
remote sensing  

Article

Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and
LPRM Soil Moisture Products over the Qinghai-Tibet
Plateau and Its Surrounding Areas

Jin Liu 1, Linna Chai 1,* , Zheng Lu 1, Shaomin Liu 1, Yuquan Qu 1, Deyuan Geng 2,
Yongze Song 3 , Yabing Guan 4, Zhixia Guo 1, Jian Wang 4 and Zhongli Zhu 1

1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science,
Beijing Normal University, Beijing 100875, China; liuj@mail.bnu.edu.cn (J.L.);
legend.lz@mail.bnu.edu.cn (Z.L.); smliu@bnu.edu.cn (S.L.); 201621170046@mail.bnu.edu.cn (Y.Q.);
zxguo@mail.bnu.edu.cn (Z.G.); zhuzl@bnu.edu.cn (Z.Z.)

2 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences, Beijing 100101, China; gengdy@radi.ac.cn

3 Australasian Joint Research Centre for Building Information Modelling, School of Design and the Built
Environment, Curtin University, Perth 6102, Australia; yongze.song@postgrad.curtin.edu.au

4 State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal
University, Beijing 100875, China; guanyabing@mail.bnu.edu.cn (Y.G.); wjian@mail.bnu.edu.cn (J.W.)

* Correspondence: chai@bnu.edu.cn

Received: 13 February 2019; Accepted: 30 March 2019; Published: 2 April 2019
����������
�������

Abstract: High-quality and long time-series soil moisture (SM) data are increasingly required for
the Qinghai-Tibet Plateau (QTP) to more accurately and effectively assess climate change. In this
study, to evaluate the accuracy and effectiveness of SM data, five passive microwave remotely
sensed SM products are collected over the QTP, including those from the soil moisture active passive
(SMAP), soil moisture and ocean salinity INRA-CESBIO (SMOS-IC), Fengyun-3B microwave radiation
image (FY3B), and two SM products derived from the advanced microwave scanning radiometer 2
(AMSR2). The two AMSR2 products are generated by the land parameter retrieval model (LPRM)
and the Japan Aerospace Exploration Agency (JAXA) algorithm, respectively. The SM products are
evaluated through a two-stage data comparison method. The first stage is direct validation at the
grid scale. Five SM products are compared with corresponding in situ measurements at five in situ
networks, including Heihe, Naqu, Pali, Maqu, and Ngari. Another stage is indirect validation at
the regional scale, where the uncertainties of the data are quantified by using a three-cornered hat
(TCH) method. The results at the regional scale indicate that soil moisture is underestimated by
JAXA and overestimated by LPRM, some noise is contained in temporal variations in SMOS-IC,
and FY3B has relatively low absolute accuracy. The uncertainty of SMAP is the lowest among
the five products over the entire QTP. In the SM map composed by five SM products with the
lowest pixel-level uncertainty, 66.64% of the area is covered by SMAP (JAXA: 19.39%, FY3B: 10.83%,
LPRM: 2.11%, and SMOS-IC: 1.03%). This study reveals some of the reasons for the different
performances of these five SM products, mainly from the perspective of the parameterization schemes
of their corresponding retrieval algorithms. Specifically, the parameterization configurations and
corresponding input datasets, including the land-surface temperature, the vegetation optical depth,
and the soil dielectric mixing model are analyzed and discussed. This study provides quantitative
evidence to better understand the uncertainties of SM products and explain errors that originate from
the retrieval algorithms.
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1. Introduction

Soil moisture (SM) is a critical indicator of the water and energy budgets at the land surface, and
a key variable that links the land surface and atmosphere [1]. SM has been widely used in diverse
fields, such as flood forecasting [2], weather prediction [3], global climate change [4], and agricultural
modeling [5]. In recent years, remote-sensing data have rapidly become a primary data source of
SM. Generally, in situ SM data are measured at the point scale, but satellite-based observations can
represent a valid integrated area value. More importantly, high-quality SM data over a wide spatial
and temporal range can broaden their scientific and practical applications [6,7].

Microwave remote sensing has become increasingly essential and is widely used in soil moisture
monitoring. This approach allows both daytime and nighttime observations under all weather
conditions and can effectively penetrate vegetation and observe the underlying surfaces. Moreover,
microwave remote sensing strongly depends on the dielectric properties of soil, which are a complex
function of soil moisture [8]. Global SM monitoring projects that have been launched in recent years
can be classified into two categories: Passive microwave sensors and passive microwave missions.
Passive microwave sensors include the microwave radiation imager (MWRI) onboard the Fengyun-3B
(FY3B) satellite and the advanced microwave scanning radiometer 2 (AMSR2) onboard the Global
Change Observation Mission 1-Water (GCOM-W1) satellite. Passive microwave missions include
the soil moisture active passive (SMAP) mission and the soil moisture and ocean salinity (SMOS)
mission. SMOS provides the first L-band (1.4 GHz) SM products (2009 to present), and SMAP provides
another L-band (1.41 GHz) SM products (2015 to present). These products are considered the most
promising sensors for SM monitoring because the L-band is more sensitive to SM and more easily
penetrates vegetation layers than other bands with higher frequencies and shorter wavelengths [9].
Currently, the most widely used operational passive microwave remotely sensed SM products
originate from SMAP, SMOS, FY3B, and AMSR2, with AMSR2 mainly including the Japan Aerospace
Exploration Agency (JAXA) and land parameter retrieval model (LPRM) products. The corresponding
SM-retrieval algorithms of these five SM products include the single-channel algorithm [10] for SMAP,
the L-MEB (L-band Microwave Emission of the Biosphere) [11] inversion retrieval algorithm for SMOS,
a two-channel algorithm [12] based on the Qp model [13] for FY3B, a look-up-table algorithm [14]
for JAXA, and a land parameter retrieval model [15] for LPRM. One recently developed algorithm,
named SMOS INRA-CESBIO (SMOS-IC) [16], was designed by INRA (Institut National de la Recherche
Agronomique) and CESBIO (Centre d’Etudes Spatiales de la BIOsphère) to produce an alternative
SMOS dataset at the global scale. SMOS-IC is based on an improved L-MEB model [17,18] with
homogeneous pixels. A new L-band (1.41 GHz) SM product (2010 to present) is provided by SMOS-IC.

Remote-sensing SM products usually contain various types of uncertainties. The uncertainties of
SM products primarily originate from observation errors and the retrieval algorithms. To accurately
understand the error sources of SM products, in situ measurement-based validation is generally
required to validate product quality.

The Qinghai-Tibet Plateau (QTP), which is known as the third pole, is the headstream of massive
major rivers that nourish billions of people living downstream across Asia. Because of the combined
influence of rapid global climate change and increasingly dense human activities, the QTP is currently
facing a series of surface variations, such as glacial melting, permafrost degradation, and enhanced
freezing and thawing. The surface SM of the plateau has also shown strong dynamic changes [19].
High-accuracy SM products are required for hydrological studies over the QTP and its surrounding
areas. In the past few years, five in situ networks, i.e., Heihe, Naqu, Pali, Maqu, and Ngari, have
been gradually constructed in the QTP to measure SM. These in situ networks are located in different
climates and environments, which largely compensate for the lack of SM observations in typical polar
climates. Based on these in situ measurements, satellite-derived SM-validation studies have been
conducted over the QTP and its surrounding areas [20–26].

Specifically, Su et al. [20] found that global coarse resolution SM products exhibit large
uncertainties in the cold semiarid regions of the QTP based on in situ measurements of the Naqu,
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Maqu, and Ngari networks. Zeng et al. [22] evaluated the LPRM and JAXA SM products over the QTP
by using in situ SM datasets from the Naqu and Maqu networks, and the results showed that the SM
is usually underestimated by the JAXA, and the LPRM presented a much larger seasonal amplitude
than that of the in situ measurements, which was also found at the global scale [27]. Cui et al. [23]
validated the FY3B SM product in the Naqu network over the QTP and found that the ascending FY3B
outperformed the descending FY3B. The uncertainty of FY3B increases with increasing NDVI, but this
product can still capture the temporal variability of in situ SM. Chen et al. [24] evaluated the SMAP
and SMOS SM products by using observations from the Naqu and Pali networks over the QTP, and the
results showed that SMAP adequately captured the temporal variations and amplitudes of in situ SM,
while SMOS failed to capture temporal variations in SM, especially in an in situ network in a semiarid
area of the southern QTP. Ma et al. [25] conducted a multiscale validation of SMAP SM products in
the Heihe River basin and found that the vegetation effect may have been a major factor that caused
slightly unsatisfactory performance, but SMAP maintained consistent spatial-temporal variations with
the in situ measurements and typical precipitation events. Recently, Zheng et al. [26] evaluated SMAP
products in the Maqu and Ngari networks of the QTP and assessed the effect of vegetation opacity
and other factors on SM retrieval. These authors found that the vegetation effect was overestimated,
and the surface roughness effect was underestimated in the SMAP retrieval algorithm, indicating that
these deficiencies could be resolved by using updated parameterizations. Obviously, nearly all the
validation works that were conducted in the QTP provided detailed evaluation results on single in situ
networks or limited pixel levels but lacked comparisons between multiple similar SM products under
different climate and environmental conditions. Therefore, these works may have limited meaning,
especially for elucidating any advantages and improving the retrieval algorithms of each SM product.

In addition, SM products usually have been validated at a global scale in previous studies,
but validations at regional and geographically local scales are required for more accurate analyses.
Fernandez-Moran et al. [16] conducted an intercomparison of the SMOS-IC and SMOS L3 SM (V300)
with ECMWF SM at the global scale and found higher correlations and lower ubRMSD for SMOS-IC
over most of the pixels. The recently improved SMOS-IC has not been validated over the QTP,
which is a good opportunity to evaluate the regional performance of SMOS-IC by using these in situ
measurements. The regional performance of SM products is important for reasonable applications,
but comprehensive evaluations at the in situ network scale are difficult. The three-cornered hat
(TCH) method is an effective and innovative approach to evaluate the spatial uncertainties of SM
products [28]. The TCH method removes common signals from the ‘true’ values and then estimates the
uncertainties that can present estimation errors [29,30]. TCH can also be used if correlated errors exist
in several soil moisture products and if more than three products are used for uncertainty estimates.
The TCH method can easily estimate uncertainties for individual time-series products in each grid over
regional and global scales, which enables its wide application (e.g., References [29,31–34]). Therefore,
the TCH approach is used in this study to estimate uncertainties of five passive microwave remotely
sensed SM products, including SMAP, SMOS-IC, FY3B, the JAXA, and the LPRM.

In this study, the SM products are validated through a two-stage approach. The first stage is direct
validation on a grid scale by comparing the five SM products against in situ measurements from five
in situ networks, and the second stage is indirect validation on a regional scale by quantifying the
uncertainties based on the TCH method. Furthermore, the different performances of the five products
are evaluated from different parameterization schemes in the five SM-retrieval algorithms, including
configurations of the land-surface temperature, vegetation optical depth, and soil dielectric mixing
model. This paper is arranged as follows. Section 2 presents the study area, five in situ networks, five
satellite-based SM datasets, and statistical methods. Sections 3 and 4 show the results and discuss the
findings of this study. Conclusions and outlooks are presented in Section 5.
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2. Materials and Methods

2.1. Study Area and In situ Measurements

The QTP (Figure 1) covers an area of more than 2.57 × 106 km2 in western China. The QTP
has complex terrain and an average altitude of 4000 m above sea level. In recent decades, the QTP
has experienced rapid hydroclimatic change [35]. This warming trend has occurred in most areas of
the QTP and exhibits significant altitudinal dependence [36,37]. Compared to temperature changes,
precipitation changes on the plateau are much more complex, and precipitation shows regional and
seasonal differences [38,39]. All these reasons produce a complex SM situation in the QTP.

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 27 

 

2. Materials and Methods 

2.1. Study Area and In situ Measurements 

The QTP (Figure 1) covers an area of more than 2.57 × 106 km2 in western China. The QTP has 
complex terrain and an average altitude of 4000 m above sea level. In recent decades, the QTP has 
experienced rapid hydroclimatic change [35]. This warming trend has occurred in most areas of the 
QTP and exhibits significant altitudinal dependence [36,37]. Compared to temperature changes, 
precipitation changes on the plateau are much more complex, and precipitation shows regional and 
seasonal differences [38,39]. All these reasons produce a complex SM situation in the QTP. 

 

Figure 1. In situ observation networks in the Qinghai-Tibet Plateau (QTP). 

Table 1 summarizes the main characteristics of the five in situ networks (i.e., Heihe, Naqu, Pali, 
Maqu, and Ngari) in this study. The Heihe network’s (magenta rectangle in Figure 1) dataset is from 
WATER-NET [40–45], the Naqu (blue rectangle in Figure 1) and Pali (purple rectangle in Figure 1) 
networks’ datasets are acquired from CTP-SMTMN [46], and the Maqu (brown rectangle in Figure 1) 
and Ngari (orange rectangle in Figure 1) networks’ datasets come from Tibet-Obs [20,21]. 

 
 
 

Figure 1. In situ observation networks in the Qinghai-Tibet Plateau (QTP).

Table 1 summarizes the main characteristics of the five in situ networks (i.e., Heihe, Naqu, Pali,
Maqu, and Ngari) in this study. The Heihe network’s (magenta rectangle in Figure 1) dataset is from
WATER-NET [40–45], the Naqu (blue rectangle in Figure 1) and Pali (purple rectangle in Figure 1)
networks’ datasets are acquired from CTP-SMTMN [46], and the Maqu (brown rectangle in Figure 1)
and Ngari (orange rectangle in Figure 1) networks’ datasets come from Tibet-Obs [20,21].
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Table 1. Information of the in situ networks.

Networks Heihe Naqu Pali Maqu Ngari

Location over the
QTP Northeast Central South East West

Selected/Total
Nodes 8/40 16/56 8/25 7/20 12/18

Measured Depth 4 cm 0–5 cm 5 cm 5 cm 5 cm
Measured Interval 5 min 30 min 30 min 15 min 15 min

Time Coverage 07/2013–12/2015 07/2012–09/2016 07/2013–12/2015 06/2015–09/2016 07/2012–09/2016
Average Elevation* 3423 m 4866 m 4742 m 3711 m 4869 m

Average NDVI* 0.28 0.29 0.21 0.45 0.09

Land cover* Grassland Grassland Grassland Grassland,
Wetland

Bare land,
Grassland

Soil Texture (clay)* 18% 16% 15% 21% 11%
Soil Texture (sand)* 54% 63% 64% 45% 75%

Topography* Mountainous Flat Flat Hilly Flat

* The average NDVI, which was calculated between Apr and Sep from 2015 to 2018, and the elevation, land cover,
soil texture, etc., are introduced in Section 2.3.

2.2. Satellite-Based Soil Moisture Products

In this study, five satellite remotely sensed SM products were collected, including SMAP, SMOS-IC,
FY3B, JAXA, and LPRM. Table 2 lists the spatial resolutions and important basic information of the
five SM datasets. The SMAP SM product [47] that was used in this study was the level-3 daily SM
product (version 4.00), which was downloaded from https://nsidc.org/data/spl3smp/versions/4/.
The SMOS-IC SM product (version 105) [16] is available at https://www.catds.fr/Products/Available-
products-from-CEC-SM/SMOS-IC. FY3B is a second-generation polar orbiting meteorological satellite
from China that was launched in November 2010. The FY3B MWRI SM product [12] was obtained
from http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx. Both the JAXA [14] and LPRM [15]
SM products come from the AMSR2 sensor of the GCOM-W1 mission, which was launched in May
2012. The JAXA level-3 product is available at https://gportal.jaxa.jp/gpr/information/download,
and the LPRM level-3 (version 3.00) dataset come from https://search.earthdata.nasa.gov/.

Table 2. Information of the five satellite-based soil moisture (SM) products.

SM Datasets SMAP SMOS-IC FY3B JAXA LPRM

Incidence angle (◦) 40 0–55 45 55 55
Frequency (GHz) 1.41 1.4 10.7, 18.7 10.7, 36.5 10.7, 36.5
Spatial Resolution 36 km 25 km 25 km 0.25◦ 0.25◦

Temporal Coverage 2015–present 2010–present 2011–present 2012–present 2012–present
Ascending 18:00 6:00 13:40 13:30 13:30
Descending 6:00 18:00 1:40 1:30 1:30

The SM retrieval of FY3B was not performed in frozen soil or snow [12]. Moreover, other SM
products have high uncertainties in frozen seasons because of the limited applicability and accuracy
of the adopted dielectric constant models under frozen soil conditions; in frozen seasons, their SM
products are difficult to use in most applications. However, the SMOS-IC and SMAP products provide
flag values that can indicate frozen or snow-covered ground, which provides great convenience for
product users. Therefore, in this study, the evaluation of the five passive microwave SM products was
conducted only during the thawed seasons. In addition, except for the SMOS-IC and SMAP, all data of
other three SM products were used in this study. For SMOS-IC, the data was filtered by the quality
flags (0: Data OK, 1: Retrieve successfully but not recommended, 2: Missing data). Due to the strict
control of data quality by SMOS-IC, the amount of data filtered by the flag 0 was extremely low over
the QTP. To evaluate as much SMOS-IC SM data as possible and ensure its practicality, the data with
quality flag 0/1 was used in this study. For SMAP, the data ranged from 0.02 to 0.5 cm3cm−3 is used in
this study.

https://nsidc.org/data/spl3smp/versions/4/
https://www.catds.fr/Products/Available-products-from-CEC-SM/SMOS-IC
https://www.catds.fr/Products/Available-products-from-CEC-SM/SMOS-IC
http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx
https://gportal.jaxa.jp/gpr/information/download
https://search.earthdata.nasa.gov/
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2.3. Geographical Configuration Data

For a comprehensive comparison, analysis, and evaluation of the performance of the five SM
products, geographical and environmental auxiliary data were also collected in the study area.
The auxiliary data included high-resolution map of Earth’s land cover (GlobeLand30) [48], the Global 30
Arc-Second Elevation (GTOPO30) [49], a precipitation dataset (CN05.1) [50], and a soil texture dataset
comes from the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences
(RESDC). MODIS/Terra normalized difference vegetation index products (NDVI, including MOD13C1
and MYD13C1) and the land-surface temperature (LST, MOD11C1) were also used. The GlobeLand30
dataset was downloaded from http://www.globallandcover.com/GLC30Download/. The GTOPO30
data were downloaded from https://lta.cr.usgs.gov/GTOPO30. The CN05.1 dataset was obtained
from http://data.cma.cn/. The soil texture dataset was provided by http://www.resdc.cn. Both the
NDVI and LST products were downloaded from https://search.earthdata.nasa.gov/search.

2.4. Methods

2.4.1. Data Preprocessing

Data preprocessing is required for both spatiotemporal in situ and satellite-based datasets for
accurate data evaluation. To ensure the temporal consistency between the in situ and satellite data,
the in situ values were averaged over 2-h windows before and after the corresponding equatorial
overpass time, and these values were used for comparison with satellite-based data (similar processing
can also be found in some previous works, e.g., References [9,51–53]). As mentioned in Section 2.2,
the evaluation was conducted only in the unfrozen season.

In the direct validation, the values from the original grids of the five satellite-based products
were used for comparison with in situ datasets during the unfrozen seasons. To determine these
unfrozen seasons, a discriminating method for frozen vs. thawed seasons [54] was utilized in this
work. As shown in Figure 2, this method provided the annual mean in situ soil temperature of each
network. For each in situ network, the unfrozen seasons included the number of days that the in situ
soil temperature was greater than 0 ◦C.

In the indirect validation, a nearest-neighbor sampling approach (e.g., References [55,56]) was
used to re-project all the satellite-based products (including SMAP, SMOS-IC, FY3B, and NDVI) into
regular 0.25◦×0.25◦ grids. A fixed period from April to September was defined as the unfrozen season
according to some previous works (e.g., References [21,22]). To utilize more SMAP datasets, the time
range of the datasets in the indirect validation spanned from April 2015 to July 2018, which was
different from the time range in the direct validation.

http://www.globallandcover.com/GLC30Download/
https://lta.cr.usgs.gov/GTOPO30
http://data.cma.cn/
http://www.resdc.cn
https://search.earthdata.nasa.gov/search
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2.4.2. Performance Index

In this study, three statistical indices were used to evaluate the accuracy of the five time-series SM
products [57]:

R = E[(SMest − E[SMest])(SMref − E[SMref])]/(σest × σref) (1)

RMSE =

√
E[(SMest − SMref)

2] (2)

Bias = E[SMest]−E[SMref] (3)

where SMest is the satellite-derived soil moisture, SMref is the in situ soil moisture, E represents the
expected value, σ stands for the standard deviation operation, R is the Pearson correlation coefficient,
RMSE is the root mean square error (unit: cm3 cm−3), and Bias is the mean difference (unit: cm3 cm−3)
between the satellite SMest products and the in situ SMref. These indices are not calculated unless the
SM samples (N in Table 3) are more than 30.
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Table 3. Performance metrics of the SMAP, SMOS-IC, FY3B, JAXA, and LPRM soil moisture data
products for the unfrozen seasons from 2012 to 2016 in the five validation networks *.

In situ
Networks Product

SMOS-IC Ascending; SMAP, AMSR2, and FY3B
Descending (morning orbits)

SMOS-IC Descending; SMAP, AMSR2, and
FY3B Ascending (afternoon orbits)

R RMSE Bias N R RMSE Bias N

Heihe
Network

SMAP 0.779 0.105 −0.104 91 0.643 0.113 −0.110 78
SMOS-IC 0.302 0.143 −0.115 172 0.177 0.115 −0.041 157

FY3B −0.042 0.119 −0.013 106 0.330 0.152 −0.120 262
JAXA 0.357 0.284 −0.277 404 0.389 0.279 −0.275 387
LPRM 0.305 0.249 0.199 371 0.168 0.167 0.106 381

Naqu
Network

SMAP 0.816 0.066 −0.019 142 0.835 0.078 −0.002 140
SMOS-IC 0.472 0.141 −0.049 222 0.428 0.182 −0.130 191

FY3B 0.750 0.116 0.072 78 0.755 0.109 0.026 456
JAXA 0.718 0.168 −0.087 686 0.808 0.146 −0.061 677
LPRM 0.768 0.113 0.090 632 0.798 0.064 0.041 669

Pali
Network

SMAP 0.615 0.057 −0.045 143 0.672 0.046 −0.034 95
SMOS-IC 0.524 0.090 −0.026 87 0.604 0.073 −0.060 110

FY3B - - - 0 0.292 0.055 −0.040 137
JAXA 0.527 0.087 −0.080 234 0.541 0.087 −0.081 235
LPRM 0.538 0.220 0.212 200 0.339 0.169 0.161 235

Maqu
Network

SMAP 0.814 0.076 −0.066 123 0.721 0.088 −0.072 108
SMOS-IC 0.638 0.112 −0.074 334 0.485 0.083 −0.008 339

FY3B 0.529 0.137 −0.026 187 0.486 0.136 −0.072 509
JAXA 0.420 0.292 −0.282 747 0.540 0.228 −0.214 744
LPRM 0.419 0.099 0.042 734 0.031 0.120 0.001 743

Ngari
Network

SMAP 0.335 0.054 −0.047 109 0.567 0.045 −0.041 131
SMOS-IC 0.097 0.120 0.003 267 0.116 0.092 −0.022 263

FY3B - - - 0 0.175 0.040 −0.029 380
JAXA 0.398 0.060 −0.055 619 0.364 0.062 −0.056 608
LPRM 0.418 0.124 0.111 321 −0.208 0.117 0.111 597

* The darker the color, the larger the statistical value is.

2.4.3. Three-Cornered Hat (TCH) Method

The performance of the traditional TCH method in estimating uncertainty results (the uncertainty,
which can be used to reflect the estimate errors of various time-series products) largely depends on
two major assumptions: ‘zero error cross-correlation’ and ‘error orthogonality’ [28]. ‘Zero error
cross-correlation’ requires the mutual independence of errors of various time series, and ‘error
orthogonality’ requires independency between the errors and unknown true values. Moreover,
the effect of ‘zero error cross-correlation’ on the estimated results is greater than that of ‘error
orthogonality’ [28,58,59]. Both of these assumptions limit the application of the TCH method, especially
when processing time-series data that are statistically dependent on each other. Currently, the improved
TCH method can overcome these limitations and considers the correlations among the corresponding
noise sequences of multiple time series (more than three) by minimizing any global correlations. In
the absence of a reference SM dataset, the TCH method is algebraically simply applied to estimate
the uncertainties of each SM product [28,29,60]. In this study, this method was employed to estimate
the uncertainties of five passive microwave remotely sensed SM products (i.e., SMAP, SMOS-IC,
FY3B, JAXA, and LPRM) without any prior knowledge. The detailed computational procedure of the
improved TCH method is given in Appendix A.

3. Results

3.1. Direct Comparison of Time Series

From a temporal perspective, the accuracy of the satellite-based SM data was assessed by
comparisons with the in situ SM at five networks. The temporal comparisons in 2015 are illustrated in
Figure 3, and the temporal comparison results from 2012 to 2016 are presented in the supplementary
information. Referring to the precipitation data, the in situ measurements captured the precipitation
events and soil moisture’s temporal trends in each in situ network. Corresponding changes in the
five SM products during precipitation events are shown in Figure 3. The detailed performances of
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the temporal variations and the accuracy indices for each SM product for each in situ network are
introduced below.
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Exploration Agency (JAXA) and land parameter retrieval model (LPRM) SM products with in situ
measurements for 2015.

In the Heihe network, the SM was severely overestimated by the LPRM ascending and descending
products and underestimated by the JAXA. Table 3 shows the extremely high bias values for the LPRM
(0.20 cm3 cm−3 for the descending orbit, 0.11 cm3 cm−3 for the ascending orbit) and the extremely
low bias values for the JAXA (−0.28 cm3 cm−3 for the descending orbit, −0.27 cm3 cm−3 for the
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ascending orbit). For SMOS-IC and FY3B, noisy performances of capturing temporal variations could
be found, while FY3B had relatively good dynamics in the afternoon orbit, and SMOS-IC had relatively
better correlations with the in situ measurements in the morning orbit. Moreover, the SMOS-IC
is close to SMAP in the magnitude of time series, especially in their morning orbits. The SM was
slightly underestimated by both the ascending and descending SMAP products, but SMAP had high
consistency with the in situ observations (R values of 0.78 for the descending orbit and 0.64 for the
ascending orbit).

In the Naqu network, the SM was slightly underestimated by the descending SMAP with a bias
of −0.02 cm3 cm−3 and an RMSE of 0.066 cm3 cm−3. The ascending SMAP had a bias approaching
zero and an RMSE of 0.078 cm3 cm−3 (Table 3). Similar to SMAP, the temporal variations in the
other four SM products were compared to the in situ SM (Figure 3), which had relatively higher R
values. In addition, the SM was slightly underestimated by SMOS-IC and the JAXA and overestimated
by FY3B and the LPRM. Except for SMAP and SMOS-IC, the products had better accuracy in their
afternoon orbits.

In the Pali network, the SM was seriously overestimated by the LPRM descending product, with
a bias of 0.21 cm3 cm−3 and an RMSE of 0.22 cm3 cm−3, and the ascending product had a bias of 0.16
cm3 cm−3 and an RMSE of 0.169 cm3 cm−3. FY3B had modest accuracy in its ascending orbit, with a
bias of −0.04 cm3 cm−3 and an RMSE of 0.055 cm3 cm−3. The temporal variations in SM could be well
fitted by the SMAP, SMOS-IC, and JAXA products. SMAP and SMOS-IC had more modest accuracy
than the JAXA in their afternoon orbits.

In the Maqu network, the SMAP ascending and descending products performed best, with
relatively high R values and relatively low bias and RMSE values. In the morning orbits, the SM was
slightly overestimated by the LPRM and underestimated by other four products to varying degrees.
In addition, the LPRM showed the opposite trend in the afternoon orbits, and SMOS-IC had the best
absolute accuracy (RMSE: 0.083 cm3 cm−3) in the afternoon orbit.

In the Ngari network, the SMAP ascending and descending products had relatively low bias and
RMSE values, which were close to the official target accuracy. Compared to other four SM products,
SMAP was more consistent with the in situ measurements. Except for the LPRM, the SM was slightly
underestimated by other four products (i.e., SMAP, SMOS-IC, FY3B, and JAXA), with relatively low
bias and RMSE values, especially in their afternoon orbits.

The negative correlation between morning-orbit FY3B SM product and in situ measurements
only appeared in the Heihe network, and the negative correlation between afternoon-orbit LPRM SM
product and in situ measurements occurred in the Ngari network. For FY3B, the R value is near zero,
and the negative correlation may be caused by the sample size (the amount of valid sample of FY3B is
low and these data are clustered in the summer season). For LPRM, the overall performances in its
afternoon orbit were worse than in its morning orbit, even the negative correlation that appeared in
the Ngari network, which was caused by the poor estimates of soil moisture in the seasons except for
summer season. As shown in the Figure 3, the obviously opposite seasonal trend was found in Ngari
networks. In summary, compared to other four SM products (i.e., SMOS-IC, FY3B, JAXA, LPRM),
SMAP was more consistent with in situ SM (its overall R in five in situ networks is 0.680, RMSE is
0.073 cm3 cm−3, and Bias is −0.054 cm3 cm−3), especially in the relatively sparse vegetation areas
(i.e., the Ngari network) and relatively dense vegetation areas (i.e., the Maqu network). Moreover,
SMAP achieved or was close to its target accuracy in many networks (i.e., the Naqu, Pali, Maqu,
and Ngari networks). For all SM products, good consistency between satellite-based and in situ
measurements was found in the Naqu network, with high R values (the overall R for five products is
0.715). The overestimation by LPRM (the overall R: 0.358, RMSE: 0.144 cm3 cm−3, Bias: 0.107 cm3 cm−3),
the underestimation by JAXA (the overall R: 0.506, RMSE: 0.169 cm3 cm−3, Bias: −0.147 cm3 cm−3)
and SMOS-IC (the overall R: 0.384, RMSE: 0.115 cm3 cm−3, Bias: −0.052 cm3 cm−3), the slightly noisy
dynamics of SMOS-IC, and the good seasonality but poor absolute accuracy of FY3B (the overall R:
0.409, RMSE: 0.108 cm3 cm−3, Bias: −0.025 cm3 cm−3) were all reflected in most of the in situ networks.
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3.2. Indirect Comparisons of the Spatial Distribution

The uncertainty maps over the QTP for the five remotely sensed SM products were derived by
using the TCH method (Figure 4). The time coverage between the spatial comparison and time-series
comparison was not completely consistent. Only the SM products within the unfrozen seasons (i.e.,
from April to September) from April 2015 to July 2018 were used in this section. In addition, the
daily values of each SM product in this section were the average of the ascending and descending
SM estimates.
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were used in the three-cornered hat (TCH) method. The white areas indicate areas with no common
samples or a sample size that was less than six.

The TCH-based evaluation showed that the spatial patterns of the uncertainties for the five SM
products are varied a lot. SMAP had low uncertainties over the entire QTP, and SMOS-IC presented
relatively high uncertainties, overall. The other three SM products (JAXA, FY3B, and LPRM) showed
relatively low uncertainties in the mid-western QTP but relatively high uncertainties in the mid-eastern
QTP. The regional mean uncertainty of SMAP was 0.020 cm3 cm−3, the lowest value compared to those
of other SM products. The JAXA also had a relatively low mean uncertainty of 0.029 cm3 cm−3, which
was close to that of SMAP. The regional mean uncertainties of FY3B and SMOS-IC were relatively high,
i.e., 0.043 cm3 cm−3 and 0.071 cm3 cm−3, respectively. In addition, the LPRM, which had a regional
mean uncertainty of 0.098 cm3 cm−3, had exceptionally high uncertainties in the eastern QTP. The
more samples that participated in the TCH process, the more stable and reliable the uncertainty results
became [31]. Generally, the model could be run when the number of samples was greater than the
number of SM products (five in this study) that participated in the TCH process. The larger the number
of samples, the more robust the TCH results became. Figure 4f shows the total number of samples
that were used on each pixel in this experiment. Because of the large amount of missing values for
SMOS-IC and FY3B, the number of common observations for the eastern QTP was much larger than
that for the mid-western QTP, with many blank areas present over the QTP.
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× 0.25◦) from April 2015 to July 2018 were used. PRE is the average annual precipitation from 2016
and 2017. The terrain complexity index (TCI), Clay, and Sand were relatively stable attributes for
each period.
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and TCH-based uncertainty results. The boxplots show the median (black thick horizontal line), mean
(black dot), 25th and 75th percentiles (top and bottom of the colored shaded box, respectively), and
outlier ranges (edges of the top and bottom whiskers).

Figure 5 shows the areas where SMAP (in dark-red pixels) presented the lowest uncertainty among
the five SM products; the number of SMAP pixels comprised 66.64% of the total pixels. Meanwhile, the
JAXA comprised 19.39%, FY3B comprised 10.83%, LPRM comprised 2.11%, and SMOS-IC comprised
1.03%. In fact, based on empirical research from Awange et al. [31], the reference is immaterial because
the same uncertainty results can be obtained regardless of the chosen reference. In this study, SMAP
was selected as the reference SM. SMAP presented the smallest uncertainties in the eastern QTP, which
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received a relatively high amount of precipitation (see Figure 6) and had a high temporal variability of
SM (in the Heihe, Maqu, and Naqu areas), and showed the smallest uncertainties in most areas of the
western QTP, which was relatively arid with a low dynamic SM change. On the other hand, the lowest
uncertainties were obtained from the LPRM, JAXA, and FY3B in the mid-western QTP, which had low
to moderate precipitation and a low temporal variability of SM (in the Ngari area).

The primary causes of the varying spatial patterns of the uncertainties included the diverse
environmental conditions and the different inputs and parameterization schemes of the SM retrieval
algorithms. The related variables mainly included the precipitation, terrain complexity, vegetation,
land-surface temperature, and soil texture. To better explain the spatial behavior of the uncertainty,
it was viewed against some climatic and environmental variables (Figure 6), including the annual
precipitation (PRE), terrain complexity index (TCI, represented by the standard deviation of 30” DEM
within 0.25◦ pixels.), NDVI, LST, and soil texture (percentage of clay and sand). These variables
were calculated during the same period as that of the TCH estimates. Overall, the uncertainties of
SMAP and the JAXA were relatively low, both of which changed slightly as these selected variables
changed. SMOS-IC was unaffected by these variables, and this product’s uncertainty showed great
randomness throughout the QTP. FY3B and LPRM were greatly affected by these selected factors,
and the relationships between the uncertainty and selected variables were similar between these two
SM products.

As a main driving factor, precipitation determines the magnitude and spatial pattern of SM. By
comparing the PRE map (Figure 6) with the TCH results (Figure 4), the three SM products (JAXA, FY3B,
and LPRM) performed worse in relatively humid areas than in arid regions, and their uncertainty
maps showed a similar spatial pattern to that of the PRE map. According to Figures 6 and 7, the TCI
was relatively large in the periphery of the QTP but relatively low in the mid-western QTP. Similarly,
the LPRM showed larger uncertainties when the TCI was larger. Meanwhile, the JAXA and FY3B were
slightly affected by the TCI, and the five SM products showed low uncertainties in flat areas. The NDVI
showed an increasing trend from the northeastern to southeastern QTP, and the uncertainties of FY3B
and the LPRM showed a similar trend with that of the NDVI. All the SM products were affected by
NDVI to a certain degree: The larger the NDVI, the larger the uncertainties became. Obviously, most
of the SM retrieval algorithms may not have affected the removal of vegetation factors in the retrieval
results. As another important input of SM retrieval algorithms, the relationship between the LST
and SM uncertainties seemed to have not been analyzed here, especially for SMAP and SMOS-IC. In
addition, the spatial patterns of the percentage of clay and sand showed the opposite trend. Most
of the SM products performed worse in areas with higher sand content or lower clay content. The
percentage of clay/sand is strongly related to PRE, so the relationship between the SM uncertainties
and soil texture may have been affected by PRE and may not always reflect the effects of the soil
texture on the SM retrieval results.

4. Discussions

The evaluation of passive microwave remotely sensed SM products is an important and
challenging task. In the direct validation, the in situ measurements can only be considered as a close
approximation and not a ‘true value’ of soil moisture at the pixel scale, which brings great uncertainties
to the results of direct comparison. In the indirect validation, the disparities in sensing depths, spatial
resolutions, retrieval algorithms and inputs, etc., contribute to the difficulties of inter-comparing
different soil moisture products. The factors that produced uncertainty when validating five SM
products included these points: (i) The difference between the measured depths of SM from different
sources (including different sensing depths from the different frequencies of the sensors and different
measurement depths from the different in situ probes) [61]; (ii) the mismatch in spatial scales between
in situ and satellite-based measurements and the disparity in spatial resolutions between different
SM products [62]; (iii) the different retrieval algorithms and corresponding inputs of different SM
products [17]; and (iv) the errors from in situ and satellite-based sensors.
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The possible errors in the evaluation results that were caused by different sensing depths must be
considered carefully, when validating multiple sensor-based products on multiple in situ observation
networks. As shown in Table 1, the sensor on each in situ node was inserted into ~5-cm topsoil, which
more closely matches the sensing depth of L-band passive microwave sensors (i.e., SMAP and SMOS).
In the direct comparison (Section 3.1), the L-band SM products (i.e., SMAP and SMOS) should have
performed better than the X-band products (i.e., FY3B, JAXA, and LPRM), especially in terms of the
magnitudes of the time series. Moreover, a good correlation should have existed between the L-band
and X-band measurements because the land cover type of the QTP is dominated by bare land and
grassland. Therefore, the different sensing depths, which were caused by the disparity in the sensing
depths, barely affected the magnitude of the calculated R values in the direct comparison. However,
as an L-band product, SMOS-IC (overall R of 0.384 compared to the in situ measurements) was not
more reliable than other X-band products (i.e., FY3B and the JAXA, with overall R values of 0.409 and
0.506, respectively) in the time series. Moreover, as an X-band product, the JAXA (overall Bias value of
−0.025 cm3cm−3) had the lowest bias of all the products. Obviously, these performances could not
have been caused by only the different sensing depths.

Another key issue when validating SM products is the mismatch in spatial scales between in situ
and satellite observations [9]. Conventional in situ measurements of SM are conducted at a point,
but satellite-based sensors observe an integrated area value for a larger spatial extent. As mentioned
in Table 2, the five SM products in this study provided their datasets at ~25-km (SMOS-IC, FY3B,
JAXA, and LPRM) or 36-km (SMAP) resolution. Therefore, the errors in the evaluation work from
any mismatch in the spatial scales, cannot be neglected, and some efforts must be taken to weaken its
effect. This study did take measures to weaken these errors, but possible errors must still be considered
when referring to this work. These efforts are mainly reflected in the preprocessing work of the direct
and indirect comparisons. In the direct comparison, the SM products with original spatial resolutions
were used for comparison with the in situ measurements to maintain fairness between the various SM
products. The upscaling work for the in situ measurements was based on the arithmetic averaging
method, which is relatively simple and reliable (e.g., References [9,21,22,24,52,53,63]). In the indirect
comparison, the spatial scale had to be resampled to compare the five products for each pixel (e.g.,
References [59,64,65]). Of course, reprocessing these datasets introduced some errors into the results.
Therefore, the TCH-based results were only analyzed in terms of their spatial patterns (Figure 4) and
statistical performances (Figures 5 and 7) to decrease the uncertainty.

In addition, the errors from retrieval algorithms and their inputs play an important role in the
performance of SM products [9]. The baseline algorithms of SMAP, SMOS-IC, FY3B, the JAXA, and
the LPRM are single-channel algorithms that are based on TBV measurements (SCA-V) [47], L-band
microwave emission of the biosphere (L-MEB) [17], dual-channel soil moisture retrieval algorithm [12],
look-up table [14], and land parameter retrieval model (LPRM) [15], respectively, which are all based
on the τ-ωmodel [66]. In this model, which ignores atmospheric effects, served brightness temperature
TBp under polarization p (p=V/H) can be expressed as

TBp = (1−ωp)(1− γp)TC + (1−ωp)(1− γp)γp
(

1− εp
g

)
TC + ε

p
gγ

pTG (4)

where τ is the vegetation optical depth,ω is the equivalent scattering albedo, γp = exp (−τp/cosθ) is
the vegetation transmissivity at an incident angle of θ, TC is the effective vegetation temperature, TG is
the soil effective temperature, and εg

p is the rough surface emissivity.
Table 4 lists the main components of the SM operational algorithms of SMAP, SMOS-IC, the

JAXA, the LPRM, and FY3B. According to Table 4, the differences between the inputs, i.e., the soil
and vegetation physical temperatures, the vegetation optical and albedo parameters, and the different
adopted models for surface roughness and soil permittivity, were some of the main factors that caused
the different performances of the five SM products.



Remote Sens. 2019, 11, 792 16 of 27

Table 4. Main components of the SM operational algorithms of SMAP, SMOS-IC, JAXA, LPRM, and FY3B*.

Components L3 SMAP SMOS-IC L3 JAXA L3 LPRM FY3B

Radiative Transfer Model τ-ωmodel τ-ωmodel τ-ωmodel τ-ωmodel τ-ωmodel

Soil temperature (Ts) Ts= f(T0, T∞),T0, T∞ form
layer 1 and 2 of GEOS-5

Ts= f(T0, T∞), T0, T∞ from
layer 1 and 3 of ECMWF,
respectively

Ts=293 K Ts =0.688
TB36.5 GHz_V+101.126 Ts≈Tv

Vegetation temperature (Tv) Tv=Ts, at 6:00 a.m.
Skin (Level 1, top 0–7 cm soil
layer) temperature from
ECMWF

Tv=Ts=293 K Tv= Ts Tv =1.11×TB36.5 GHz_V -15.2

Optical depth (τ)

τ=τNAD×f(θ, p);
τNAD=b*VWC;
b=f(IGBP), b=0 to 0.13;
VWC=f(NDVI, IGBP), f is a
nonlinear relationship

The τ is also retrieved in the
SMOS-IC algorithm

τ=b*VWC; b is constants;
VWC is retrieved using
lookup table; fc=f(NDVI), f is
a nonlinear relationship

τ=f (MPDI, k, θ,ω);
MDPI=(TBV-TBH)/(TBV+TBH),
k is the absolute value of the
soil dielectric constant

τ=b×VWC/cosθ
VWC=5.0×NDVI2

(NDVI>0.5)
VWC=2.5×NDVI2

(NDVI≤0.5)
b is determined by
experiments and model
simulation

Albedo (ω) ω=f(IGBP),ω=0 to 0.12 ω=f(IGBP),ω=0.06 to 0.12 ω=0.06 to 0.063 ω=0.06 ω≈0

Soil roughness model
QHN model;
NV=NH=2; Q=0;
H=f(IGBP), H=0.16 to 0.83;

QHN model;
NH=NV=-1 for low
vegetation, NH=1 and NV=-1
for forest; Q=0; H=f(IGBP),
mean H=0.02–0.30

Constants Q and H;
Q= 0.189 to 0.344;
H=0.680 to 0.873

Constants Q and H;
Q=0.2;
H=0.2

Qp model;
Qv(f)=a(f)+b(f)×Qh(f)
f is frequency, a and b are
obtained from the AIEM
simulated dataset

Soil dielectric mixing model Mironov, 2009 Mironov, 2009 Dobson, 1985 Wang and Schmugge, 1980 –

* Q: Polarization mixing parameter; H: surface roughness dimensionless parameter; NH/V: an integer used to parameterize the dependence of the roughness effects on incidence angle; T∞:
The deep soil moisture (50–100 cm); T0: The surface soil moisture (0–5 cm); p: Polarization; b: Vegetation parameter; fc: Fractional vegetation index.
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4.1. Land-Surface Temperature

The physical surface temperature is an important parameter for estimating SM and is the first
parameter calculated in retrieval algorithms. As listed in Table 4, the estimations of the surface
temperature varied widely in the five operational SM algorithms. The JAXA algorithm defined the soil
temperature and vegetation temperature as constant under the assumption that the polarization index
(PI) and index of soil wetness (ISW) could eliminate the effect of the physical surface temperature on
SM retrieval [14]. However, according to the comparison results in Section 3.1, the JAXA SM often
presented relatively small values in most regions. Specifically, with the exception of the Naqu network
(located in a sub-humid area), the JAXA had a weak temporal variation and could not capture the
main precipitation events, likely because the PI and ISW have limited ability to eliminate the surface
temperature and because these two indices are still strongly related to Ts.

Figure 8 shows the correlation coefficients between the PI or ISW and the in situ Ts. Compared to
Naqu, the other four in situ networks indicated a relatively stronger correlation between the PI/ISW
and in situ Ts. Additionally, these two parameters seemed to barely eliminate the effect of the physical
temperature of the land surface in most areas, which may explain why the JAXA had a wider range
and more obvious dynamic variation in Naqu than in the other networks. Obviously, the correlation
was weaker in relatively arid areas (e.g., Pali and Ngari) than in relatively humid regions (e.g., Heihe
and Maqu), mainly because the JAXA calibrates its look-up table in Mongolia [14], which is an arid
area. Therefore, the two indices can better characterize the surface temperature in relatively arid areas,
while larger uncertainties occur in humid locations. Overall, the JAXA retrieval algorithm, which was
based on look-up table, was less reliable, especially in relatively humid areas. Bindlish et al. [67] also
found similar underestimations and limited value ranges of JAXA SM in many regions.
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Figure 9 shows the comparison results between in situ Ts and satellite-derived Ts for the other
three models. Both the LPRM and FY3B (TS data were not available) estimate Ts based on an empirical
relationship between Ts and V polarization TB [68,69] and have relatively good dynamic ranges, while
SMOS-IC and SMAP obtain their physical surface temperature values from the ECMWF and GEOS-5
datasets, respectively [16,47]. The LPRM Ts exhibited better at nighttime than in daytime, and its
overall R equaled 0.79 at nighttime and 0.61 in daytime (Figure 10). Moreover, with the exception of
Pali and Ngari, overestimation occurred for the LPRM at the other networks during the day, mainly
because the ascending and descending times were 1:30 pm and 1:30 am, respectively; these two
time points roughly correspond to the highest and lowest temperatures of the day. In particular, the
difference between canopy and soil temperature was relatively high at 1:30 pm, and the difference
was relatively low at 1:30 am. Based on the results from Section 3.1, the LPRM performed better at
nighttime compared to daytime, which may be explained by the fact that LPRM reasonably considers
Ts=TV at 1:30 am. For both SMOS-IC and SMAP, the estimated Ts had consistent performance in the
five networks, and R was larger than 0.85 in most networks, which was slightly better at nighttime



Remote Sens. 2019, 11, 792 18 of 27

than in daytime. Notably, the Ts values of SMOS-IC and SMAP were underestimated to a certain
degree. Generally, the soil temperature and soil dielectric properties are more uniform at 6:00 a.m.
than at other times of the day [47]. Therefore, the use of Tv=Ts (the near surface soil temperature
equals the canopy temperature) in the early morning should minimize SM retrieval errors. Slightly
better performances were also found at nighttime (morning orbit) for the SMAP SM in most of the
in situ networks. SMOS-IC performed better in terms of its SM and Ts at nighttime (morning orbit).
In short, both SMOS-IC and SMAP had good estimates of Ts, and SMAP performed slightly better
than SMOS-IC. In terms of the R values, no significant difference was observed in the estimation of Ts
by SMAP and SMOS-IC in most in situ networks; thus, the physical surface temperature parameter
should not have been the main factor that caused the differences between the two L-band SM products.
In contrast, the overall performance of the LPRM Ts was not as good as that of SMOS-IC or SMAP,
Overestimation occurred in daytime and underestimation occurred at nighttime for most of the in situ
networks. In particular, obvious underestimations of the surface temperature occurred for the three
SM products in the Pali and Ngari networks. These systematic underestimations of Ts may explain
the overestimations/underestimations of the SM retrieval results, especially for the LPRM and SMAP
products (both of which assumed Tv=Ts in their algorithms).
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4.2. Vegetation Optical Depth

Microwave emission signals from vegetation must be removed from the total emissions to obtain
the underlying soil emission signal, which is directly related to SM. Therefore, vegetation effects, which
can be evaluated by two vegetation parameters, i.e., the effective scattering albedo ω and the optical
depth τ, should be carefully considered so that accurate ground emissions can be obtained. In the
five SM retrieval algorithms, the effective scattering albedo was set to a very small value, and the
vegetation optical depth became the most influential factor.

According to Equation 4, the physical temperature can be eliminated from both sides of the
equation by assuming that TC=TG. Then, the ground emissivity εg

p under polarization p (p = V/H)
can be expressed as a function of the satellite observed emissivity εp (εp=TBp/TC), vegetation effective
scattering albedo and transmissivity by rearranging the equation:

ε
p
g =

εp − (1−ωp)
(
1− γp2)

γp(ωp + γp −ωpγp)
(5)

Based on Equation (5), Figure 11 presents the variations in the ground emissivity with different
vegetation transmissivities γ at a certain remotely sensed emissivity, which is illustrated by different
colors from blue (0.6) to red (0.9) based on simulations from the τ-ω model. For a fixed remotely
sensed emissivity εp (same color), the simulated ground emissivity gradually increased as γ increased,
corresponding to a decreasing τ. This relationship means that the ground emissivity would be
overestimated for an underestimated τ under a certain observed brightness temperature when
changing the physical surface temperature (that is, εp=TBp/TC, with εp changing between 0.6 and
0.9 here). Consequently, this situation produced an underestimated SM. The same result occurred
when the effective scattering albedo was set to different values (ω=0, 0.03, 0.06, and 0.09).

The τ time series in the JAXA, FY3B, and SMOS-IC algorithms are not available online, so Figure 12
shows a comparison of the τ values for the SMAP and LPRM algorithms. Large differences existed
among the two τ products. Specifically, the LPRM τ values were generally higher than those of SMAP,
which can explain the full overestimations of the LPRM SM, as shown in Figure 3. The SMAP τ
appeared as a nearly smooth hat-shaped curve on each in situ network and had continuous temporal
and seasonal variability, with no obvious differences during the day or night. The distribution of
τ better characterized areas with different vegetation coverage, and correspondingly higher values
appeared in Heihe and Maqu, while correspondingly smaller values and poorer dynamic ranges
occurred in Pali. The reason the SMAP τ adequately described the actual situation could be that the τ
estimates based on the climatology of NDVI [47].
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4.3. Soil Dielectric Mixing Model

As shown in Table 4, the Wang–Schmugge model [70] was adopted in the LPRM operational
SM algorithm, the Dobson model [71] was adopted in the JAXA algorithm, and the newly developed
Mironov model [72] was utilized in the SMOS-IC and SMAP SM algorithms. The FY3B SM was
calculated from a relationship between the SM and a combination of two polarizations of rough
surface emissivity without a soil dielectric constant model [12]. Table 5 lists the basic information of
these three soil-dielectric constant models. The Mironov model requires the fewest inputs, and the
Wang–Schmugge and Dobson models require the same inputs. Undoubtedly, differences exist between
the simulation results of these dielectric constant models [73,74].
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Table 5. Basic information of the three soil dielectric mixing models.

Model Wang and Schmugge Dobson Mironov

Main inputs

Volumetric soil moisture,
frequency, soil temperature,
percentage of sand and clay,

soil bulk density

Volumetric soil moisture,
frequency, soil temperature,
percentage of sand and clay,

soil bulk density

Volumetric soil moisture,
frequency, soil temperature,

percentage of clay

Development time 1980 1985 2009
Type Empirical Semi-empirical Physical

Consider bound soil water
(BSW) Yes No Yes

To better analyze the influence of different soil dielectric constant models on the SM retrieval
accuracy, five different soil texture conditions from five in situ networks (see Figure 1) were selected,
and different soil dielectric constant models were used to retrieve SM under the same conditions.
The Dobson and Wang–Schmugge models were used to retrieve SM in the X-band (10.65 GHz)
under the same dielectric constant and soil texture, and their differences were calculated. In addition,
the Dobson and Mironov models were used to retrieve SM in the L-band (1.4 GHz), and their differences
were calculated (Figure 13).
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soil moisture retrieval differences between the Dobson and Wang–Schmugge models under X-band
conditions; right: differences between the Dobson and Mironov models under L-band conditions).

The red horizontal dotted lines in Figure 13 are the reference accuracy (0.04 cm3 cm−3); the
horizontal axis represents the estimated SM from the reference soil dielectric model, and the vertical
axis represents the SM differences from using different soil dielectric constant models. The differences
in the retrieval results between the Dobson and Wang–Schmugge models were relatively large, and
the differences increased with increasing sand content. Based on Section 3.1, large differences existed
between the JAXA and LPRM SM, especially in relatively arid regions with high sand content, which
was consistent with the retrieval results of their corresponding dielectric constant models. The soil
dielectric constant models may have influenced the retrieval accuracy of the JAXA and LPRM. Large
differences were also found in the retrieval results from the Dobson and Mironov models in the L-band,
and the differences were generally larger than the reference accuracy. Based on in situ experiments,
Guo et al. [75] revealed that the Dobson model performs slightly better than the Mironov model at
the L-band. However, Mialon et al. [76] found no superior performance from one model over the
other after comparing the two-model outputs with in situ measurements. Therefore, the selection of
a soil dielectric mixing model in soil moisture retrieval algorithms should be considered carefully,
and more comparisons between different dielectric models must be conducted to obtain better SM
products. SMAP may be better after using the Dobson model, although this product is sufficient under
most conditions.
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5. Conclusions

In this study, the performances of five passive microwave remotely sensed SM products (i.e.,
SMAP, SMOS-IC, FY3B, JAXA, and LPRM) were evaluated by direct and indirect comparison methods
over the QTP and its surrounding areas. The direct comparisons focused on the performances of five
SM products in five in situ networks (i.e., Heihe, Naqu, Pali, Maqu, and Ngari), and the comparison
results were often more credible because the in situ measurements were generally regarded as the
ground ‘true value’. Meanwhile, the indirect comparisons provided the uncertainty estimates of each
pixel for each SM product, and the uncertainty results revealed the relative performances of each SM
product, especially from a spatial perspective. Moreover, comparisons of the five SM algorithms and
analyses for three important inputs (i.e., the physical surface temperature, vegetation optical depth,
and dielectric mixing model) of SM retrieval models were conducted. The important findings gained
at the regional scale are highlighted below.

Compared to the in situ SM measurements, SMAP had relatively large R and low RMSE and bias,
especially in areas with relatively sparse vegetation (i.e., Naqu, Pali, Maqu, and Ngari). The direct
comparison results also showed overestimations from the LPRM, slight underestimations and slightly
noisy dynamics from SMOS-IC, underestimations from the JAXA, and good seasonality but poor
absolute accuracy from FY3B. In addition, the inter-comparison results among the five SM products
showed that SMAP had low uncertainties and its performance was less affected by climate and
environmental variables. In contrast, SMOS-IC showed relatively high uncertainties. Other SM
products (i.e., FY3B, JAXA, and LPRM) showed better performance in the mid-western QTP but poorer
performance in the mid-eastern QTP.

The primary error sources of these passive microwave remotely sensed SM products were the
retrieval algorithms and inputs. According to the analysis for SM retrieval algorithms and their inputs,
the physical surface temperature may have affected the retrieval accuracy but was not the leading
factor, especially for the SMSO-IC, JAXA, and LPRM SM. Correcting influences from the vegetation
canopy was a key issue in the SM retrieval algorithms for FY3B, the JAXA, and the LPRM, especially
in areas with relatively low and relatively high vegetation coverage. Moreover, the dielectric mixing
model may have caused large performance differences between the JAXA and LPRM, and the use of
the Dobson model may have improved the performance of SMAP.

Future work on remotely sensed SM data is recommended in two aspects. First, different SM
retrieval algorithms should be characterized and evaluated under different climate and environmental
conditions. In addition, several passive microwave remotely sensed SM products could be combined
to fully utilize their capabilities.
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Appendix A

Considering the time series stored as {Xi}i =1,2 . . . N, where i corresponds to each satellite products
(that is, N = 5, five products including SMAP, SMOS-IC, FY3B, JAXA and LPRM), and split each time
series as

Xi = Xtrue + εi, ∀i = 1, 2 . . . N, (A1)

where Xtrue is the true value, and εi is a zero-mean white noise representing the measurement error.
Since the Xtrue is not available, the difference between (N-1) satellite products and one product chosen
arbitrarily as the reference can be expressed as

YiN = Xi − XN = εi − εN, i = 1, 2, . . . N− 1 (A2)

where XN is the reference time series. The N-1 difference time series are stored in a M × (N-1) matrix
as

Y =
[
Y1N Y2N . . . Y(N−1)N

]
(A3)

where each row contains a daily observation (here, M represents the number of valid days from 1 April
2015 to 30 June 2018). The covariance matrix of Y is given as

S = cov(Y) (A4)

where cov () is the covariance operator. An unknown N ×N covariance matrix of the individual noises
R, whose elements are the unknowns of the problem, is related to S by

S = J·R·J, J =
[
1− uT

]T
(A5)

where I is the (N-1) × (N-1) identity matrix, and u is the (N-1) vector [1 1 . . . 1]T. Matrix R can also be
expressed as

S =
[
R̂ r; rT rNN

]
, (A6)

where R̂ is the (N-1) × (N-1) submatrix, r is the (N-1) vector [r1N r2N . . . r(N-1)N]T. Once the N free
parameters (that is, r1N, r2N, . . . , r(N-1)N, rNN) have been estimated, the R̂ can be calculated by

R̂ = S− rNN

[
uuT

]
+ urT + ruT (A7)

To determine the N free parameters, an objective function is defined and it always fulfill the
positive definiteness of R. The objective function F is given by

F(r1N, . . . , rNN) =
1

K2

N

∑
i<j

r2
i,j, (A8)

with a constraint function

H2(r1N, . . . , rNN) = −
H1(r1N, . . . , rNN)

K
< 0 (A9)

where
K = N−1

√
|S| (A10)

H1(r1N, . . . , rNN) =
|R|
|S| = rNN − [r − rNNu]T·S−1·[r − rNNu] (A11)
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The initial values of iterative calculation fulfill the constraints

r(0)iN = 0, i < N and r(0)NN =
(

2·uT·S−1·u
)−1

, (A12)

After determining the N free parameters by minimizing Equation (11), the remaining unknowns
of R can be calculated using Equation (10). The diagonal elements (that is, r11, r22, r33, r44, r55) of
matrix R are the noise variances, whose result of square-root operator are the uncertainties for the
corresponding SM product.
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