]. The fully convolutional network,
a “per-pixel-label” model based on standard CNNs, was proposed in 2015 [39]. This network uses
a multi-layer convolutional structure to extract pixel features, applies appropriate deconvolutional
layers to up-sample the feature map of the last convolution layer to restore it to the same size of
the input image, and classified the up-sampled feature map pixel by pixel. Accordingly, a series of
convolution-based per-pixel-label models have been developed including SegNet [40], UNet [41],
DeepLab [42], and ReSeg [43]. Of these, SegNet and UNet have the clearest and easiest-to-understand
convolution structures. DeepLab uses a method called “Atrous Convolution”, which has a strong
advantage in processing detailed images. ReSeg exploits local generic features extracted by CNNs and
the capacity of recurrent neural networks to retrieve distant dependencies. Each model has its own
strengths and is adept at dealing with certain image types. As conditional random field (CRF) have
the ability to learn the dependencies between categories of pixels, CRF can be used to further refine
segmentation results [44].

These convolution-based per-pixel-label models have been applied in remote sensing image
segmentation with remarkable results. For example, researchers have used CNN to carry out remote
sensing image segmentation and used conditional random fields to further refine the output class
map [45–48]. To suit the characteristics of specific remote sensing imagery, other researchers have
established new convolution-based per-pixel-label models, such as multi-scale fully convolutional
networks [49], patch-based CNNs [50], and two-branch CNNs [51]. Effective work has also been carried
out in extracting information from remote sensing imagery using convolution-based per-pixel-label
models, e.g., extracting crop information for rice [52,53], wheat [54], leaf [55], and rape [56], as well as
target detection for weeds [57–59], diseases [60–62], and extracting road information using improved
FCN [63]. Some new feature extraction techniques are being applied to crop information extraction,
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including 3D-CNN [64], deep recurrent neural networks [65], and CNN-LSTM [66], and Recurrent
Neural Networks (RNN) was also used to correct satellite image classification maps [67]. Some new
techniques are proposed to improve the segmentation accuracy, including structured autoencoders [68]
and locality adaptive discriminant analysis [69]. Moreover, the research on how to automatically
determine the feature dimension that could be adaptive to different data distributions will help to
obtain a good performance in machine learning and computer vision [70].

How to determine the optimal value of the parameters is an important problem in the use of
convolutional neural networks. Stochastic gradient descent with momentum [45] is a common and
effective training method. Data augmentation technology [33,35,41] and dropout technology [33] used
to prevent overfitting, so as to ensure that the model can obtain the optimal parameters. Practice has
proved that reasonable use of a BN (Batch Normalization) layer is also helpful for model training to
obtain the optimal parameters [42,43].

At present, the CNN structure used in the pre-pixel classification of remote sensing imagery
generally includes two parts: feature extractor and classifier. The former has been the focus of many
researchers with good results. The convolution value acquired by the convolution kernel and pixel
block operations is regarded as a feature of central pixels in the pixel blocks and is the common
technique for existing feature extractors. However, with regard to classifying pixels with acquired
features, most studies have only used classifiers with relatively ordinary functions. These classifiers use
a set of linear regression functions to encode the features of pixels and obtained category-code vectors.
The SoftMax function is then used to convert the category-code vector into a category probability
vector, and the category corresponding to the maximum probability value is taken as the pixel category.

Previous experimental results [44–56] have shown that misclassified pixels are primarily located
at the intersections of two land use types, such as field edges or corners. This is because when the
features of pixels in these areas are acquired, the used pixel blocks usually contain more pixels of
other categories, resulting in the features often being different from the feature of inner pixels of the
planting area, which frequently cause classification errors. By analyzing the probability vector of
these misclassified pixels, it can be found that the difference between the maximum probability value
and the second-maximum probability value is generally small. These errors are due to the inherent
structure of the convolutional layer, which needs to be combined with the classifier to be improved.

The Bayesian model can synthesize information from different sources and improve the reliability
of inferred conclusions [71,72]. Therefore, when judging the category of a pixel whose difference
between the maximum probability value and the second-maximum probability value is small, the
spatial structure information of the pixels can be further introduced to improve the reliability of the
judgment by using the Bayesian model. In this study, we developed a new CNN consisting of a
feature extractor, encoder, and a Bayesian classifier, which we refer to as a Bayesian Convolutional
Neural Network (CNN-Bayesian model). We then used this model to extract winter wheat spatial
distribution information from Gaofen 2 (GF-2) remote sensing imagery and compared the results with
those achieved by other methods.

2. Study Area and Data

2.1. Study Area

Shandong Province is a major wheat-producing area in China. The total planted area was 38,303
km2 in 2016 and 38,429 km2 in 2017 (Figure 1) [73]. Zhangqiu County is located in North-central
Shandong Province (36◦25′–37◦09′N, 117◦10′–117◦35′E). From south to north, the county’s terrain
progresses through mountainous, hilly, plain, and lowland regions, accounting for 30.8%, 25.9%, 30.7%,
and 12.6% of the total area, respectively. The main food crops are wheat and corn [74]. Moreover, the
county’s geographical and agricultural conditions are representative of broader regions within China,
making it an appropriate study area.
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Figure 1. Regional distribution of wheat planting in Shandong Province, China, and the location of
Zhangqiu County (red outline).

2.2. Data Sources

2.2.1. Remote Sensing Imagery

We used 32 GF-2 images to cover the entire Zhangqiu County; 17 were captured on 14 February,
2017, and 15 on 21 January and 1 March, 2018 (Figure 2a). Each GF-2 image is divided into a
multispectral and panchromatic image. The former is composed of four spectral bands (blue, green,
red, and near-infrared), and the spatial resolution of each multispectral image is 4 m, whereas that of
the panchromatic image is 1 m.

The preprocessing of the GF-2 images involved four stages: geometric correction, radiometric
calibration, atmospheric correction, and image fusion. Using Python and the Geospatial Data
Abstraction Library, we designed a geometric correction program and completed this by combining
the control points obtained from the ground investigation. Radiometric calibration converted the
images’ digital values to absolute at-sensor radiance values using Environment for Visualizing Images
(ENVI) software (developed by Harris Geospatial Solutions, Broomfield, Colorado, United States of
America). The calibration parameters were obtained by calibration experiments in Chinese fields as
published in CRESDA [9]. Atmospheric correction converted the radiance to reflectance using the
Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model in ENVI with the
Interactive Data Language. The related FLAASH parameters were obtained according to the acquisition
time and imaging conditions. Subsequently, the ENVI pan-sharpening method was used to fuse the
multispectral and panchromatic images. After preprocessing, each fusion image had four bands (blue,
green, red, and near-infrared) with a spatial resolution of 1 m and a size of 7300 × 6900 pixels.
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Figure 2. Data sources: (a) Gaofen 2 remote sensing imagery of Zhangqiu County; and (b) sample
point locations within the county.

2.2.2. Ground Investigation Data

The main land cover in Zhangqiu County during winter includes winter wheat, agricultural
buildings, woodland, developed land, roads, water bodies, farmland, and bare fields. In fused GF-2
images, bare fields, agricultural buildings, developed land, water bodies, farmland, and roads are all
visually distinct from each other and vegetated areas during winter. In order to accurately distinguish
whether a vegetation area is winter wheat or woodland in visual interpretation, the sample information
of winter wheat areas and woodland areas should be obtained, so we conducted ground investigations
in 2017 and 2018, obtaining 367 sample points (251 winter wheat, 116 woodland); time, location, and
land use were recorded for all points (Figure 2b).

2.3. Image-Label Datasets

We selected 305 non-overlapping region images from the GF-2 images described in Section 2.2 to
establish the image-label dataset for training and test, and each image contained 1024 × 1024 pixels.
The dataset covered all land use types of the study area, including winter wheat, agricultural buildings,
woodland, developed land, roads, water bodies, farmland, and bare fields. We manufactured a label
file for each image, which was used to record the category number of each pixel on the image. In
combination with the ground investigation data described in Section 2.2.2, we used visual interpretation
and ENVI software to establish the label file. Figure 3 illustrates a training image and corresponding
label file.

In the label files, winter wheat, agricultural buildings, woodland, developed land, roads, water
bodies, bare fields, and others were marked 1–8, respectively. In the test stage, 2–8 will be replaced by
9, indicating that the corresponding pixel is a non-winter wheat pixel.
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Figure 3. Example of image classification: (a) original Gaofen 2 image and (b) classified by land
use type.

3. Proposed CNN-Bayesian Model

3.1. Model Architecture

The proposed CNN-Bayesian model consists of a feature extractor used to generate feature vectors
for each pixel, an encoder used to transform the feature vector of each pixel into a category-code vector,
and a classifier used to determine the category of a pixel (Figure 4).
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3.1.1. Feature Extractor

The feature extractor’s network structure is based on a VGG16 network [30] in that it consists of
13 layers (corresponding to the first 13 layers of a VGG16); each layer includes a convolution, batch
normalization, activation, and pooling layer. Like a VGG16, the CNN-Bayesian model uses a rectified
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linear unit as an activation function. We added 10 convolution kernels (sized 1 × 1 × 3) in the first
layer to extract the color features of pixels.

The input of the feature extractor is the fused GF-2 remote sensing images, each with four bands.
The output is a 3D matrix with a size of m× n× l, where m and n are the number of rows and columns
respectively, and l is the length of the feature vector of each pixel. Each feature vector corresponding
to one pixel consists of three parts. The first is derived from the result of the convolution kernel, which
represents the color feature. The second is derived from the result of the first layer, which represents
the low-level texture features. The third is derived from the output of the last layer, which represents
the semantic feature.

Compared with the camera image, the pixels of the remote sensing image are continuous.
Therefore, we used the extension method to cut out the training and test images and then extend some
pixels on the four edges of each image, to ensure that the size of the last layer’s feature image was the
same as the original image.

We improved the original pooling method of VGG16 using the following equation:

as,t = max
i = s− 1, s, s + 1
j = t− 1, t, t + 1

bi,j, (1)

where s,t denotes the position of the pixel being calculated, a denotes the pooled result, and b denotes
the feature map used in the pooled operation.

We used a step size of 1 in the pooling operation. After a feature map whose size is m × n has
been pooled, the size of the resulting matrix is (m − 2) × (n − 2). Therefore, after each layer of feature
extraction, the image size is reduced by four rows and four columns compared with the original image.
Therefore, when we cut the training and test images, we extended 24 pixels outward on the four edges
of each image.

3.1.2. Encoder

The encoder is used to transform the feature vector of a pixel from the feature extractor into a
category-code vector, as shown below:

r1

r2
...

rm

 =


w11 w12 · · · w1n

w21
...

wm1

w22
...

wm2

· · ·
...
· · ·

w2n
...

wmn

×
[

x1 x2 · · · xn

]T
+


b1

b2
...

bm

, (2)

where each row of the matrix w indicates a fitting function for a specified class, m denotes the number
of classes, n denotes the length of the feature vector of one pixel, vector x denotes the feature vector,
vector b denotes the respective biases, and vector r denotes the encoded value. The matrix w and vector
b are trained in the training stage.

3.1.3. Classifier

The classifier is divided into two levels, A and B. The A-level classifier transforms category-code
vector r (corresponding to one pixel) into category-probability vector p as follows:


p1

p2
...

pm

 =


er1

∑m
i eri
er2

∑m
i eri

...
erm

∑m
i eri

, (3)
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where m denotes the number of classes. Next, the confidence level (CL) of each p is calculated as
follows:

CL = pi − pj, (4)

where pi denotes the max value in p, and pj denotes the max value in p except pi. The category of a
given pixel is determined by:

Aout =


i; in train stage and pi is themaxvalue in P
1; in classi f ication stage and CL ≥ δ

11; in classi f ication stage and CL < δ

, (5)

where Aout denotes the category number of one pixel, code 1 indicates winter wheat, code 11
indicates uncertainty, and δ indicates the low threshold value of CL. The δ value is selected and
determined manually after the training has been completed, and the training results of all samples are
statistically analyzed.

The B-level classifier is used to determine the category of a pixel whose CL < δ, denoted by vPixel,
by acquiring the maximum posterior probability of vPixel classified as winter wheat:

vww = P(c = ww|∅ ) =
P(∅|c = ww)P(c = ww)

P(∅)
, (6)

where vww denotes the maximum posterior probability that the category of vPixel is winter wheat when
the CL value is ∅, c is the category, ww denotes winter wheat, ∅ denotes the CL value corresponding to
the P of vPixel, p(∅|c=ww) represents the probability that the CL value is equal to ∅ in winter wheat
pixels, p(c=ww) indicates the probability of winter wheat, and p(∅) indicates the probability that the
CL value is equal to ∅ in all pixels. Next, the maximum posterior probability of vPixel classified as
non-winter wheat is acquired by:

vnw = P(c = nw|∅ ) =
P(∅|c = nw)P(c = nw)

P(∅)
, (7)

where vnw denotes the maximum posterior probability that the category vPixel is not winter wheat
when the CL value is ∅, c, ∅, and p(∅) have the same meaning as in the Equation (6), nw denotes
non-winter wheat, p(∅|c=nw) indicates the probability that the CL value is equal to ∅ in non-winter
wheat pixels, and p(c=nw) indicates the probability of non-winter wheat.

In Equations (6) and (7), p(∅|c=ww), p(c=ww), p(∅|c=nw), p(c=nw), and p(∅) are acquired by
statistical methods. When obtaining p(∅|c=ww) and p(∅|c=nw), all samples are statistics, reflecting
the global characteristics of the confidence of certain classes. When obtaining p(c=ww), p(c=nw), and
p(∅), only samples in the maximum pixel block are used to extract the features of vPixel, reflecting the
local characteristics of pixel spatial associations.

The classifier determines the final pixel category as follows:

out =



1; (p1 is themaxvalue in P and CL ≥ δ)

or (CL < δ and vww > vnw)

or (CL < δ , vww = vnw and p1 is themaxvalue in P)
9; (p1 is not themaxvalue in P and CL ≥ δ))

or (CL < δ and vww < vnw)

or (CL < δ , vww = vnw and p1 is not themaxvalue in P)

, (8)

where out represents the final category number of one pixel, code 1 indicates winter wheat, and code 9
indicates non-winter wheat.
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3.2. Training Model

The basic loss function calculation unit is the definition of cross entropy, expressed for one
sample as:

H(p, q) = −∑8
i=1 qilog(pi), (9)

where p is the predicted category probability distribution, q is the actual category probability
distribution, and i is the index of an element in the category probability distribution. On this basis, the
loss function of the CNN-Bayesian model is defined as:

loss = − 1
ts ∑ts ∑8

i=1 qilog(pi), (10)

where ts denotes the pixel amount used in the training stage.
We trained the CNN-Bayesian model in an end-to-end manner, B-level classifier does not

participate in the training stage. The parameters required for B-level classifier to perform calculations
are obtained by statistics after training completed. The training stage consists of the following steps:

1. Image-label pairs are input into the CNN-Bayesian model as a training sample dataset, and
parameters are initialized.

2. Forward propagation is performed on the sample images.
3. The loss is calculated and back-propagated to the CNN-Bayesian model.
4. The network parameters are updated using the stochastic gradient descent [45] with momentum.

Steps 2–4 are iterated until the loss is less than the predetermined threshold values.
Table 1 shows the hyperparameters setup we used to train our model. In the comparison

experiments, the hyperparameters also applied to the comparison model.

Table 1. The hyperparameters setup.

Hyperparameter Value

mini-batch size 32
learning rate 0.0001
momentum 0.9

epochs 20,000

3.3. Work Flow

First, a set of fixed-size pixel blocks are cut from the pre-processed remote sensing image set
to form the image set for training and testing. The training images are labeled pixel by pixel using
visual interpretation. These data are then used to train the CNN-Bayesian model (loss value of
10–9 in this study). The predicted category, actual category, and CL of each sample are output after
each round of training. Subsequently, the training information of the last round is used to acquire
the confidence threshold δ (0.23 in this study) and the probability distributions p(∅|c=ww) and
p(∅|c=nw). Finally, the trained model is used to exact winter wheat spatial distribution information
form remote sensing images.

4. Experimental Results

4.1. Experimental Setups

The proposed CNN-Bayesian model was implemented using Python 3.6 on a Linux Ubuntu 16.04
operating system and TensorFlow framework. The comparison experiments were performed on a
graphics workstation with an NVIDIA GeForce Titan X Graphics device with 12 GB graphic memory.

The network architecture parameters of the feature extractor of CNN-Bayesian model and the
data dimensions of each layer are given in Table 2.
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Table 2. Network architecture parameters of the feature extractor and data dimensions.

Layer Operations Parameters 1 Data Dimension
of Input

Data Dimension
of Output

1
Convolutional f = 3 × 3 × 3, s = 1, d = 64 748 × 748 × 3 746 × 746 × 64

pooling f = 3 × 3, s = 1 746 × 746 × 64 744 × 744 × 64

2
Convolutional f = 3 × 3 × 64, s = 1, d = 64 744 × 744 × 64 742 × 742 × 64

pooling f = 3 × 3, s = 1 742 × 742 × 64 740 × 740 × 64

3
Convolutional f = 3 × 3 × 64, s = 1, d = 64 740 × 740 × 64 740 × 740 × 64

pooling f = 3 × 3, s = 1 740 × 740 × 64 738 × 738 × 64

4
Convolutional f = 3 × 3 × 64, s = 1, d = 128 738 × 738 × 64 736 × 736 × 128

pooling f = 3 × 3, s = 1 736 × 736 × 128 734 × 734 × 128

5
Convolutional f = 3 × 3 × 128, s = 1, d = 128 734 × 734 × 128 732 × 732 × 128

pooling f = 3 × 3, s = 1 732 × 732 × 128 730 × 730 × 128

6
Convolutional f = 3 × 3 × 128, s = 1, d = 128 730 × 730 × 128 728 × 728 × 128

pooling f = 3 × 3, s = 1 728 × 728 × 128 726 × 726 × 128

7
Convolutional f = 3 × 3 × 128, s = 1, d = 256 726 × 726 × 128 724 × 724 × 256

pooling f = 3 × 3, s = 1 724 × 724 × 256 722 × 722 × 256

8
Convolutional f = 3 × 3 × 256, s = 1, d = 256 722 × 722 × 256 720 × 720 × 256

pooling f = 3 × 3, s = 1 720 × 720 × 256 718 × 718 × 256

9
Convolutional f = 3 × 3 × 256, s = 1, d = 256 718 × 718 × 256 718 × 718 × 256

pooling f = 3 × 3, s = 1 718 × 718 × 256 716 × 716 × 256

10
Convolutional f = 3 × 3 × 256, s = 1, d = 512 716 × 716 × 256 714 × 714 × 512

pooling f = 3 × 3, s = 1 714 × 714 × 512 712 × 712 × 512

11
Convolutional f = 3 × 3 × 512, s = 1, d = 512 712 × 712 × 512 710 × 710 × 512

pooling f = 3 × 3, s = 1 710 × 710 × 512 708 × 708 × 512

12
Convolutional f = 3 × 3 × 512, s = 1, d = 512 708 × 708 × 512 706 × 706 × 512

pooling f = 3 × 3, s = 1 706 × 706 × 512 704 × 704 × 512

13
Convolutional f = 3 × 3 × 512, s = 1, d = 512 704 × 704 × 512 702 × 702 × 512

pooling f = 3 × 3, s = 1 702 × 702 × 512 700 × 700 × 512
Output 700 × 700 × 586

f denotes the size of the convolution/pooling kernel, s represents the step length, and d represents the number of
convolution cores in this layer. Because the batch normalization and rectified linear unit layers do not change the
size of the data dimensions, they are not listed in the table.

SegNet [35] and DeepLab [37] are classic semantic segmentation models for images that have
achieved good results in the processing of camera images. Moreover, the working principles of these
two models are similar to that of our study, and we therefore chose these as comparison models to
better reflect the advantages of our model in feature extraction and classification. We also removed the
second-level classifier of the CNN-Bayesian model as another comparison model, named VGG-Ex, to
better compare the role of the Bayesian classifier.

We used data augmentation techniques on the dataset to prevent overfitting, and each image was
randomly processed in brightness, saturation, hue, and contrast. After the processing is completed,
each image is rotated and transformed, and each image is rotated three times (90◦, 180◦, 270◦). There
are 6100 images in our final data set. We also employed random split technique for training and testing
model to prevent overfitting. During each training and test round, 4880 images randomly selected
from the image-label datasets were used as training data, and the remaining 1220 images were used
as test data. The SegNet, DeepLab, VGG-Ex, and CNN-Bayesian model were trained with the same
image dataset. This was done five times. Table 3 shows the total number of samples of each category
used in each training and test round.
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Table 3. Total number of samples of each category used in each training and test round.

Category Number of Total Samples (Million)

Winter wheat 1572
Agricultural buildings 6

Woodland 568
Developed land 1199

Roads 51
Water bodies 57

Farmland 1521
Bare fields 1332

4.2. Results and Evaluation

Table 4 shows the confusion matrices for the segmentation results of the four models. Each row
of the confusion matrix represents the proportion taken by the actual category, and each column
represents the proportion taken by the predicted category. Our approach achieved better classification
results. The proportion of “winter wheat” wrongly categorized as “non-winter wheat” was, on
average, 0.033, and the proportion of “non-winter wheat” wrongly classified as “winter wheat” was,
on average, 0.021.

Table 4. Confusion matrix of the winter wheat classification.

Approach Predicted Winter Wheat Non-Winter Wheat

CNN-Bayesian Winter wheat 0.669 0.021
Non-winter wheat 0.033 0.277

VGG-Ex
Winter wheat 0.631 0.059

Non-winter wheat 0.049 0.261

SegNet Winter wheat 0.574 0.116
Non-winter wheat 0.093 0.217

DeepLab Winter wheat 0.605 0.085
Non-winter wheat 0.063 0.247

In this paper, we used four popular criteria, named accuracy, precision, recall and Kappa
coefficient to evaluate the performance of the proposed model [45]. Table 5 shows the values of
evaluation criteria of the four models.

Table 5. Comparison of the four models’ performance.

Index CNN-Bayesian VGG-Ex SegNet DeepLab

Accuracy 0.946 0.892 0.791 0.852
Precision 0.932 0.878 0.766 0.837

Recall 0.941 0.872 0.756 0.825
Kappa 0.879 0.778 0.616 0.712

To further compare the classification accuracy of planting area edges, we further subdivided
the categories into “inner” and “edge” labels. If only winter wheat category pixels are used in the
convolution process to extract the pixel features, it is classified as inner; otherwise it is classified as
edge. Table 6 show the confusion matrices for the segmentation results of the four models.
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Table 6. Confusion matrix for winter wheat inner/edge classification.

Approach Predicted Winter Wheat
Inner

Winter Wheat
Edge

Non-Winter
Wheat

CNN-Bayesian
Winter wheat inner 0.542 / 0.001
Winter wheat edge / 0.127 0.02
Non-winter wheat 0.006 0.027 0.277

VGG-Ex
Winter wheat inner 0.539 / 0.012
Winter wheat edge / 0.092 0.047
Non-winter wheat 0.008 0.041 0.261

SegNet
Winter wheat inner 0.532 / 0.035
Winter wheat edge / 0.042 0.081
Non-winter wheat 0.033 0.06 0.217

DeepLab
Winter wheat inner 0.538 / 0.026
Winter wheat edge / 0.067 0.059
Non-winter wheat 0.015 0.048 0.247

As can be seen from Table 4, the accuracy of inner category of four models’ results were similar,
but the CNN-Bayesian model was more accurate with regard to the edge category. The accuracy of
CNN-Bayesian model in edge recognition is three times higher than that of SegNet, two times higher
than that of DeepLab. By comparing the accuracy of winter inner edge of CNN-Bayesian and that of
VGG-Ex, it can be found that the ability of CNN-Bayesian to recognize winter wheat edge is improved
by nearly 30% due to the use of Bayesian classifier.

Figure 5 shows ten images and corresponding results randomly selected from the tested images,
each containing 1204 × 1024 pixels. The CNN-Bayesian model misclassified only a small number of
pixels at the corner of the winter wheat planting area. In the DeepLab results and VGG-Ex results, the
misclassified pixels were mainly distributed at the junction of winter wheat and non-winter wheat
areas, including edge and corner locations, but the number of misclassified pixels in the VGG-Ex
model results is less than that of the DeepLab. The SegNet results had the most errors, which were
scattered throughout the image; most misclassified pixels were located on the edges and corners, with
some also occurring in the planting area.
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5. Discussions

This paper proposed a novel per-pixel classification approach to extract winter wheat spatial
distribution from GF-2 imagery. This approach can extract winter wheat with fine field edge by using
two strategies, including a CNN structure to extract features and a two-level classifier to determine the
pixel’s category accurately. The contributions of these two strategies are discussed as follows.

5.1. The Effectiveness of Feature Extractor

To distinguish winter wheat from other categories, a popular deep learning algorithm CNN was
applied to explore the features. The trained feature extractor of proposed CNN-Bayesian model has
strong feature extraction ability, which can make the distances between feature vectors extracted
from pixels of the same category, but with different spectral information, close, and make the
distances between feature vectors extracted from pixels from different category, but with close spectral
information, far away.

Since the CNN-Bayesian model and the VGG-Ex model use the same feature extractor, we
selected the most different set of semantic features from the last layer of the CNN-Bayesian, SegNet,
and DeepLab models for comparative analysis, Figure 6 show the statistical results, respectively. The
degree of confusion in the CNN-Bayesian model results is smaller than that in the other two models
because its network structure and data organization mode are better, and the improved pooling
algorithm used in feature extractor has a larger receptive field, and has a greater advantage in feature
aggregation than the classical pooling algorithm. The CNN-Bayesian model feature extractor can keep
the size of the feature image of the last layer unchanged without using deconvolution. Furthermore, it
can eliminate location errors of the feature value that may be caused by the deconvolution operation
and ensure one-to-one correspondence between the feature value and the pixel, thus reducing the
degree of confusion between the features of winter wheat edge and non-winter wheat areas. Compared
with the comparison model, the CNN-Bayesian model better suits the data features of high-resolution
remote sensing images.

As can been seen for the statistical result of SegNet, although the feature values of winter wheat
inner pixels and winter wheat edge pixels are scattered, the feature values of winter wheat inner pixels
are basically not overlapped with the feature values of other categories. However, the overlap between
the feature values of winter wheat edge pixels and other categories is large, which is the reason that
the accuracy of winter wheat inner higher than that of winter wheat edge.

The feature values of some winter wheat edge pixels were confused with those of non-winter
wheat pixels in all three cases, but those of winter wheat inner pixels were never confused with those
of non-winter wheat pixels. This shows that pixel position has a great impact on the feature extraction
results, mainly for two main reasons: First, field edge pixel information is different from inner pixel
information, because edge areas often contain both winter wheat and bare fields or other land use
types, and the proportion of winter wheat varies greatly, whereas inner areas contain only winter
wheat. Second, pixel blocks centered on pixels at the edge of winter wheat fields, usually contain
more non-winter wheat than wheat pixels (Figure 7). Thus, when extracting the feature values of these
edge pixels, approximately 50% of the pixels involved in the convolution operation are pixels of other
categories, whereas the ratio for corners is 75% or higher.
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5.2. The Effectiveness of Classifier

Both the CNN-Bayesian model and the comparison model use the category-probability vector as
the basis for determining the category of the pixels. The main advantage of the CNN-Bayesian model is
that it takes into account the deep meaning of the difference between elements of category-probability
vector, and use hierarchical strategy to determine the category of the pixels. The category of pixels
with high confidence were directly determined, and the category of pixels with low confidence were
determined combining prior knowledge. VGG-Ex, SegNet and DeepLab only use the maximum
probability value as the basis to determine the category of the pixels. Therefore, the strategy adopted
by the CNN-Bayesian model helps to improve the accuracy of the results, and the results are shown
and compared in Figure 5, Tables 3 and 4.

We select the number of pixels in each confidence level of the CNN-Bayesian, VGG-Ex, SegNet,
and DeepLab models for comparative analysis (Figure 8). The pixel ratio of the SegNet and DeepLab
models is higher than that of the CNN-Bayesian model and VGG-Ex at a lower confidence level. This
shows that the feature composition of the CNN-Bayesian model is more reasonable, because it uses
color and texture features in addition to the high-level semantic features used by all three models.

As the confidence increases, the classification errors of the four models decrease and the degree
of reduction increases (Figure 9). This is because the confidence value directly reflects the degree to
which the pixel characteristics match the overall category characteristics and, thus, the likelihood that
the classification result is correct. Therefore, it is reasonable to choose the confidence value as the index
of the confidence that a given pixel will be classified into a certain category.

Overall, these results show that the CNN-Bayesian model is more capable than the comparison
models, reflecting its advantageous use of a two-level classifier structure. Since the second-level
classifier makes full use of the confidence and planting structure information, the number of
misclassified pixels is effectively reduced.
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As can be seen from Figures 8 and 9, for the CNN-Bayesian model, the number of pixels with
confidence lower than 0.23 is small, but the proportion of misclassification is very large. This is the
reason we choose 0.23 as confidence threshold described in Section 3.3.
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5.3. Comparison to Other Similar Works

At present, there are some methods focus on improving the classification accuracy of edge
regions [43–45,67]. These methods describe the association between inputs from the semantic level, so
that the relationship between prediction labels of adjacent pixels can be described, and the prediction
results are not only related to the features of the predicted pixels. Also relevant, and affected by the
results of previous predictions, our method can describe the statistical of inputs. The prediction result
is determined by the features of the pixel itself and the regional statistical features, which is more in
line with the characteristics of remote sensing data.

6. Conclusions

Using satellite remote sensing has become a mainstream approach for extracting winter wheat
spatial distribution, but field edge results are usually rough, resulting in lowered overall accuracy.
In this paper, we proposed a new approach for extracting spatial distribution information for winter
wheat, which significantly improves the accuracy of edge extraction results. The main contributions of
this paper are as follows: (1) Our feature extractor is designed to meet the characteristics of remote
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sensing image data, avoiding extra calculations and errors caused by using deconvolution in the feature
extraction process. The feature extractor can fully explore the deep and spatial semantic features
of the remote sensing image. (2) Our classifier effectively uses the confidence value of the category
probability vector and combines the planting structure characteristics of winter wheat to reclassify
pixels with a low confidence value, thus effectively reducing classification errors for edge pixels. As we
optimized the method of extracting and using remote sensing image features and rationally used color,
texture, semantic, and statistical features to obtain high-precision spatial distribution data of winter
wheat. The spatial distribution data of winter wheat in Shandong Province in 2017 and 2018 obtained
by the proposed approach has been used by the Meteorological Bureau of Shandong Province.

The number of categories that can be extracted by the proposed CNN-Bayesian model is
determined by the number of categories of samples in the training dataset. When the model is
used to extract other land use types or applied to another area, only a new training dataset is needed
to retrain the model. The successfully trained model can then be used to extract high-precision spatial
distribution data of land use from high-resolution remote sensing images.

The main disadvantage of our approach is that it requires more pre-pixel label files. Future
research should test the use of semi-supervised classification to reduce the dependence on pre-pixel
label files.
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