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Abstract: A noticeable topic to be pursued in the field of on-board real-time data processing is the
influence of the modulation transfer function (MTF) of the image acquisition system on the lossless
compressibility of raw (that is, uncalibrated) hyperspectral data. Actually, notwithstanding the system
device is constrained by several design and manufacturing requirements, the impact of the on-board
MTF on the performance of data compressors is becoming remarkable. In particular, the aim of
reducing both transmission bandwidth/power and mass storage can be efficiently pursued. Such an
analysis is expected to be useful especially for systems employed in mini-satellites, whose payload
must be compact and light. From this perspective, this paper investigates the performance of a typical
imaging system that acquires low/medium-spatial-resolution images, by considering high-resolution
reference data, which simulate the real scene to be imaged. To this end, standard Consultative
Committee for Space Data Systems (CCSDS) Aviris 2006 data have been chosen, due to their spatial
resolution of 17 m, which is adequate to be a reference for simulated data whose spatial resolution
is foreseen between 50 and 150 m. MTF requirements are usually provided based on the cut-off
value of the amplitude at the Nyquist frequency, which is defined as a half of the sampling frequency.
Typically, a cut-off value between 0.2 and 0.3 ensures that a sufficient amount of information is
delivered from the scene to the acquired image, by avoiding at the same time the degradation due
to an excessive aliasing distortion. All the scores are achieved by running the standard lossless
compression scheme CCSDS 1.2.3.0-B-1 for multispectral/hyperspectral data, as a function of the
cut-off value and different noise acquisition levels. The final results, and related plots, show that this
analysis can suggest a suitable choice for the cut-off value, to ensure both a sufficient quality and low
bit rates for the transmitted data to the ground station.

Keywords: Modulation Transfer Function (MTF); hyperspectral raw data; lossless compression;
on-board real-time processing; spatial resolution; cut-off value; CCSDS compression standard;
image acquisition noise; mini-satellites

1. Introduction

In this paper, the real-time lossless compressibility of the acquired raw data in a satellite
scenario is investigated when changes occur in the MTF of the sensor optical system. In fact,
compression procedures are necessary to minimize the data amount to be sent at the ground station,
and consequently to alleviate the load of the limited bandwidth in the transmission stage [1,2].
In particular, lossless algorithm ensure the recovering of the original data without any distortion,
even if compression ratios (CR) of more of 3 are hardly achievable, because of the degradation
relating to several impairments, which are caused by the presence of both internal and external
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noise sources [3], as acquisition noise, striping, registration errors, cosmic ray interactions, and so on.
Moreover, an on-board compression scheme works with reduced memory and computational resources,
due to the very challenging space environment. To well cope with designers’ needs, an algorithm must
be suboptimal with respect to the state-of-art methods, in particular by resorting to integer arithmetics
and to a high redundancy, so that the effects of possible transmission errors can be minimized. Such a
factor is on behalf of lossless methods, which are more insensitive to the channel noise, because there
is no superimposition between transmission errors and those due to the algorithm itself.

These requirements are particularly challenging in the case of mini-satellites, whose environment
requires a very low computational complexity and rather compelling payload constraints. In fact,
the main advantages of such missions are a significant cost reduction, with a consequent economical
effectiveness, as well as an improved compactness, which is achievable thanks to the continuous
technological progresses, in such a way that payloads of a few kilograms can produce measurements
of the requested precision [4]. In this context, the Italian Space Agency (ASI) supports the PLATiNO
program (Mini Piattaforma spaziaLe ad Alta TecNOlogia, that is, Mini Spatial Platform with High
Technology), whose objective is the definition and development of national technologies for future
missions through the identification of a multi-purpose standard platform, in such a way the attestation
and testing of Italian technologies will be possible on on-board devices [5]. A remarkable contribution
is expected by the Spettrometro Miniaturizzato Avanzato per Ricerca Tecnologica (SMART) project
(Advanced Miniaturized Spectrometer for Technological Research), which is an advanced technological
project funded by Tuscany Region in the framework of the POR - FESR 2014-2020 (Regional Operative
Program) [6]. In fact, such a project is aimed to the design and development of an innovative
hyperspectral sensor in a compact low-weight imaging instrument. The objective is to design a sensor
able to operate on small satellites, but capable at the same time to achieve performances comparable to
those of more complex instruments, which however require much higher costs. Among the scientific
objectives of the SMART project, a subject of particular importance is the evaluation of the influence of
the sensor MTF on compression, fusion, and restoration algorithms.

In fact, the system MTF plays a major role in determining the quality of images fused by
pansharpening algorithms, especially those based on pyramid decompositions [7]. Concerning image
coding, a study of the relation between compression performances and the acquisition system MTF
is of great interest, because a significant reduction of the transmitted bit rate (BR) can be achieved
by designing a more selective MTF, in such a way the information content of the acquired image is
poorer, but still sufficient for the users’ applications. Obviously, the MTF design is firstly constrained
by technological requirements [8], in such a way the filtering power of the instrument optics cannot
exceed constructive limits. In particular, the cut-off value of the MTF at the Nyquist frequency is
usually chosen between 0.2 and 0.3, to optimize the information content of the acquired image and
the robustness to aliasing impairments. However, a quantification of the compression gain in case the
cut-off value is decreased is very effective, especially in the case of mini-satellites.

The aim of the present work is exactly to investigate the possibility to get appreciable gains in CRs,
by modulating the cut-off value of the system MTF, with reference to future mini-satellite missions
foreseen in the SMART project. However, being the sensor under construction, in this analysis the
acquisition process must be simulated. To this end, an already acquired image has been taken as a
reference image, with the constraint that its spatial resolution must be much higher than that of the
simulated data, in such a way the spatial resolution of the reference image can be considered to be
practically infinite. In fact, the content frequency of a real acquired scene is low-pass filtered by the
system MTF, so that possible aliasing distortions can be limited when passing from the infinite spatial
resolution of the analog scene to the finite spatial resolution of the sampled image [9]. For the planned
future missions, the expected spatial resolution range of the upcoming raw data will be included
between 50 and 150 m. Consequently, a standard Aviris 2006 data set with a spatial resolution of
17 m has been chosen as a suitable reference image. In fact, the Aviris 2006 raw data are characterized
by a high SNR, with little degradations due to striping and signal-dependent noise impairments [10].
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The images that simulate the real acquisitions are obtained by filtering and downsampling this reference
image. To this end, the filtering stage uses Gaussian-like MTFs with different amplitude values at the
cut-off point. Such a choice is motivated by the good approximation given by a Gaussian function
with the real MTFs employed in most satellite systems. For simplicity, the reduction stage is made
by downsampling the reference image by means of some power-of-two integer factors. In fact, if we
had considered rational factors, a more complicated procedure would be necessary, by considering
an interpolation stage, besides the reduction one [11]. The coding stage of the simulated images has
been performed by taking the CCSDS 1.2.3 hyperspectral/multispectral compression standard [12],
because the aim of the present analysis is not to define a novel compression scheme, but it only gives
an estimation of the dependence between the performance of a standard on-board compressor versus
the filtering response of the system MTF.

The outline of this work is as follows. Section 2 reports the filtering capabilities of an acquisition
system MTF in a satellite scenario. Section 3 provides an overview of the on-board compression
procedures, with a special focus on the adopted CCSDS 1.2.3 hyperspectral compression standard.
Section 4 describes the adopted simulation procedure for the oncoming acquisition system, where the
simulated acquired data are obtained by filtering and downsampling a high spatial resolution reference
image. The compression experiments on the CCSDS Aviris 2006 data set are given in Section 5. Finally,
Section 6 highlights conclusions and future developments.

2. MTF Filtering Capabilities of an Acquisition Satellite System

In general, the filtering power of a system MTF is a function of several factors. In fact, the MTF
depicts the amplitude of the overall transfer function of the system, which is given by the product
of more individual contributions, as the optical transfer function, the detector transfer function,
the electronic transfer function, and other factors as, for example, the platform movement [9,13]. This is
particularly true in the case of whisk-broom sensors, where the image is produced by the combined
effect of the scanning mirror (across-track) and the platform movement (along-track). Conversely,
for push-broom sensors, the scanning mechanism in the across-track direction is no longer necessary
since a whole row is acquired by a sensor array of detectors. In this case, however, differences in
detector responsivity can affect the MTF, even if with a less extent [14].

It is well-known that each point source in the scene becomes a point spread function (psf) in the
image acquired by an optical system, and consequently this psf is the impulse response of the system
itself. Due to the system psf, each point source is blurred and projected into the image, which becomes
the sum of all the individual blurs, because the blur process is repeated for each of the infinite points
of the scene independently each other. It follows that the process is linear, so that the superposition of
the effects holds. Theoretically, the shape of each blur (that is, of the psf) can depend by its position
in the field of view. In particular, the optical blur tends to be smaller at the center of the image.
However, the image plane can be divided into smaller regions where the optical blur is approximately
constant. For images that are not too large, the optical psf can be taken to be independent of its position
in the field of view, in such a way we can assume that the optical system is shift-invariant with a
well-defined transfer function. Being the shift-invariant superposition in the space domain equivalent
to a convolution between the optical psf and the scene intensity, we obtain a multiplication in the
frequency domain between the Fourier spectrum of the scene and the frequency transform of the psf,
whose amplitude is named MTF. Consequently, the optical system is just a spatial filter in the frequency
domain, whose effect is to attenuate the highest spatial frequencies of the scene [15].

An MTF filter is bidimensional, but it is usually separable into across and along-track directions.
By considering the two dimensions separately, the main design parameter of a mono-dimensional MTF
is the amplitude value at the Nyquist frequency, that is, the frequency where an ideal low-pass filter
cuts the signal spectrum. An ideal low-pass filter is a band-rejection filter, whose frequency response is
rectangular, with amplitude values equal to 1 in the pass-band and to 0 in the stop-band. Being the
correspondent impulse response a sync function of infinite length, such a filter is not physically
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achievable. In the following, the cut-off value of the MTF will be denoted as Kmin, being the minimum
value admissible in the designing phase to acquire a good-contrast image. If we denote as B the
maximum frequency of the signal to be sampled, in the case of a band-limited signal, the sampling
frequency fs is such that the following constraint holds for recovering the original analog signal

fs ≥ 2B. (1)

where the maximum signal frequency is just the Nyquist frequency fN , that is, fN = B. If the analog
signal is not band-limited, as usual, the rejection of the aliasing distortions is made by taking an ideal
low-pass filter whose cut-off frequency is a half of the sampling frequency fs. Once the higher signal
frequencies have been removed, the Nyquist frequency will be equal to the cut-off frequency, that is,

fN =
fs

2
. (2)

In the real case, the ideal filter is replaced by the system MTF, which can be modeled as a first
approximation by a Gaussian function. Obviously, the frequency response of the MTF filter is less
selective than the ideal one, and this means that the baseband frequencies will be only partially filtered,
as well as the out-of-band frequencies not completely removed. Consequently, the MTF amplitude at
the Nyquist frequency gives a measure of the tradeoff between baseband and out-of-band frequencies.
Figure 1 compares the frequency responses of the ideal filter and some Gaussian-like MTFs, as a
function of the normalized frequency fn = f / fs [16]. In the domain of the normalized frequency fn,
the sampling frequency fs corresponds to the 1 value, whereas the cut-off frequency fN is equal to
0.5. Therefore, Figure 1 must be evaluated for the cut-off frequency fn = 0.5. For such normalized
frequency, a larger amplitude value of the Gaussian-like MTF implies more spurious out-of-band
frequencies. It can be noticed that if the MTF is assumed to be a Gaussian function, the point spread
function is also Gaussian.
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Figure 1. Frequency responses of some Gaussian-like MTFs versus the ideal filter.

3. On-Board Data Compression

The compression process of the acquired raw data is a mandatory stage in the hyperspectral data
process chain, as it is shown in Figure 2. In fact, the transmission load for the hyperspectral data is
typically of the order of a Gbyte for each acquired scene.
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Figure 2. Hyperspectral data analysis chain. The compression stage is mandatory in the space segment.

The most significant indices for assessing the performance of a compression scheme are the BR
and the CR. The BR gives the number of bits per pixel of the coded image, so that lower BRs mean
better coders. If Nb denotes the total number of bits of the compressed bit stream, and NP denotes
the total number of pixels of the original sequence, we have

BR =
Nb
NP

. (3)

A complementary figure is the CR, which must be kept higher as possible. It is defined as the
ratio between the total number of bits of the original sequence (NT), and the total number of bits of the
compressed bit stream, that is

CR =
NT
Nb

. (4)

with NT = NP · Nbp, where Nbp is the number of bits per pixel of the original sequence.
If the compression method is not lossless, the algorithm is called lossy. In this case, several error

measurements are used in literature to quantify the distance between original and reconstructed
3D data. Even if this work includes only lossless experiments, the RMSE distortion index is here
used to compare the simulated data, in the case of an ideal filter and Gaussian-like MTF filters.
Let us denote as G(i, j, k) the reference data set and as Ĝ(i, j, k) the data set to be compared,
where i = 1, . . . , Nr, j = 1, . . . , Nc, k = 1, . . . , NB, and Nr, Nc, NB are the numbers of rows, columns,
and bands, respectively, of the reference data set. Let be then N = Nr · Nc · NB the total number of
pixels. In this case, the RMSE distortion measure is defined as

RMSE =

√
1
N

· ∑
i,j,k

[G(i, j, k)− Ĝ(i, j, k)]2. (5)

where the summation is extended over the whole data set.
A block scheme of a typical compression procedure is shown in Figure 3. The compression stage

is essentially composed of two main blocks, which represent the decorrelation and the encoding
phases. The decorrelation block performs a transformation of the original data, by producing more
uncorrelated samples, which can be more efficiently encoded. To this end, transform-based strategies
(as Discrete Wavelet Transform (DWT) [17]), or prediction-based algorithms (as Differential Pulse
Code Modulation (DPCM) [18]) can be effectively used. If the former ones are more performing in
the lossy case, the latter ones work better if a lossless compression is requested [19–21]. In the case of
DPCM-like strategies, the possibility to achieve a lossy compression with the additional feature of a
peak error controlled by the user is also achievable, by inserting a quantization step in the prediction
loop. This is the so-called near-lossless compression, which can be obtained by means of both causal
and no-causal schemes [22,23]. Concerning the encoding stage, the arithmetic coding can reach the
entropy limit [24], but it is not exploitable for an on-board implementation. Due to their limited
complexity, coders working in integer arithmetics, as Golomb-Rice, are adopted instead [25].
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Figure 3. A typical procedure showing the compression and decompression stages.

Evidently, a lossy algorithm can reach higher CRs, but with the disadvantage of several
information losses. The issue is then if a minimization of such a distortion is possible, to achieve
decoded data with a sufficient quality [26]. However, in several applications, a lossless compression is
mandatory. In this case, DPCM-based strategies are widely used. Lossless DPCM basically consists of
a prediction followed by the entropy coding of the differences between original and predicted values
(prediction residuals). The prediction is causal in the 3D case, by involving spatially and/or spectrally
previously encoded neighbor pixels that are available at the decoder. The predicted value is often
computed by considering the neighbors in a linear combination, which can involve both a spatial
neighborhood (in the same band) and a spectral one (in several previous bands) [27]. Figure 4 shows
a typical spatial/spectral neighborhood for a DPCM scheme, in case two previous spectral bands
are used for computing the predicted value. It can be noticed that several different spatial/spectral
neighborhoods can be chosen for the prediction, by sequentially considering past values at increasing
distances from the current pixel (CP). In Figure 4, pixels at increasing distances are colored by following
the attached look-up table. Let us observe that the first considered pixel in the previous bands is the
pixel in the same position of the CP. In the particular case of a simple spectral prediction, only the
pixels in the same position of the CP are usually considered.

B
k

B
k-1

B
k-2

CP

Max Distance

Min Distance

Figure 4. Spatial/spectral neighborhoods in a DPCM scheme.

In the on-board scenario, a compression scheme is limited by several constraints, as a low
power consumption, the size of the payload, radiation hardening issues, reduced memories, and so
on [28]. Consequently, several simplifications are requested, by admitting possible degradations in the
performance. Moreover, the on-board algorithm must cope with many noise contributions (striping
noise, signal-dependent photonic noise, signal-independent electronic noise). Another important issue
is the type of acquisition modality, which does not generally allow an immediate availability of the
acquired image in the usual Band Sequential (BSQ) arrangement. In fact, the acquisition is usually
done in the Band Interleaved by Line (BIL) and Band Interleaved by Pixel (BIP) modalities. In the
case of BSQ, or even of BIL, the spatial correlation is more easily exploitable than in the BIP structure.
Consequently, the CR of BIP is less than for BSQ and BIL.

Several low complexity lossless compression algorithms have been proposed in literature to be
adopted in the case of on-board requirements [29]. Among them, the Fast Lossless (FL) algorithm [30]
has been chosen by CCSDS for the definition of the lossless compression standard CCSDS 1.2.3.0-B-1
for multispectral/hyperspectral data. The definition of this standard is reported in the CCSDS Blue
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Book [12]. Recently, a novel standard CCSDS 1.2.2.0-B-2 has been defined to specify the modalities for
an easy control of the CR in an on-board scenario [31].

CCSDS 1.2.3 Hyperspectral Compression Standard

In this work, the CCSDS 1.2.3 lossless compression standard has been used for the experiments,
by resorting to the EMPORDA software [32]. The prediction block of the CCSDS 1.2.3 is rather
complicated, but in any case it works in integer arithmetics. A first prediction of the CP is obtained by
merging several neighboring pixels in a local sum, which can be computed both in a spatial (possibly
only in the vertical direction or even horizontally) and in a spectral order. The local sum is then
scaled and refined by exploiting contextual information through several past local differences (also
spatial or not) between the already computed predictions and the previous true values [33]. To this
end, these differences are weighted by the coefficients of a continuously updated filter. Eventually,
a prediction value is computed by employing the local sum and the local differences, in such a way
the correspondent residual signed difference is mapped into a non-negative integer by the Prediction
Residual Mapper, and successively sent to the Golomb-Rice encoder. This encoder can work by setting
the block-adaptive modality or the sample-adaptive modality, which encodes each mapped prediction
residual by means of variable-length binary codewords. In this process, an accumulator is used to
select the Golomb Power-of-two (GPO2) code parameter [28].

The CCSDS 1.2.3 standard can even switch between two compression modalities, that is, fully and
reduced, to cope with different types of data (raw or calibrated) or acquisition arrangements (BSQ,
BIL, or BIP). The compression results of this standard over several well-known hyperspectral data sets
are reported in [34]. Figure 5 shows a synthetic block scheme of the CCSDS 1.2.3 encoder.

Figure 5. Block scheme of the lossless compression CCSDS 1.2.3 standard.

4. Simulation of the Real Acquisition A/D System

Being the acquisition A/D system not available yet, a simulation of the oncoming remote sensed
data is required to obtain numerical scores. To this end, a reference image has been employed as the real
scene to be acquired, which includes objects whose resolution can be theoretically infinite. Therefore,
to perform the procedure correctly, the spatial resolution of the reference image should be much higher
than the simulated data. A suitable choice is the airborne Aviris 2006 data set, whose acquired scenes,
mainly in the Yellowstone site, are available both in raw and calibrated formats. The raw data of the
five Yellowstone scenes are composed by 224 bands, each of them with 512 lines and 680 samples for
each line scan. The spatial resolution is 17 m and the spectral resolution is 10 nm, in a spectral range
of 380–2500 nm, whereas the radiometric range is 16 bit. The scanner is whisk-broom and acquires
data in BIP ordering. In this work, both the scenes 0 and 10 in the raw format have been used in the
experiments, due to their different information content.

Figure 6 shows a band in false colors of the original raw Yellowstone scene 0 in BSQ arrangement.
Noticeably, the high SNR and negligible striping impairments of this data set makes it optimal for
the simulated experiments. To obtain the reduced images, which simulate the future acquisitions,
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the reference image has been filtered and downsampled by considering several Gaussian filters that
simulate the system MTF. To this end, three downsampling factors have been chosen, that is, M = 2, 4, 8.
Moreover, a 23-taps polynomial filter has been taken as an approximately ideal filter. The frequency
response and the coefficients for implementing such a filter can be found in [35], where it is shown that
the polynomial filter is approaching an ideal filter. The polynomial filter of [35] is a half-band filter,
which has been recursively applied to obtain the requested downsampling factor. In general, a higher
downsampling factor allows a more realistic simulation, being the reduced images less affected by
the aliasing distortion coming from the reference image. Conversely, a lower downsampling factor
implies that the simulated data have a greater spatial resolution, and therefore they are more suitable
for the compression experiments. Concerning the cut-off values, they have been taken in a range from
0.1 to 0.8, with a step size equal to 0.1.

Figure 6. A band in false colors of the original raw Yellowstone scene 0 of the Aviris 2006 data set.

An unwanted effect of the filtering procedure is that the acquisition noise becomes more correlated,
so that it must be recovered in its original form before the compression experiments. By a theoretical
point of view, all the possible noise sources should be taken into account in this procedure. In particular,
the acquisition process in the imaging spectrometers is responsible for the presence of a considerable
signal-dependent contribution due to the photonic noise [36]. Such a noise is particularly challenging
in case the useful information of the image must be evaluated [37,38]. However, the high quality of
the Aviris 2006 data set allows to simply simulate the original noise by adding a signal-independent
contribution, which is characterized by its standard deviation, on the reduced images. In this work,
we experimented several standard deviation values as σn = 0, 1, 2, 4, 8. Let us notice that σn = 0
means no noise added, whereas σn = 1 is a typical project value for the future acquired images.

Simulated Images by Filtering and Downsampling the Reference Image

Figure 7 shows the frequency response of a Gaussian MTF filter, in case the downsampling factor
is equal to M = 4 and the cut-off value is equal to Kmin = 0.3 at the Nyquist frequency. Consequently,
the sampling frequency of the original acquisition has been divided by four, so that the Nyquist
normalized frequency is f / fs = 0.125, that is, a quarter of 0.5. A downsampling factor M = 4 is such
that a good approximation is obtained of the ideal scene to be acquired.
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Figure 7. Frequency response of a Gaussian-like MTF filter in the case of M = 4 and Kmin = 0.3.

Four downsampled images are shown in Figure 8, by filtering the reference image of Figure 6.
In particular, we report the two images filtered by the Gaussian MTFs with the extremal cut-off values
Kmin = 0.1 and Kmin = 0.8. For comparisons, we also show the image filtered (in two steps) by the
23-taps polynomial approximation of an ideal filter and a simply downsampled image without any
filtering. As expected, the image filtered by the MTF with Kmin = 0.1 is very smoothed, whereas the
image filtered by the MTF with Kmin = 0.8 is more informative, even if degraded by evident aliasing
distortions. Such impairments are obviously much more noticeable in the unfiltered image. Concerning
the polynomial filtered image, it seems to be visually optimal, being an intermediate version between
the two Gaussian-like filtered images. Consequently, it can be suitably approximated by keeping the
cut-off value in the range Kmin = 0.3 ÷ 0.5.

(a) (b)

(c) (d)

Figure 8. Simulated images filtered by: (a) Gaussian MTF with Km = 0.1; (b) Gaussian MTF with
Km = 0.8; (c) All-pass filter; (d) 23-taps polynomial filter.
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5. Experimental Results on the CCSDS Aviris 2006 Data Set

The reported experiments on the simulated raw data have been divided in two groups: (a) lossless
BR of the reduced Yellowstone scene 0, by varying the image arrangement (BSQ or BIP), the cut-off
value Kmin of the Gaussian MTF filter, the downsampling factor M, and the standard deviation σn

of the signal-independent noise contribution; (b) RMSE versus BR for the Gaussian MTF filtered
images in comparison with the image filtered by the 23-taps polynomial kernel, by varying the image
arrangement (BSQ or BIP), the cut-off value Kmin, the standard deviation σn, and the scene under
investigation. In this case, the downsampling factor has been set to M = 4.

5.1. BR Versus the Cut-Off Values Kmin

Figure 9 shows the plots of the compression performance (BR versus the cut-off value Kmin of the
Gaussian MTF filter) for several standard deviation values σn of the added signal-independent noise.
The images are in BSQ format and have been downsampled with a scale factor M = 4.
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Figure 9. BR versus Kmin by varying σn for the Yellowstone scene 0 in BSQ format.

Evidently, the compression algorithm is more efficient if the cut-off value Kmin of the MTF filter
is low. This happens because the quantity of information of the simulated acquired image is lesser,
being the energy of the frequencies in the pass-band lower than for higher cut-off values. The effect of
the noise standard deviation σn is obviously to augment the BR, because a greater number of bits is
reserved to encode the noise variability. However, the trends of the plots in Figure 9 tends to become
horizontal for high σn values, that is, the influence of the cut-off value is reduced for a greater noise
level. This is due to the spurious compensation of the missing information made by a high noise level,
which, however, does not bring any useful information. In particular, for σn = 1, the BR difference in
the range Kmin = 0.1 ÷ 0.5 is about one half of bit. For comparison, a dashed line shows the BR of the
original data set. The gain of the reduced images is apparent, which is mainly due to the increased
data correlation after the filtering process.

Figure 10 shows the same plots of Figure 9, but the processed data are in the BIP format. Let us
notice that the plots have been only shifted towards higher BRs, more or less of 0.2 bpp, whereas the
coding of the original image needs about 0.3 more bpp. This experiment is more realistic than the
previous one, because the BIP arrangement is usual in the satellite acquisition process. However, in the
following experiments, we use only BSQ data, being the trend of the BIP plots practically the same,
with only a constant BR difference, as that reported in Figure 10.
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Figure 10. BR versus Kmin by varying σn for the Yellowstone scene 0 in BIP format.

Finally, Figure 11 shows how much the BR is affected by the downsampling factor M,
by considering the typical noise level σn = 1. It is apparent that M = 4 and M = 8 give equivalent
performance, thereby showing the little utility of an excessively reduced spatial resolution. The case
M = 2 is less significant, because the quite similar resolution between the reduced and the reference
image, which does not allow a realistic simulation, except for low Kmin values. In this case, a BR
difference is appreciable, which increases if Kmin grows, as expected.
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Figure 11. BR versus Kmin by varying M for the Yellowstone scene 0 in BSQ format.

5.2. RMSE Versus BR

Figure 12 reports the relation between BR and RMSE, by varying the cut-off value Kmin of the
Gaussian MTF filter, when the Gaussian filtered Yellowstone scene 0 is compared with the ideally
filtered image. In this case, the standard deviation of the added signal-independent noise is equal
to the reference level σn = 1, and the downsampling factor is M = 4. The different values of Kmin
are shown in Figure 12 in correspondence of the reported curve. The aim of this investigation is to
establish which of the MTF filtered images is nearer to the ideally filtered one, if the compression
performances are taken as a target. The solution in terms of the distance between the two images (that
is, the minimum RMSE) is given by the local minimum of the plot, which is reached for Kmin = 0.5.
For such a value, the MTF filtered image is the most similar to the ideally filtered one. If we also take
into account the BR, that is, the number of bits required to code the MTF filtered image, the reported
plot shows that the cut-off value has an optimal range between Kmin = 0.1 and 0.5. We can conclude
that such an interval includes all the points featuring a satisfactory quality of the MTF filtered image
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versus acceptable compression performance. Let us notice that the radiometric range of the Aviris 2006
raw data is of 16 bits, so that the range of the RMSE values is proportionally high.
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Figure 12. RMSE versus BR by varying Kmin for the Yellowstone scene 0 in the BSQ format.

Figure 13 presents several plots, which are similar to the one of Figure 12, but with different
standard deviations of the noise added to the filtered images before compression. Evidently,
the addition of more signal-independent noise contributions does not substantially change the trend of
the plot in Figure 12. However, it can be noticed that the greater is the noise standard deviation, and the
more peaked is the correspondent curve. This happens because the introduction of a high noise level
makes more critical the compression stage, whose optimal working point tends to become unstable.
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Figure 13. RMSE versus BR by varying Kmin and σn, for the Yellowstone scene 0 in the BSQ format.

As a final experiment, Figure 14 highlights the compression performance (RMSE versus BR)
when two different scenes of the Aviris 2006 Yellowstone site are coded, that is, scene 0 and scene
10. These scenes have been chosen because of the large gap of the respective information content.
Consequently, the difference of their compression performance is maximized, as it is clearly shown
by Figure 14. In particular, the plot of the more informative data set (e.g., scene 0) appears to be
shifted towards both greater BR and RMSE. This could be easily foreseen, because the difference
between the compression results of the MTF-based and ideally filtered images grows if the scene under
investigation is more difficult to be coded. As in the case of a high noise level in Figure 13, the plot of
scene 0 is more peaked, which implies a faster drift from the optimal minimum point.
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Figure 14. RMSE versus BR by varying Kmin for the Yellowstone scene 10 in the BSQ format.

5.3. Computational Performance

The aim of this work is not to propose a novel on-board compression algorithm, but only to
investigate how the compression performance change, by varying the MTF of the acquisition system,
in case a standard compression scheme, as the CCSDS 1.2.3 hyperspectral/multispectral standard, is
used. Consequently, an investigation on the strategies for optimizing the computational performance
for an on-board implementation, especially by means on a FPGA, is outside the scope of this paper.
In any case, a detailed discussion on such a topic can be found in [39]. In this work, the compression
and decompression stages have used a JAVA version of the EMPORDA software featuring the standard
CCSDS 1.2.3 algorithm. The software has been implemented on a Linux workstation with a CPU AMD
Phenom II X4 955 3.2GHz with a RAM of 8GB.

6. Concluding Remarks and Future Developments

This work has investigated and quantified the influence of the system MTF on the real-time
on-board compression of hyperspectral raw data, especially focusing on the case of future missions
on mini-satellites. To this end, a reference image has been taken for simulating the analog scene to
be acquired, then a filtering and downsampling procedure has generated the simulated acquired
images. To perform a correct analysis, several different signal-independent noise levels have been
added to the simulated images, in such a way the noise level of the real acquired data can be
recovered. The compression of the simulated images, by adopting the well-known CCSDS 1.2.3
lossless multispectral/hyperspectral standard, has shown that the BR of the simulated data increases
when the cut-off values grow, as expected. Noticeably, an optimal range of cut-off values has been
determined, which allows a good tradeoff between the quality of the acquired image and the lossless
compression performance. Such a range has been extensively found between 0.1 and 0.5, which give
a range of CRs in BIP format between 3.55 and 3.80. Within this interval, the optimal point could
be taken at the middle point 0.3. However, by considering manufacturing constraints and a better
CR, a suggested cut-off value can be Kmin = 0.25. In the case of BIP format, such a choice gives a
CR of about 3.72, which is an acceptable score. As a final observation, the reported analysis can be
efficiently used for determining the optimal cut-off value for each system MTF. In fact, the proposed
methodology is quite flexible and therefore suitable for different spatial resolutions, cut-off values, and
MTF shapes. In the future, such an analysis could be refined once the acquisition parameters of some
upcoming mini-satellite missions, as the one foreseen by the SMART project, were available.
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