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Abstract: Synthetic aperture radar (SAR) data have been identified as a potential source of information
for monitoring surface water, including open water and flooded vegetation, in frequent time intervals,
which is very significant for flood mapping applications. The SAR specular reflectance separates
open water and land surface, and its canopy penetration capability allows enhanced backscatter from
flooded vegetation. Further, under certain conditions, the SAR signal from flooded vegetation may
remain coherent between two acquisitions, which can be exploited using the InSAR technique. With
these SAR capabilities in mind, this study examines the use of multi-temporal RADARSAT-2 C band
SAR intensity and coherence components to monitor wetland extent, inundation and vegetation of a
tropical wetland, such as Amazon lowland. For this study, 22 multi-temporal RADARSAT-2 images
(21 pairs) were used for InSAR processing and the pairs in the low water stage (November, December)
showed high coherence over the wetland areas. The three-year intensity stack was used for assessing
wetland boundary, inundation extent, flood pulse, hydroperiod, and wetland vegetation. In addition
to the intensity, derived coherence was used for classifying wetland vegetation. Wetland vegetation
types were successfully classified with 86% accuracy using the statistical parameters derived from
the multi-temporal intensity and coherence data stacks. We have found that in addition to SAR
intensity, coherence provided information about wetland vegetation. In the next year, the Canadian
RADARSAT Constellation Mission (RCM), will provide more data with frequent revisits, enhancing
the application of SAR intensity and coherence for monitoring these types of wetlands at large scales.
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1. Introduction

As for other tropical wetlands, Amazon wetlands provide many services for society, such as
water storage, stabilize river discharge, groundwater recharge, organic carbon storage, withholding
sediment, ecotourism, timber production, medicinal plants, agricultural products, fish, drinking
water, and grazing land [1]. Furthermore, they provide homes for traditional communities and
contribute significantly to biodiversity [1]. Spatial and temporal variability of flood pulse influence the
inundation patterns in the floodplain, which influence the productivity and diversity of floodplain
biota throughout the Amazon wetlands [2]. There is a need for understanding the behavior of
the wetlands in the Amazon as the freshwater resources are becoming increasingly affected by
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various reasons. Increasing population, agricultural irrigation, deforestation, human interference,
sedimentation, salinization and pollution are some of the possible reasons that affect the sustainability
of the wetlands. More specifically, wetlands are the most vulnerable landscape feature subject to climate
change [3]. As wetlands are among the most threatened ecosystems, both their regular inventory and
efforts for their protection are highly recommended [1,4]. Hence, wetland ecosystems and services
provided by these ecosystems require constant monitoring.

Monitoring surface water can provide critical information for wetland management. Synthetic
Aperture Radar (SAR) has been shown to be excellent for surface water monitoring, largely for open
water [5]. This has led to a variety of intensity thresholding schemes for mapping open water [6–9]. SAR
also has shown its potential for monitoring water under vegetation canopies, with its penetration and
double bounce capabilities [10–14]. Based on that, a variety of SAR techniques have been developed
for identifying flooded vegetation, including intensity thresholds, polarimetric decomposition, and
InSAR coherence [15]. The enhanced backscatter intensity of some polarizations allows one to use
bright target thresholding techniques for identifying flooded vegetation [10–19]. Recent studies have
used InSAR technology to monitor water level changes in a variety of wetlands, including tropical
wetlands in the Amazon, the mangroves and sawgrass marshes of the Everglades, flooded forest in
the central Congo Basin, and hardwood swamps in Louisiana [20–29]. Suitable coherence has been
observed at X, C, and L-band frequencies, although the maintenance of coherence during the temporal
data acquisition period is critical to this methodology. In tropical floodplains like the Amazon, often
the water level is high and inundate wetland vegetation that makes significant areas as temporary
open water [30]. This is also a factor in addition to the common factors, such as perpendicular baseline,
temporal baseline, change in water level, high biomass, target motion, change in dielectric constant,
and atmospheric conditions [31–34], which disturb the coherence of phase over wetlands inconsistent
over time limiting the use of the InSAR technique for water level monitoring.

SAR satellites, such as ALOS PALSAR, RADARSAT-2, COSMOS Sky-Med, Terra-SAR/X,
Sentinel-1, and upcoming RADARSAT Constellation Mission (RCM), provide timely data for dynamic
wetland monitoring activities. Further, their advanced capabilities, such as interferometric data with
short temporal baselines, polarimetric data, high resolution data, and single or dual pol standard
mode consistent data products offer exciting possibilities for identifying innovative methods for
wetland, flooded vegetation and water resource applications [34–36]. This study follows a wetland
monitoring study near Ottawa, Ontario conducted by the Canada Centre for Remote Sensing (CCRS)
using RADARSAT-2 data acquired in 2011-2013. The previous study showed the use of coherence
and intensity from a stack of RADARSAT-2 for characterizing the wetlands in the temperate ice-off
season [34]. This paper reports an investigation of the use of intensity and/or coherence from a stack
of RADARSAT-2 images acquired in 2014-2016 for wetland extent, flood pulse and hydroperiod in the
Amazon tropical floodplain region throughout the high and low water stages. The knowledge gained
from tropical and temperate wetlands will be used to propose a methodology that could lead to the
use of RADARSAT-2 and RCM data for wetland monitoring.

2. Study Area Characteristics

Study Area Description

The study area is part of the lower Amazon floodplain in the State of Pará, Brazil (Figure 1)
consisting of a complex Amazon river network, lakes and floodplains. The lower Amazon floodplain
is classified as várzea, a type of floodplain that are periodically flooded by sediment-rich white-water
rivers of the Amazon [2,37]. The level of water in the area varies seasonally throughout the year in
response to the spatial and temporal distribution of rainfall in the Amazon catchment [38]. These
seasonally fluctuating water levels are known as ‘flood pulses’ [1,2]. These flood-pulses [2] are different
for most of the wetlands in tropics, sub-tropics, and temperate region. The average amplitude of flood
pulses can exceed 10 m in the Amazon River, depending on the location and the amount of rainfall [1].
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Based on [1], mean flood pulse amplitude at the Santarém station (Figure 1) in the study area is about
4 m with a maximum water level in June and a minimum in November.Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 18 
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Figure 1. Study area (R,G,B: Jul 31, Nov 28, Apr 02, 2014 RADARSAT-2).

The vegetation composition of várzea wetland forests, swamps, and wet savannas is strongly
dependent on the amplitude of the flood-pulse [39]. These flood-pulsing wetlands are covered by
woody and herbaceous plants, which have a large ecological tolerance of flood and drought stress [1].
Different forest types become established in relation to the flood-level gradient [40] and the formations
are characterized by typical patterns of species composition, and their architecture. The herbaceous
plant species usually grow from seed banks in the sediments or from vegetative resting stages during
the flooding phase [1]. Extended communities of fast growing and free-floating aquatic macrophytes
develop at rising waters over the areas that are mostly occupied by annual grasses, sedges, and herbs
during low water stages [1]. Fishes, aquatic birds, insects, reptiles, amphibians, and mammals tend to
recolonize temporary wetlands by emigration from permanently aquatic habitats [1]. Further, the flood
level influences the dynamics of fish populations and associated fishery yields [2].

3. Data and Methods

3.1. RADARSAT-2 Data

Our previous research demonstrated that high resolution (1–5 m) C-HH data were well suited for
interferometry [41]. Based on that, extra fine mode (XF0W2) right looking ascending pass RADARSAT-2
C-HH data were acquired in 2014-2016 covering 139 x 71 km2 of Amazon floodplain centered 54.9017◦

W, 2.1173◦ S. All 22 scenes of XF0W2 Single Look Complex (SLC) data were acquired (Table 1)
with an incident angle of about 35◦ and a pixel spacing of 2.6 m in range and 2.5 m in azimuth in
slant range projection. Besides, Shuttle Radar Topography Mission (SRTM) 1 void filled elevation
data at a resolution of 1 arc-second (30 meters) was used for orthorectification and further analysis
(https://lta.cr.usgs.gov/SRTM1Arc). As shown in Figure 2 these data sets were processed and used
for extracting wetland boundary, surface water/inundation extent, flood pulse, hydroperiod, and
wetland vegetation.

Table 1. 2014–2016 dates of RADARSAT-2 extra fine mode (XF0W2) acquisition. Dates with high and
low water stages are shown in bold. Blanks are for missed acquisitions.

Season/Flood Pulse Month 2014 2015 2016

High water stage

March 04
April 02, 26 21 15
May 15
June 13 08 02

https://lta.cr.usgs.gov/SRTM1Arc
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Table 1. Cont.

Season/Flood Pulse Month 2014 2015 2016

July 31
August 19 13

Low water stage

September 17
October 11 06

November 04, 28 23
December 22 17

January
February 03, 27Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 18 

 

 

Figure 2. Flow diagram shows the outline of the study methodology. 

3.2. SAR and InSAR Processing  

Gamma Remote Sensing software and in-house tools were used for the InSAR processing to 

derive backscatter and coherence images. The InSAR processing combines two SLC SAR images into 

an interferogram. Due to temporal de-correlation of the vegetation and rapid water level changes in 

Amazon floodplain, processing was done only with the next available InSAR pair. The minimum and 

the maximum temporal baseline of the RADARSAT-2 pairs used in this study is 24 days and 120 days 

respectively. The radar products were co-registered and the interferograms, which measures the 

phase displacement of targets between the two dates, were generated from all of the next available 

InSAR pairs [34]. The interferogram, coherence and multi look SAR backscatter products were 

generated and then orthorectified. The generated coherence, is a measure of decorrelation of two co-

registered acquisitions, has a range of values of 0.0 to 1.0 [34]. Further, temporal intensity and 

coherent stacks were created and statistical products, such as minimum, maximum, mean, standard 

deviation and skewness were derived from RADARSAT-2 intensity and coherent stacks using IDL 

programming. 

3.3. Open Water and Flooded Vegetation Extraction 

Low intensity thresholding method was used to mask open water from the radar backscatter 

image [15]. To determine the threshold (dB), image histogram and obvious open water samples were 

used. Although all the images are HH polarized and have nearly identical incidence angles, the 

selection of the open water threshold was scene specific because of weather conditions and near range 

effects. There is occasionally an increase in backscatter because of the waves present in water, which 

can cause omission of open water. In order to minimize the error, due to the wind effect, extracted 

open water images (bitmap images) were manually examined and edited if required. Out of 22, four 

open water images, which were acquired on 11 Oct 2014, 04 Mar 2015, 06 Oct 2015 and 17 Dec 2015 

were identified and edited to remove the relatively bright patches over the open water area at the 

near range side of the images. Similarly, the flooded vegetation mask was based on high intensity 

threshold and the cities with high intensity were removed from the flooded vegetation images 

(bitmap images). All these processes were done using PCI Geomatica software. 

3.4. Multi-Temporal SAR Classification 

Unsupervised classification of six statistical parameters, that include minimum, maximum, 

mean, standard deviation, skewness of intensity and maximum of coherence, was done using PCI 

software. Initially, 30 classes were classified using k-mean unsupervised classification algorithm and 

regrouped to nine classes based on the visual interpretation of pan-sharpened Landsat TM images 

acquired during the 3 years period (04 Sep 2014, 13 Jun 2015, 14 Aug 2015, 17 Oct 2015, 18 Nov 2015, 

04 Dec 2015, 20 Dec 2017, 16 Aug 2016), Google earth and Bing maps. The classified output was 

Figure 2. Flow diagram shows the outline of the study methodology.

3.2. SAR and InSAR Processing

Gamma Remote Sensing software and in-house tools were used for the InSAR processing to
derive backscatter and coherence images. The InSAR processing combines two SLC SAR images into
an interferogram. Due to temporal de-correlation of the vegetation and rapid water level changes in
Amazon floodplain, processing was done only with the next available InSAR pair. The minimum and
the maximum temporal baseline of the RADARSAT-2 pairs used in this study is 24 days and 120 days
respectively. The radar products were co-registered and the interferograms, which measures the phase
displacement of targets between the two dates, were generated from all of the next available InSAR
pairs [34]. The interferogram, coherence and multi look SAR backscatter products were generated
and then orthorectified. The generated coherence, is a measure of decorrelation of two co-registered
acquisitions, has a range of values of 0.0 to 1.0 [34]. Further, temporal intensity and coherent stacks
were created and statistical products, such as minimum, maximum, mean, standard deviation and
skewness were derived from RADARSAT-2 intensity and coherent stacks using IDL programming.

3.3. Open Water and Flooded Vegetation Extraction

Low intensity thresholding method was used to mask open water from the radar backscatter
image [15]. To determine the threshold (dB), image histogram and obvious open water samples
were used. Although all the images are HH polarized and have nearly identical incidence angles,
the selection of the open water threshold was scene specific because of weather conditions and near
range effects. There is occasionally an increase in backscatter because of the waves present in water,
which can cause omission of open water. In order to minimize the error, due to the wind effect,
extracted open water images (bitmap images) were manually examined and edited if required. Out
of 22, four open water images, which were acquired on 11 Oct 2014, 04 Mar 2015, 06 Oct 2015 and 17
Dec 2015 were identified and edited to remove the relatively bright patches over the open water area at
the near range side of the images. Similarly, the flooded vegetation mask was based on high intensity
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threshold and the cities with high intensity were removed from the flooded vegetation images (bitmap
images). All these processes were done using PCI Geomatica software.

3.4. Multi-Temporal SAR Classification

Unsupervised classification of six statistical parameters, that include minimum, maximum, mean,
standard deviation, skewness of intensity and maximum of coherence, was done using PCI software.
Initially, 30 classes were classified using k-mean unsupervised classification algorithm and regrouped
to nine classes based on the visual interpretation of pan-sharpened Landsat TM images acquired
during the 3 years period (04 Sep 2014, 13 Jun 2015, 14 Aug 2015, 17 Oct 2015, 18 Nov 2015, 04 Dec
2015, 20 Dec 2017, 16 Aug 2016), Google earth and Bing maps. The classified output was subjected to
accuracy assessment. Over the extent of the classified map, 200 random samples were generated using
ARCmap software. The points were overlaid on the Google earth, Bing maps and pan-sharpened
Landsat TM images, and the land cover type of each point were identified. Then the points belong to
the classes were extracted from the classified image. With those 200 justification points, a confusion
matrix was created and overall accuracy and omission and commission errors and the Kappa coefficient
were calculated.

4. Results and Discussion

In this section, we have summarized the products or information that can be extracted from
multi-temporal RADARSAT-2 HH intensity and coherence data and discussed the impact of the
derived information for natural resource and environmental applications, such as protected area,
flooding, fisheries, forestry and lifecycle of flora and fauna.

4.1. Inundation Extent

The wetland inundation extent plays a key role in ecosystem dynamics [42,43]. The inundation
extent of wetlands is one of the largest uncertainties in applying models of wetland function [38,42].
This has long been recognized in the International Geosphere Biosphere Programme Global Analysis,
Integration and Modeling report, which states “Wetland extent: The largest gap in wetland
characterization is the size of wetlands themselves, both in space and time” [42]. Initially, [44]
estimated the water extent over the Amazon, at low and high water stages, from SAR data. With the
emerging high spatial and temporal resolution of SAR data, it is now feasible to monitor seasonal and
inter-annual variation [6] in inundation extent, for example, to evaluate how this variation influences
greenhouse gas exchanges in the region.

Figure 3 shows the inundation extent, which was derived over the 2014–2016 time period using
RADARSAT-2 images using the methodology described in Section 3.3. As shown in Figure 3, the open
water (blue color) is classified based on low intensity threshold and the flooded vegetation (red color) is
classified based on high intensity threshold [15]. The results showed that intensity thresholding can be
used to extract open water and flooded vegetation to map wetlands over a large area like the Amazon
várzea. It is important to note that the user selection of the intensity threshold approach sometimes
can introduce uncertainty that can be rectified using automated or manual cleanup process [45,46].
As described in the methodology, relatively bright patches over the open water area at the left (near
range) side, due to the wind effect were removed from 11 Oct 2014, 04 Mar 2015, 06 Oct 2015 and
17 Dec 2015 images. It is also possible to identify and omit these images, when we get very frequent
images from RCM. The advantage here is that it captured the dynamic changes in the surface water
extent (Figure 3), which is very useful for wetland monitoring [42]. During high water stage (March to
August), the inundation extent is very large compared to low water stage (September to February) and
particularly the flooded vegetation area is significant as the water reach higher levels and inundate the
permanent vegetation areas. The net loss or net gain of surface water area from the observation period
provide a spatial snapshot of the water cycle and highlight which areas had an increase or decrease
in water extent (Figure 3). Based on [47], methane emission and CO2 sink respond to the changes in
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wetland inundation extent. Change in surface water extent also shows the hydromorphic processes
that can permanently modify wetland surfaces through erosion and sediment deposition that affects
biotic community development [37,39].Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 18 
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Figure 3. Radar-derived surface water maps (open water is in blue and flooded vegetation in red) from
April 2014 to August 2016. These images were produced using an intensity thresholding approach and
captured the dynamic changes in surface water extent.

4.2. Flood Pulse

In the Amazon várzea, hydrology is the major driving force and can be interpreted using flood
pulse. Amplitude, duration, shape, frequency, timing, and predictability are all important characteristics
of the flood pulse [39]. One of the attributes of the flood pulse is to regulate the limnological, physical
and chemical characteristics of contiguous water bodies by increasing hydrological connectivity [37].
The hydrological connectivity supports the water-mediated transport of matter, energy and organisms
within or between the components of the hydrological cycle [37]. Changes in elevation of a few decimeters
or meters can considerably modify the impact of the flood pulse and increase habitat diversity [39].

As the flood pulse of a specific location is an important indicator for hydrology and biodiversity,
we estimated the flood pulse using surface water products derived from remote sensing. For that,
the elevation of the water level was estimated from the surface water extent assuming a flat water
surface. This is based on the hypsographic curve [48] showing the relationship between the elevation
and the area less than the particular elevation of the selected cross section area (Figure 4a) of the river
valley using the SRTM DEM. Figure 4b shows the relationship that was used to estimate the water
level from the surface water extent.
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Figure 4. (a) Selected cross section area of the river valley, (b) Hypsographic curve showing the
relationship between the elevation and the area less than the particular elevation.

Figure 5a shows the temporal pattern of the estimated water level based on the SAR derived
surface water area (Figure 3) that includes open water and flooded vegetation. The water level of a
particular date is calculated from the SAR derived surface water area of the same cross section that is
shown in Figure 4a using the derived power equation (Figure 4b). The flood pulse from 3 years of data
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(Figure 5a) shows a comparable annual flood pulse pattern developed from the hydro station hourly
water level data of Santarém station (2◦25.93′ S, 54◦41.45′ W), which is in the study area and close to
the selected cross section. Though the pattern is allied and the estimated and observed water levels
are highly correlated (R2 = 0.9), the water level is under estimated that is about 46% (Figure 5b) of the
observed water level. The error could be because of three reasons: (1) The accuracy of the SRTM DEM;
(2) systematic underestimation of open water and flooded vegetation; and (3) difference between the
cross section and the hydro station locations. The SRTM DEM is relatively accurate. However, there is
a possibility to have low absolute elevation accuracy predominantly in the low elevation floodplain
area. At this moment, we do not have any means to validate the absolute elevation of the SRTM DEM.
The cross section is away from the hydro station location because only nine images out of 22 cover
the Santarém area (see Figure 3) that is not adequate for showing flood pulse. Further, the correlation
between the estimated and observed water levels at rising and recession limbs are different (Figure 5c).
There is a 0.5 m underestimation during the water level rising limb. This variation may be due to the
time lag (an average of 25 days) between the water level raise at the river and the flooding at the far
end of ~35 km wide floodplain. Moreover, a very high correlation between the estimated and observed
water level at rising (R2 = 0.99) and recession (R2 = 0.98) limbs (Figure 5c) pronounce the correctness of
the surface water extraction from SAR.
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Figure 5. (a) Temporal pattern (annual flood pulse) of the estimated water level from surface water
maps derived from SAR and observed hourly water level measurement acquired form Santarém station.
(b) Correlation and deviation between estimated and observed water levels. (c) Correlation between
the estimated and observed water level at rising and recession limbs.
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However, this annual pulse, the periodic change between a terrestrial and an aquatic water
phase, is the most important factor affecting plant fitness in Amazonian várzea wetlands. Usually
these phases are important for biotic population maintenance [37]. In the case of aquatic herbaceous
vegetation, the flood pulse changes the availability of habitats and nutrients throughout the year,
influencing the spatial distribution and the percentage of surface covered by their populations [37].
This flood pulse controls the productivity of fisheries in the study area. High and low water indices,
which are calculated as the area under and above the hydrograph curve relative to a ‘bank-full’ level,
in any given year affects fishery yields two and three years later [2].

4.3. Hydroperiod

In temporary freshwater ecosystems, hydroperiod (inundation duration) is commonly found
to be one of the fundamental factors affecting community structure and it is generally found that
species richness increases with inundation duration [49]. As inundation duration increases, larger
and longer-lived species can be supported and it also favors the expansion of the coverage area of
floating herbaceous vegetation [37]. Figure 6 is a hydroperiod map developed from the surface water
maps, which includes open water and flooded vegetation (Figure 3). This was created based on the
frequency of the number of times a pixel is identified as water in the multiple surface water maps.
Then the frequency (1-22) was converted to months (1-12) assuming the surface water maps are equally
spaced in time for simplifying interpretation. This assumption will be more valid when we use very
frequent SAR data from forthcoming RCM satellites. This map can be used for understanding wetland
functions and for applying models of wetland functions, where the temporal and spatial extent of
wetland flooding should be characterized in terms of hectare-days [42]. Figure 7a which was derived
from Figure 6 area statistics shows such values (area is in gray: km2-months) of the study area and can
be used for such models.
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This map can also be used for the zonation of plant communities described in [37]. According
to Ferreira’s zonation [37], the vegetation zonation along the hydroperiod and flood-level gradient
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on várzea floodplains are well characterized. Central Amazonian várzea forests are divided as high
várzea or low várzea, with few species found in both forest types. High várzea forests are found
on more stable sites, where the flood period is generally < 50 days per year and the water level is
<3 m. Low várzea forests become established where the annual water column has an average height
of >3 m, which corresponds to an inundation period of 50 to 270 day per year. The herbaceous
vegetation is subjected to average annual flooding of 8–9 months. Figure 7b which was derived from
Figure 6 shows the area statistics of wetland vegetation of the study area based on the Ferreira’s
zonation. Although, the vegetation composition of the várzea floodplain depends on the duration
and amplitude of flooding, the derived three zones are not detailed enough to categorize the actual
wetland vegetation.
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Figure 7. (a) Inundation extent and duration (b) Statistics of wetland vegetation based on the
Ferreira’s zonation.

4.4. Wetland Vegetation

In this section, we included the coherence, calculated by correlating the RADARSAT-2 scenes in
pairs for classifying wetland vegetation. Figure 8 shows all the 21 coherence products and specifically
shows the coherence of 23 November and 17 December 2015 scenes separated by 24 days. The SAR
response signal from flooded vegetation remained coherent during that repeat satellite over-passes,
as also observed by [50]. The coherence increases with the vertical or near-vertical vegetation
component above the water surface that provides double-bounce reflection. In addition, river sand
banks can also show high coherence, as also reported by [32]. The high coherence within the wetland
boundary that is shown in yellow color was from the flooded vegetation or sometimes the sand
shore. Here, upland agriculture also shows high coherence but that is not our interest. Motion of the
vegetation caused by wind and growth, changes in the dielectric constant of the vegetation, and very
high water level changes between the two dates decrease coherence, which is more common for C
band SAR [34]. Therefore, we experienced low coherence over flooded vegetation for a number of
pairs that limits the use of the coherence alone for wetland classification in this study.

In order to understand the vegetation composition of the Amazon várzea floodplain statistical
products derived from RADARSAT-2 intensity and coherent stacks, which gives meaningful
information for wetland classification, were used. These products were:

1. Minimum intensity—information on open water area
2. Maximum intensity—information on flooded vegetation
3. Mean intensity—information on land surface
4. Standard deviation of intensity—information on change
5. Skewness of intensity—information on pattern of change
6. Maximum coherence—coherent for a certain period
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November and 17 December 2015 scenes.

Figure 9 shows an intensity coherence color composite that was developed from three of the above
six parameters to effectively visualize the wetland area. The three channels used for Figure 9 are
related to changes. Here, red represents maximum coherence, green represents the standard deviation
of intensity, and blue represents skewness of intensity. This combination was selected because; the
maximum coherence gives higher values for flooded vegetation, due to their high coherency at least
from a single pair; standard deviation of intensity shows higher values for flooded vegetation, due to
the variation between dry period and strong double bounce during flooded time; and the skewness,
which characterizes the degree of asymmetry of a histogram distribution around its mean [51], shows
higher values for dynamic temporary open water compare to permanent open water and land. The
color composite (Figure 9) is useful for visualizing the study area and for highlighting wetlands.
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Upland dense forests are in dark green and with the reducing density of the forest, the color changes
to green, yellow, orange and red, due to increasing coherence and may be, due to increasing openness.
However, high density flooded forest in the wetland area shows in light green as it was flooded
for sometimes resulting slightly higher coherence due to typical double bounce scattering. Though,
the standard deviation shows a range of the changes, the skewness demonstrates the pattern of change
(more or less indicating hydroperiods). Therefore, the wetland areas are shaded with a blueish tone.
The magenta color indicates long duration inundated areas occasionally showing high coherence
due to the strong double bounce scattering from flooded herbaceous vegetation. This demonstrates
the significance of integrating coherence products with intensity products for monitoring flooded
vegetation and identifying general land-cover. The color of lower part of the color composite (Figure 9)
is slightly different as a few images (see Figure 3) does not cover the lower part, so the number of
multi-temporal images/pixels used for the statistical products were different.
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Figure 9. R,G,B: Maximum coherence, standard deviation of intensity, and skewness of intensity
derived from RADARSAT-2 intensity and coherent stacks. The color deference in the lower part is due
to the missing coverage of a few acquisitions that altered the data used for the statistical products.

Figure 10 provides a map of wetland extent and vegetation type of the study area classified from
the above six statistical products derived from RADARSAT-2 intensity and coherent stacks. The extent
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of the wetland visually matches with the classified image [44] that was the first validated estimate
of wetland derived from the Global Rain Forest Mapping Project (GRFM) Amazon low-flood and
high-flood seasons mosaics. However, our classification is comprehensive as we have used very high
resolution multi-temporal intensity and coherence data for the classification. The accuracy assessment
was performed as a standard error matrix (Table 2) with the help of the land cover information of
200 random validation points interpreted from Google earth and Bing maps and pan-sharpened
Landsat TM images.

Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 18 

 

estimate of wetland derived from the Global Rain Forest Mapping Project (GRFM) Amazon low-flood 

and high-flood seasons mosaics. However, our classification is comprehensive as we have used very 

high resolution multi-temporal intensity and coherence data for the classification. The accuracy 

assessment was performed as a standard error matrix (Table 2) with the help of the land cover 

information of 200 random validation points interpreted from Google earth and Bing maps and pan-

sharpened Landsat TM images. 

 

Figure 10. Wetland classification from six statistical parameters derived from multi-temporal 

RADARSAT-2 intensity and coherence stacks. 

Table 2. Confusion matrix (Figure 10). 

 Reference 

C
la

ss
if

ic
at

io
n

 

 

W
at

er
 

P
ri

m
ar

y
 f

o
re

st
 

D
eg

ra
d

ed
 f

o
re

st
 

F
lo

o
d

p
la

in
 f

o
re

st
 

F
lo

o
d

p
la

in
 s

h
ru

b
 

F
lo

o
d

p
la

in
 

h
e

rb
ac

eo
u

s 

A
q

u
at

ic
 

h
e

rb
ac

eo
u

s 

A
g

ri
cu

lt
u

re
 o

r 

g
ra

ss
la

n
d

 

S
et

tl
em

en
t 

T
o

ta
l 

U
se

rs
 a

cc
u

ra
cy

 

Water 43         43 100 

Primary forest  46 1 3 1     51 90 

Degraded forest  1 10       11 91 

Floodplain forest    11      11 100 

Floodplain shrub  1  1 8 2  1  13 62 

Floodplain herbaceous  1 1  2 17 2 1  24 71 

Aquatic herbaceous 1     2 9   12 75 

Agriculture or grassland   3  2  1 25 1 32 78 

Settlement         3 3 100 

Total 44 49 15 15 13 21 12 27 4 200  

Producers accuracy 98 94 67 73 62 81 75 93 75  86 

Though multiple high resolution images of Google earth and Bing maps cover the study area, 

most of the high resolution images of Google earth were acquired during high water stage and most 

of the high resolution images of Bing maps were acquired during low water stage. These 

Figure 10. Wetland classification from six statistical parameters derived from multi-temporal
RADARSAT-2 intensity and coherence stacks.

Table 2. Confusion matrix (Figure 10).

Reference

C
la

ss
ifi

ca
ti

on

W
at

er

Pr
im

ar
y

fo
re

st

D
eg

ra
de

d
fo

re
st

Fl
oo

dp
la

in
fo

re
st

Fl
oo

dp
la

in
sh

ru
b

Fl
oo

dp
la

in
he

rb
ac

eo
us

A
qu

at
ic

he
rb

ac
eo

us

A
gr

ic
ul

tu
re

or
gr

as
sl

an
d

Se
tt

le
m

en
t

To
ta

l

U
se

rs
ac

cu
ra

cy

Water 43 43 100
Primary forest 46 1 3 1 51 90

Degraded forest 1 10 11 91
Floodplain forest 11 11 100
Floodplain shrub 1 1 8 2 1 13 62

Floodplain herbaceous 1 1 2 17 2 1 24 71
Aquatic herbaceous 1 2 9 12 75

Agriculture or grassland 3 2 1 25 1 32 78
Settlement 3 3 100

Total 44 49 15 15 13 21 12 27 4 200
Producers accuracy 98 94 67 73 62 81 75 93 75 86



Remote Sens. 2019, 11, 720 14 of 18

Though multiple high resolution images of Google earth and Bing maps cover the study area,
most of the high resolution images of Google earth were acquired during high water stage and most of
the high resolution images of Bing maps were acquired during low water stage. These complementary
coverages helped to separate the classes without much trouble. The classes, such as settlement and
agriculture/grassland, were very visible on both Google earth and Bing maps. The primary forest
and degraded forest were separated based on the density of the vegetation appeared on the Google
earth and Bing maps. Forests, shrubs and herbaceous within the floodplain area were identified
using Bing maps and if those points were flooded or submerged based on Google earth or any of the
available Landsat TM data acquired during the three year period, they were categorized as flooded
forest, flooded shrubs and flooded herbaceous classes respectively. Aquatic herbaceous are prominent
with bright bluish red color on Landsat TM false color composites (R,G,B: NIR,Red,Green) mainly
during the low water stage. Due to lack of resources, the uncertainty of the visual interpretation is not
assessed with ground data.

The overall accuracy of the SAR statistical parameters classification (Figure 10) is 86% and the
Kappa coefficient is 0.83. Table 3 illustrates commission errors that represent pixels that belong to
another class, but are labeled as the class and omission errors that represent pixels that belong to the
class but fail to classify into the proper class. Table 3 also shows individual Kappa coefficients, a discrete
multivariate technique for accuracy assessment, for each class. From the class Kappa coefficient, it is
clear that out of all the classes, floodplain shrub and herbaceous are poorly classified as the two classes
are naturally mixed-up. This is mainly because of the density of the shrubs that decides the classes.
Similarly, in the upland area, some of the low-density open degraded forests are labeled as agriculture
or grassland class. Here, floodplain forest is very well discriminated from other vegetation because of
its unique interaction with SAR. However, C-band SAR has limited penetration through thick forest
canopies and that categories might not be separable.

Table 3. Accuracy of the wetland classification (Figure 10).

Class Name Reference
Totals

Classified
Totals

Number
Correct

Omission
Error (%)

Commission
Error (%) Kappa

Water 44 43 43 2 0 1.00
Primary forest 49 51 46 6 10 0.87

Degraded forest 15 11 10 33 9 0.90
Floodplain forest 15 11 11 27 0 1.00
Floodplain shrub 13 13 8 38 38 0.59

Floodplain herbaceous 21 24 17 19 29 0.67
Aquatic herbaceous 12 12 9 25 25 0.73

Agriculture or grassland 27 32 25 7 22 0.75
Settlement 4 3 3 25 0 1.00

Total 200 200 172

Overall accuracy: 86 %; Kappa coefficient: 0.83

The spatial distribution of the land use/cover types of the upland area is dominated by thick
forest. However, agriculture or grass patches are also significantly distributed in the study area.
In the wetland area, well developed species and early secondary tree species are classified under
floodplain forest [37]. Further, monospecific stands of pioneer short-lived woody perennials mixed
with herbaceous plants are common in floodplain shrub [37]. Herbs and perennial grasses are typical of
floodplain herbaceous. Dry period sand shores colonized by annual grasses, sedges, and semi-aquatic
herbs are classified as aquatic herbaceous [37]. Some herbaceous species spread predominantly by
vegetative regrowth cover the upper soil layers that prevents erosion and promotes the early stages of
succession [37].
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5. Conclusions

Monitoring extensive areas of wetlands represents a formidable task for water resource managers
in many parts of the world. For example, in areas like the Amazon, authorities have limited capabilities
for monitoring because of the dynamic nature of the wetland, accessibility, and persistent cloud
cover that limits optical imaging. Remote sensing with radar offers more capabilities (weather
independent, day and night acquisition, specular reflection, penetration and double bounce scattering)
than optical, and SAR would permit monitoring of both long-term and rapid changes of wetlands
and their interconnections across entire watersheds. In this study we have demonstrated the use of
multi-temporal RADARSAT-2 satellite data for extracting wetland boundary, flood pulse, hydroperiod
and vegetation.

The intensity thresholding method worked well to extract open water and flooded vegetation for
mapping surface water or wetland extent of the study area, as only 4 out of 22 open water products
(<20%) were edited to remove relatively bright patches over the open water area, due to the wind effect.
The estimated wetland extent accuracy was prominent because the correlation between the estimated
water level, which was based on the hypsographic curve using the wetland extent products, and
observed water level at rising (R2 = 0.99) and recession (R2 = 0.98) limbs are were very high. However,
there is a 0.5 m underestimation during the water level rising limb and the variation may be due to the
time lag (an average of 25 days) between the water level raise at the river and the flooding at the far
end of ~35 km wide floodplain. This time lag should be evaluated in future studies. The hydroperiod
map, which can be used to characterize the temporal and spatial extent of wetland flooding in terms
of hectare-days, was also created from the multiple wetland extent products. Moreover, the overall
accuracy of the SAR statistical parameters classification is 86% and the Kappa coefficient is 0.83.
This validation is based on the expert visual interpretation of available high resolution optical images
and the uncertainty of the visual interpretation is not quantified because of a lack of resources.

Further, using similar methods, yearly flood pulse and hydorperiod map can be produced using
frequently observed SAR data stacks from current and future satellites. Our interferometric analysis
shows that high coherence can be obtained from wetland vegetation. However, the coherence can drop
quickly when the wetland water level rapidly changes. There was major growth and change of the
herbaceous vegetation in the marsh area, which made the greatest variability in coherence during the
three years period. This knowledge and these applications represent the advancement in using SAR
images for wetland monitoring and management. Furthermore, wetland monitoring application and
techniques will be improved by using ample of data from existing SAR satellites, such as Terra-SAR/X
and COSMO SkyMed, Sentinel, and the upcoming RCM, which will provide frequent revisits.
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