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Abstract: Automatic detection of icebergs in satellite images is regarded a useful tool to provide
information necessary for safety in Arctic shipping or operations over large ocean areas in near-real
time. In this work, we investigated the feasibility of automatic iceberg detection in Sentinel-1 Extra
Wide Swath (EWS) SAR images which follow the preferred image mode in operational ice charting.
As test region, we selected the Barents Sea where the size of many icebergs is on the order of the
spatial resolution of the EWS-mode. We tested a new approach for a detection scheme. It is based on a
combination of a filter for enhancing the contrast between icebergs and background, subsequent blob
detection, and final application of a Constant False Alarm Rate (CFAR) algorithm. The filter relies
mainly on the HV-polarized intensity which often reveals a larger difference between icebergs and
sea ice or open water. The blob detector identifies locations of potential icebergs and thus shortens
computation time. The final detection is performed on the identified blobs using the CFAR algorithm.
About 2000 icebergs captured in fast ice were visually identified in Sentinel-2 Multi Spectral Imager
(MSI) data and exploited for an assessment of the detection scheme performance using confusion
matrices. For our performance tests, we used four Sentinel-1 EWS images. For judging the effect of
spatial resolution, we carried out an additional test with one Sentinel-1 Interferometric Wide Swath
(IWS) mode image. Our results show that only 822 percent of the icebergs could be detected in the
EWS images, and over 90 percent of all detections were false alarms. In IWS mode, the number of
correctly identified icebergs increased to 38 percent. However, we obtained a larger number of false
alarms in the IWS image than in the corresponding EWS image. We identified two problems for
iceberg detection: 1) with the given frequency—polarization combination, not all icebergs are strong
scatterers at HV-polarization, and (2) icebergs and deformation structures present on fast ice can
often not be distinguished since both may reveal equally strong responses at HV-polarization.

Keywords: iceberg detection; CFAR; iDPolRAD; SAR; optical images

1. Introduction

Icebergs present serious hazards for ship navigation and offshore installations. Consequently;,
there is a large interest to localize them timely and over vast areas. Because of their independence of
cloud cover and daylight, satellite Synthetic Aperture Radar (SAR) images are among the preferred
data sources for operational ice centers that are responsible for providing information on sea ice
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conditions and iceberg occurrences. The image spatial resolution mostly used for iceberg monitoring
varies between a few and 100 m. Processed SAR data are characterized by speckle noise, which causes
a grainy appearance of the images making the identification of small icebergs extremely difficult.
In particular, the following iceberg categories are affected: bergy bits (size 0-5 m), growlers (5-15
m), and small bergs (15-60 m) (for iceberg categories see [1]). In many previous studies related to
automatic detection of icebergs in SAR images reliable results were only obtained when focusing on
icebergs in open water that cover several image pixels (e.g., [2-6]).

The Barents Sea represents the region where iceberg monitoring is especially needed because of
various human activities including fishing, cargo shipping, and oil and gas exploration [7,8]. Marine
terminating glaciers on Svalbard, Franz Josef Land (FJL) (see Figure 1), and Novaya Zemlya are the
major sources of icebergs in the Barents Sea with typical iceberg sizes of 91 m + 53 m x 64 m +
37m x 15m £ 7 m (length x width x height) [9]. The potential of identifying small icebergs in the
Barents Sea in Radarsat ScanSAR and Envisat ASAR WideSwath and Alternate Polarization (HH, VV)
imagery was investigated by Sandven et al. [10]. They compared SAR data to optical scenes from
Landsat ETM+ and Terra ASTER on the test site in FJL and identified 15 icebergs of sizes between 50 m
and 400 m, trapped in fast ice. Their study was focused on the contrast between the single-polarization
radar backscattering coefficients of icebergs and fast ice, considering differences in spatial resolution
and incidence angle.
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Figure 1. The Sentinel-1 image acquisitions used for automatic iceberg detection. The subimages with
hatched outline are the regions used for testing and their colors match the corresponding acquisition.

Given the high importance of iceberg monitoring in the Barents Sea and the aforementioned
challenges in their identification, we focus our study on the detection of very small icebergs in particular
in the region of FJL and the northern side of Nord-Austlandet (NA), Svalbard (Figure 1). The goal is
to test a new method based on dual-polarization SAR images and to quantify the limitations of the
coarse-resolution SAR imagery typically used in operational ice charting.

We deal with icebergs trapped in land fast ice, defined as sea ice that is attached to land
and stays at the same place over a long time due to little impact by currents and winds [11].
From the methodological point of view, land fast ice is chosen because most of the icebergs there are
stationary [10]. This makes it very easy to validate iceberg detections in SAR imagery using optical
satellite images which were acquired with a time difference from hours to several days. On the other
hand, the icebergs will eventually be released into the open ocean when the land fast ice melts and
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may cause a threat for operations in close vicinity. It is, therefore, necessary to be able to detect these
icebergs and include them in a safety analysis. In FJL the fjords are covered by land fast ice until the
end of April, and the glaciers calve many icebergs into the fast ice. At NA there is also a large region
of land fast ice, but due to the impact of the drifting sea ice pushing against it, the fast ice surface is
rough, which complicates the detection of icebergs. The density of icebergs observed at NA is also
lower than what is observed in the FJL region. Similar results can be expected for drifting sea ice
with comparable surface characteristics (cm- to - m-scale roughness) and volume properties (salinity,
air bubble inclusions). However, regions of drifting ice with low areal concentrations (e.g., at the ice
margin) represent a more challenging situation since open water or brash ice between the consolidated
ice floes cause more complex backscattering patterns in the radar image.

In our study, we take direct advantage of the dual-polarization mode offered by the Sentinel-1
EWS mode. The proposed detection scheme is based on the work by Marino et al. [12] who developed
a method that uses both HH- and HV- (or VV- and VH-) polarized SAR data to significantly increase
the contrast between icebergs and their background (which in general can be drifting sea ice, fast
ice, and open water). This method is called the intensity Dual-Polarization Ratio Anomaly Detector
(iDPolRAD). As identifications of icebergs smaller than about 100 m are more reliable in optical than
in SAR images [10], we further extend the previous studies by visual identification of more than 6000
reference icebergs on Sentinel-2 imagery (of which we finally used about 2500 for investigating the
results of automatic detection). In the fast ice and under favourable light and cloud conditions, the
icebergs stand out because of a dark shadow due to the low sun angle and the iceberg freeboard above
the fast ice surface. The manual identification of such a large number of icebergs in high-resolution
optical images (10 m for Sentinel-2 visible bands) for validating an algorithm for iceberg detection in
SAR images is unique to our study.

Using the iDPolRAD together with a modified CFAR detector we are here assessing the feasibility
of automatic detection of icebergs as small as a single image pixel. The CFAR performance depends on
the choice of the probability density function (PDF) of the background clutter and on the threshold for
detection (see e.g., [13,14]). We applied the Gamma-, Generalized Gamma-, and Generalized Extreme
Value distributions to select a PDF that best matches the iDPoIRAD filtered values.

The paper starts with a description of the SAR data and the collection of validation data (Section 2).
Subsequently we go through the steps of our algorithm for iceberg detection (Section 3), and present
the results for our test sites (Section 4). The paper proceeds with a discussion concerning scattering
characteristics and incidence angle sensitivities of icebergs (Section 5) and ends with the conclusions
(Section 6).

2. Data

The Sentinel-1 SAR is operating at C-band, providing several imaging modes that differ in swath
width and spatial resolution [15]. For testing the iDPolRAD automatic detection of icebergs we use
images acquired in EWS mode (Table 1), which are processed to ground range at medium resolution
(Figure 1). The EWS mode provides a swath width of 410 km with a spatial resolution of 90 m and
a pixel size of 40 m. The wide swath makes this mode preferable for operational monitoring as the
Barents Sea can be covered up to twice a day. The Noise-Equivalent-Sigma-Zero (NESZ) lies between
—23 dB and —34 dB, dependent on the incidence angle and the position in the different beams of which
the EWS image is combined, see [16]. The equivalent number of looks, ENL, which is a measure for
the influence of speckle, is 10.7. We also carried out tests with the IWS high resolution mode, for which
the following numbers are valid: spatial resolution 20 m, pixel size 10 m, swath width 250 km, NESZ
between —24 dB and —30 dB, and ENL = 4.4 [16]. The Sentinel-1 data were radiometrically calibrated
using the Nansat software [17]. The normalized radar backscatter cross-section (09) was calculated
from the TIFF file using the calibration lookup table provided in the accompanying metadata XML [18].
The pixels that belong to land [19] and glaciers were discarded from the analysis. The landmask has
a resolution of 250 m. The absolute location accuracy of the medium-resolution EWS product is not
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specified in the User’s Manual. For the IWS mode it is 7 m. Korosov and Rampal [20] found that the
accuracy of georeferencing was about 5 pixels (i.e., 200 m) for the EWS medium resolution product.

Sentinel-2 carries the MSI that samples 13 bands in the range from 440 nm to 2200 nm at a swath
width of 290 km. We used bands 2, 3, and 4 located in the visible range with a spatial resolution of 10 m.
The images from Sentinel-2 were combined with the SAR data using Google Earth Engine (GEE, [21],
see Figure 2). Due to darkness and bad weather conditions during image acquisitions, data from
only a few days were available for the test regions FJL and NA. Over 6000 icebergs were manually
detected and measured by identifying brighter spots combined with shadows (Figures 2 and 3, Table 2),
recording the iceberg coordinates, and drawing polygons around the identified icebergs.

Table 1. Date, time and region of each Sentinel-1 EW image acquisition, including the name of the
respective files. The last two columns give the size and incidence angle range of the part of image included
in the automatic detection.

Part of Image

Date (Year-Month-Day), Region S1-File [No of Rows,

Incidence Angle

Time No of Columns] Range [°]
W RIS o e
“oinsr FL i Toniin 01603 01A7iD 1317 200X 2000 283
o606 NA S AI0T000727 01678 01ASES Sase 4000 <4000 30-40
“osaria0 NA TAIoTOsIk 016209 0IACES s2a4 2000 <4300 36-46

Table 2. Date, time and region of Sentinel-2 MSI image acquisitions and number of manually detected
icebergs. The rightmost column give the air temperature at 12:00 UTC at the day of the acquisition.
The temperature data measured at 2 m (NA) and 22 m (FJL) was retrieved from data pools of the
Norwegian Meteorological Institute and the University of Wyoming, respectively.

Number of T
pate (Year-M onth-Day), Region Ice Type Manually Detected 12:00 UTC
Time [Fast Ice] o
Icebergs [°Cl

2017-04-04

11:46:41 FJL Smooth 2292 —20.7
2017-04-07

11:56:40 FL  Smooth 2940 ~19.9
2017-04-10

13:47:25 NA  Rough 688 _97
2017-04-19 NA Rough 807 s

14:17:39




Remote Sens. 2019, 11, 806 5o0f 24

©,

&

(a) (b)

Figure 2. RGB composite from B4, B3, B2 bands of Sentinel-2 MSI showing manually detected icebergs
in (a) smooth fast ice at Franz Josef Land on 4 April 2017 (image size 2800 by 1950 m) and (b) rough
fast ice at Nord-Austlandet, Svalbard, on 10 April 2017 (image size 1100 by 800 m).
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Figure 3. A total of 2292 icebergs manually detected in Sentinel-2 image over Franz Josef Land on 4
April 2017. Grey areas are land. Iceberg positions located in the landmask may be due to geolocation
errors or details such as bays that are not present in the landmask.

3. Methods

3.1. Overview

In the following, we present the algorithm for automatic iceberg detection and the method for
investigating its performance (Figure 4). We start by introducing the iDPoIRAD filter that is used to
increase the contrast between icebergs and the surrounding fast ice (Section 3.2). Then we describe
a blob detector which we apply in a pre-processing step to select those pixels that reveal a higher
value of the iDPoIRAD relative to the surrounding pixels, hence indicating a larger probability of
representing an iceberg (Section 3.3). The selected pixels are input for the next step, which is a modified
CFAR detector (Section 3.4). Finally, we compare the output of the automatic detection to the manually
identified icebergs, introducing the corresponding confusion matrix in Section 3.4.4.
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Figure 4. Schematic overview of the algorithm for automatic iceberg detection using Sentinel-1 SAR

data, and the validation of the algorithm using manual detections from Sentinel-2 MSL

3.2. iDPoIRAD

A filter to increase the contrast between icebergs and the surrounding sea ice or open water
was proposed by Marino et al. [12]. It is called the iDPolRAD and was designed and tested using
dual-polarized incoherent Sentinel-1 data [12]. The filter is based on the observation that icebergs
often exhibit a different polarimetric behaviour compared to sea ice and open water [22-24]. This
is in particular valid for icebergs which represent a volume of freshwater ice. Under dry, freezing
conditions they can be penetrated by radar waves, hence volume scattering contributes significantly
to the observed radar signatures. The surfaces of icebergs are often characterized by the presence
of highly reflective planes with random orientations which dominate the scattering if the icebergs
are wet or toppled-over. Scattering from the ocean, and often from saline sea ice is determined by
surface properties (C-band radar: roughness on cm-scale, dielectric constant). Therefore, wet and
turned-over icebergs may reveal similar scattering characteristics as the surrounding water or sea ice.
If volume scattering is significant and if the orientations of larger reflective planes (a few decimeters to
meters in size) are random, icebergs are expected to have a large cross-polarization contribution and
a large depolarization ratio (defined as the ratio between the intensity of cross- over co-polarization
channels). In the original algorithm, two boxcar filters are applied over the HV and HH intensity
images, exploiting two different window sizes: a smaller test window, Wi, located in the center of a
larger training window, Wy,,;,. The detector can be written as:

_ < |HV|2 >test — < |HV|2 > train

A
< |HH|2 > train

> Tp (1)

where <>test and <>y, identify the spatial average using the test and training windows, respectively,
and T is a threshold.

This detector is scale invariant (built as a ratio between intensities), however scale invariance may
be disadvantageous if we want to detect bright targets. To regain information about the intensity we
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can multiply the ratio by an intensity image. In this context, the cross-polarization channel is preferred
because it shows a higher contrast between icebergs and clutter:

I=A < |HV|]? > )

If a pixel in the test window presents an increase in volume scattering or oriented reflections
relative to the background in the training window, A reveals a large positive value. For a homogeneous
area, test and training window reveal no difference, hence A is zero. The iDPolRAD can also assume
negative values, e.g., if the test window covers an open water patch in sea ice which is characterized
by a very low HV-polarization response while the training window is dominated by the surrounding
rough multi-year ice revealing a larger HV-intensity level.

The combination of test and training window is moved pixel by pixel along lines and columns of
the image. Any bright object (of one to a few pixels in size) located in the training window affects the
output of the iDPoIRAD filter (the contamination effect). We did not remove bright objects at this stage
of processing, since the application of the iDPoIRAD filter still results in contrast enhancement even in
the presence of bright objects in the training window. We observed a margin around the object under
test where the output of the iDPolRAD filter was much larger than the background level. By using
Gaussian weights instead of a boxcar function for the training window this effect was avoided.

3.3. Blob-Detector

To apply the CFAR detector (including determination of the background statistics) on every
pixel in an image can be a very time consuming task. To speed up the algorithm we therefore first
apply a blob detector to select only pixels with a higher probability of being icebergs before carrying
out the final detection. The blob detection is based on the scikit-image library in Python [25] as
explained below.

A blob consists of one or more pixels that reveal an intensity contrast with respect to the
background (in the extreme case black on white or white on black). Blob detection is performed
in the following steps [25]. First, the input SAR image is processed with a set of Gaussian filters
with different values of standard deviation S (i.e., radius of the filter), calculated in sliding windows.
The next step is to apply a Laplacian filter to obtain maximum and minimum values, and multiply with
the corresponding S? to provide spatial scale invariance. That operation produces a N-layer “cube” in
scale-space volume representing N spatial scales. The pixels that represent a local maximum (above a
given threshold) with respect to their 26 neighbours (in three dimensions) are selected as blobs [26].

There are two important parameters for this detector; the minimum threshold for blob-detection
(t3) and the maximum standard deviation of the Gaussian filter, Sys. The threshold 73 is the lowest
value a pixel can have to be considered a blob, while the value of Sy is important to make sure the
detector includes the largest features. The iDPolRAD value of the iceberg pixels varies significantly.
In order to find the optimal choice for 7 we have performed blob detection with several thresholds
and validated with manually detected icebergs. For 5 it is important not to choose a too large value
for the blob detection, but rather to base it on the known “typical” size distribution of the icebergs.
If Sy, and thus the radius of the blob, becomes too large, smaller icebergs that are close to each other
may be considered as one blob instead of two (or more). We note that the Laplacian of Gaussian blob
detector can only handle bright objects on a darker background.

Due to slight differences in the geolocations of data in GEE and the downloaded Sentinel-1 SAR
images, some manual detections are not correctly localized at the position of peaks in the SAR image.
This is solved by automatic shifting of the manually detected icebergs into the nearest blob if it exists
within a given distance (200 m /5 pixels). The blobs that are coincident with manually detected icebergs
within this distance are true positive detections, while the blobs that are not coinciding with manually
detected icebergs are denoted as false positive detections (see notations in Table 3).
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Table 3. The names of the detected objects used hereafter.

Name Description

Pixels that are selected by automatic blob detection

True Positives (T Pg) ; .
and are manually defined as icebergs

Pixels that are selected by automatic blob detection

False Positives (FPg) ) )
but are not manually defined as icebergs

False Negatives (FNp) Pixels that are not sel‘ected by automatic blob detection
but are manually defined as icebergs

Pixels that are not selected by automatic blob detection

True Negatives (T Np) ; .
and are not manually defined as icebergs

3.4. A Modified Constant False Alarm Rate Algorithm

Since we carry out the iceberg detection on iDPolRAD instead of intensity values we fitted
different PDFs to the distributions of the iDPolRAD-values (Sections 3.4.1 and 3.4.2) and evaluated the
quality and robustness of the respective matches (Section 3.4.3). Finally, we tuned the parameters of
the CFAR algorithm using the manually detected icebergs (Section 3.4.4).

3.4.1. The Modified CFAR Approach

The basic CFAR approach is as follows: A pixel is marked as an iceberg if the SAR signal intensity
(¢) exceeds a threshold (T). This threshold is chosen such that the integral of the tail of the SAR signal
intensity PDF (f(@®)) is equal to or smaller than a critical Probability of False Alarm (PFA) (Figure 5).
The PDF is obtained from the histogram of the intensity values in a training window surrounding
a smaller window in the center (e.g., [14]). In our modified CFAR we determine the background
PDF from the iDPolRAD values, denoted as I: from the histogram H(I), obtained from a training
window surrounding the pixel under test, we consider only image pixels between an upper and a
lower boundary. The lower value is denoted I,,,;;, and represents the peak of the probability density
function, PDFy;x. The upper value is I, and corresponds to a preselected percentile P, relative to
all values within each training window. The motivation for this procedure is to: (a) exclude impacts
of noise at the lower end of the histogram and the influence of pixels representing icebergs (with
typically high iDPolRAD-values) at its higher end, and (b) increase the robustness of fitting the PDF
to H(I) by excluding the steep leading edge of the histogram. This procedure is suitable because for
calculations of the PFA we are mainly interested in a close match of the tail region representing only
the background. In our analysis we found that the histograms of I increase and decrease very sharply
around their peaks. This makes it very difficult to find a theoretical PDF that matches the shape of
the histogram sufficiently well over the full range of iDPoIRAD values. The value for I,;;;, is found
by smoothing the histogram successively using a running average over three bins and retrieving the
iDPolRAD-value at the index of the maximum of the smoothed histogram. The CFAR detector uses a
sliding window of size WcraRr, checking whether the center pixel of the window is an iceberg or not.
Thus, the background is defined relative to each pixel under test. To reduce the computation time we
applied the CFAR detector on blob-detected pixels only.
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Figure 5. Schematic representation of PDF fitting to the histogram of the data. The dark blue shaded
area represents the TIP (see Section 3.4.4) and the hatched region represents the area corresponding to
the PFA. T is the threshold, I,,;;, and I, are the lower and upper boundaries used to represent the
background data respectively, and Iy, is the value of the blob-detected pixel.

3.4.2. Fitting of the Probability Density Functions

Since we analyse iDPolRAD-values, I, instead of intensities, Y, we had to consider that the
PDFs over I are not necessarily the same as typically used for ¢°. Three PDFs, selected based on
the observed histogram shapes, have been tested for representing the background data in the image:
Gamma-, Generalized Gamma-, and the Generalized Extreme Value (GEV) distributions. The PDFs are
presented in Table 4. The scipy.stats module in Python [27] was used to obtain the parameters and
final distributions for the PDFs.

Table 4. Equations and symbols for the different PDFs. I is here the iDPolRAD values.

PDF Equation Parameters

_ yap—1eM a = shape parameter
Gamma flla) = AT (a) A = inverse scale parameter
Generalized Gamma f(l,a,c) = |c|I®1 % a, ¢ = shape parameter

(Lc)=e* e ifc=0

Generalized Extreme Value 1 1
f(ILc)=e (=eDe (1 —cpye?

¢ = shape parameter

o=~

3.4.3. Quality and Robustness of Probability Density Functions

To check the representativeness of the PDF fit, the PDF parameters and corresponding
distributions were calculated both for a larger area within one of the SAR images from FJL (size
3000 x 3000 pixels) as well as for approximately 9700 windows of 141 x 141 pixels within the
image, using blob-detected pixels as central window point. Pixels within the window with values
below or above I, and I,y were excluded from the calculations (hence alleviating or even
avoiding contamination, see above). The resulting PDFs and their parameters were compared to
the corresponding histogram to assess the quality of the fit. To this end the mean absolute error
between the histogram and the corresponding PDF, multiplied by the bin width, was determined.
This procedure is similar to the Kolmogorov—Smirnov test [28]. The statistics for the smaller windows
were also compared to the statistics of the large area to get a measure of the variability of the PDFs
with respect to the data. Because the windows are located in different parts of a SAR image we cover
different incidence angles (see below).
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3.4.4. Determination of Thresholds for the Modified CFAR

The type of PDF and the PFA value are crucial to the CFAR algorithm for iceberg detection. True
and false positives from blob detection were used for determination of the threshold to distinguish
icebergs and background (note that icebergs identified in the Sentinel-2 image that do not appear in
the SAR image—the false negatives—can not be accounted for in the PFA).

For each selected object (iceberg, i.e., true positive, or “non-iceberg”, i.e., false positive) the PDF
parameters were calculated using the surrounding background pixels within the CFAR window of size
141 x 141 pixels. Then, the corresponding PDF was calculated for each CFAR window and integrated
between the iDPoIRAD value of the object obtained from blob detection and infinity to obtain a value
of “Tail Integrated Probability (TIP)" (see Figure 5 and Equation (3)).

TIP = et f(x)dx ©)

TIP is small for objects with high intensity and low values of f(x), X > I, (typical for icebergs
characterized by strong scattering). From the resulting TIP values the PFA can be selected to optimally
distinguish between icebergs and background excluding as many non-icebergs as possible. To this end
we prepared scatter plots that present the TIP values for true and false positives. In comparison to
the manually identified icebergs we obtain four groups of objects (notation see Table 3 in Section 3.3,
replacing “B” with “CFAR” for iceberg detection) that allow to assess the quality of the algorithm
using the confusion matrix (see Table 5).

Table 5. Confusion matrix for assessing quality of automatic iceberg detector.

Total = TPcraRr + FPcrarR + FNcrarR + TNcrar  Actual Iceberg  Actual Non-Iceberg

Predicted iceberg TPcrar FPcrar
Predicted non-iceberg FNcrar TNcEar
4. Results

4.1. Detection Performance of the iDPolRAD-Filter

In the following example we demonstrate the effect of the iDPolRAD filter. We used a single
pixel as test window, and a training window weighted with a two-dimensional Gaussian function
with a standard deviation ¢ equal to 7. In the implementation this corresponds to a window size
of 57 x 57 pixels, where the maximum of the filter is located over the center and decreases to zero
at the margin. By comparing the iDPolRAD output using a range of values for ¢ and test windows
of different sizes, we found that the chosen values gave the best result. A test window that covers
only one pixel (corresponding to a size of 40 x 40 m) is optimal since many icebergs in the Barents
Sea are even smaller than this size. In the case that they are larger, this is considered in the final step
of detection where neighbouring detected pixels are merged. The result of the iDPolRAD filter is
presented in Figures 6 and 7. The figures show that the background clutter is highly reduced while the
bright features, such as icebergs, are enhanced when we apply the iDPolRAD filter. This increased
contrast can be exploited in the CFAR detector. In an additional test we studied the relationship
between the iDPoIRAD value and the size of icebergs and found that no correlation exists between
both parameters.
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(b) [iDPoIRAD]
-30 -29 -28 -27 -26 0 2e-7 4e-7 6e-7 8e-7 le-6

Figure 6. (a) ‘TIQIV' (b) iDPoIRAD filter. The scene is from Franz Josef Land on 4 April 2017, showing
icebergs in frozen sea ice. The contrast between background intensity variations and icebergs is strongly
enhanced after applying the iDPolRAD filter. The red hatched line shows the transect presented in

Figure 7.
-0.00020
-0.00015
—_ Q
m <
T o
< F0.00010 ©
=
-0.00005
-0.00000

T T

0 50 100 150 200
pixels

Figure 7. A transect from Figure 6 showing how the iDPolRAD filter enhances the difference between
iceberg-value and background-values compared to HH and HV intensities.

4.2. Blob Detection Results

The numbers of TPg, FNp and FPp from different thresholds of blob detection are presented in
Tables 6 and 7. In general a lower 73 will detect most of the blobs found for the higher value of 75,
but in addition many additional ones (Table 6). For 7 = 1 X 107 the number of TPy was high:
677 icebergs were detected, only 187 (FNp) were missed. However, the number of FPp was extremely
large. By choosing 75 = 1 x 107 the value of FPg was reduced by a factor of almost 6, but more than
50 percent of the icebergs were not detected (TPp = 321, FNp = 489). Therefore, we choose to continue
with an intermediate threshold (15 = 5 x 1077) in the following processing steps. Many icebergs
reveal an iDPolRAD value lower than 7p but an acceptable balance between true detections and false
alarms makes it unfavourable to use too low values.

By choosing Sp; = 0.1 we detect blobs that have a radius of 0.9 pixels, and thus a diameter close
to 2 pixels, or larger. The minimum iceberg diameter observed in the optical image was approximately
10 m, and we could therefore have chosen a value of Sy that was even lower. However, with a smaller
blob the computation is more time-consuming and the number of false alarms increases. We therefore
refrained from using a smaller radius. The computation time needed for blob detection with our choice
of input parameters is 36 min which is too long for operational applications. In this study, however,
we did not attempt to optimize computation time but focused entirely on the sensitivity of detection
results when changing the required input parameters.
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In Table 7, results for TPg, FNg and FPg are shown for different values of Sy;. For Sy = 0.1
and Sps = 0.5 (radius of 0.9 and 2.5 pixels, respectively), only one layer was used, i.e., maxima were
determined only in one spatial scale. In case of larger radii, two layers were combined, one with Sy =2
and the second with Sy = 3 (radius of 8.5 and 12.5 pixels, respectively), hence considering different
spatial scales. The results in Table 7 indicate that larger icebergs were not present in our SAR scenes,
hence the detection of maxima on different spatial scales is not necessary. We found that in general
all blobs detected at a higher value of Sy; were also detected at lower Sy-values. However, in a few
cases we observed that some blobs were only detected at larger values of Sys. This could be a result
of the Laplacian of Gaussian if many high-value pixels are located close to one another. In this case
the maxima in the high-resolution layer of the cube (smaller Sy;) may not be unique with respect to
neighbouring pixels and will therefore not be considered a blob for the smaller Sy;.

In Figure 8 TPp, FNp and FPp are presented visually for 7 = 5 X 107 and Sp; = 0.1 using an
image from FJL. The results of blob detection for all images of test sites FJL (4 and 7 April) and NA (10
and 19 April) are listed in Table 8. They reveal a drastic increase of false positives in the rough fast
ice at the NA test site. It has to be kept in mind that the blob detection is not equivalent to iceberg
identification. The motivation for using blob detection is to reduce the computational effort by carrying
out the final CFAR-based detection only on the blobs. Nevertheless it is interesting to note that true
positives (i.e., icebergs) were already lost at this stage (see Section 5).

For the rough sea ice the blob detector responds not only to icebergs with strong scattering
intensities but also to deformation structures of the sea ice cover which may reveal a similarly strong
radar backscattering. As Table 8 shows, we obtained between almost 100,000 and 150,000 false alarms
(with Sy = 0.1). Blob detection as first step to iceberg identification can hence only be sufficiently
successful if it is focused on larger icebergs (i.e., larger spatial scales). But even then, larger sea ice
deformation structures may be confused with icebergs (see, e.g., [2]).

Note that the number of identified icebergs (TP + FNp) was much lower in Tables 6 and 7 than
the number presented in Table 2. This is due to the fact that many icebergs were discarded after the
images had been filtered with the landmask as they were too close to land and glaciers. The total
number of icebergs can also be different between different values of T3 due to the relocation of icebergs
to the closest blob (see Section 3.3). This may change some iceberg pixels from having NaN (in the area
of the landmask) to get a physical iDPolRAD-value while others will remain NaNs.

Table 6. TPp, FNp and FPp with different 7 for blob detection with Sy; = 0.1 in the Sentinel 1 image
from 4 April 2017. The last column indicates the computation time in seconds.

w8 (S = 01) TPg FNp FPg Time [s]

1x107® 321 489 14,492 533
5x 1077 413 400 28,090 2172
1x1077 677 187 81,390 18,498

Table 7. TPg, FNp and FPg with different Sy for blob detection with 7 =5 x 10~7 in the Sentinel 1
image from 4 April 2017. The last column indicates the computation time in seconds.

Sy (tg = 5x1077) TPy FNp FPg Time [s]

0.1 (1 layer) 413 400 28,090 2172
0.5 (1 layer) 305 500 13,317 502
2-3 (2 layers) 135 670 1505 12
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Figure 8. Detected blobs in comparison to manually detected icebergs for 73 = 5 x 10~7 and Sy, = 0.1
over FJL on 4 April 2017. Grey areas are land. Blobs are classified according to Table 3.

Table 8. Blob detection results for each of the four images using 7 = 5 x 107 and Sy = 0.1. The total
number of icebergs identified in the Sentinel-2 images (outside the landmasks) is TPg + FNg. The last
column indicates the computation time in seconds. For icebergs in rough fast ice, the number of blobs

and hence the computation time is considerably larger than for icebergs in smooth fast ice.

Image Data

Part of Image

Date (Year-Month-Day) Time TP FNp EPp [No of Rows, Time [s]
No of Columns]
2017-04-04 11:46:41 413 400 28,090 3000 x 3000 2172
2017-04-07 11:56:40 370 310 14,307 2500 x 2000 563
2017-04-10 13:47:25 65 47 148,299 4000 x 4000 54,880
2017-04-19 14:17:39 94 86 99,282 3000 x 4300 26,322

4.3. PDF Fitting

4.3.1. Choosing Wcrar

To select the preferable window size for the CFAR detector we have calculated the mean absolute
difference between each selected PDF and the corresponding histogram for three different window
sizes, denoted Wcpar in Table 9. We found that, in general, there was a trend that the larger the
window size the more robust are the PDFs. However, with larger window sizes we also increase the
computational effort. Therefore, we did not use a window larger than 141 x 141 pixels.

Table 9. The mean and standard deviation of the mean absolute difference (in percent) between the
PDFs calculated for the window around each blob and the corresponding histogram of the data between
Iipin and Ijax. For the test we used a subscene of the Sentinel-1 image from 4 April 2017, covering

approximately 9700 blobs. The green row corresponds to the preferable parameters.

WCcFAR Gamma Generalized Gamma GEV

61 x 61 0.21 £ 0.08 0.19 + 0.06 0.19 + 0.08
101 x 101  0.19 +0.08 0.16 £+ 0.06 0.18 £ 0.07
141 x 141 0.19 £0.12 0.15 £+ 0.07 0.17 £ 0.09
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4.3.2. Representability and Quality of PDFs

Table 10 shows the differences (in percent) between a calculated PDF and the corresponding
normalized histogram for the three PDFs presented in Section 3.4.2. The differences were calculated
both for a subimage of 3000 x 3000 pixels and for all windows within the subimage. The window
size was 141 x 141 pixels. The Generalized Gamma distribution reveals the best fit to the data both
with respect to the full image and to the sub-images. The Generalized Gamma PDF is thus used in the
following investigations.

Table 10. Mean of relative differences (in percent) between PDF and histogram from I,;,;;, to Iy for
the subimage from 4 April 2017, and average and standard deviation of the mean differences for all
windows of 141 x 141 pixels in size, respectively.

Gamma [%] Generalized Gamma [%] GEV [%]

Full image 0.28 0.17 0.19
Sub-images  0.19 £ 0.12 0.15 £ 0.07 0.17 £ 0.09

4.3.3. TIP

The “Tail Integrated Probability” (TIP) was calculated using the Generalized Gamma distribution
with Wepar = 141, and the parameters for the distribution were determined from the background as
described in Section 3.4.1. In Figure 9 the TIP values for all detected blobs are presented as functions of
the iDPoIRAD ratio, including icebergs (true positives) and non-icebergs (false positives). The idea
was to separate the icebergs from the non-icebergs by choosing an optimal PFA value, for example as
maximum of all TIPs obtained for true positives (assuming that the TIPs for non-icebergs are larger
than the ones for icebergs).

From Figure 9, we have to conclude that it is difficult to unambiguously distinguish true and
false positives based on the TIP. This is due to the fact that many icebergs cover the same range of
iDPoIRAD values as the non-icebergs, and many non-icebergs have a high pixel-value relative to their
neighborhood and will thus stand out as an object with low TIP. If the PFA is chosen very high many
icebergs are detected but the number of false alarms is also high. If the PFA is chosen very low, the
number of false alarms is reduced at the cost of loosing many icebergs (see Table 11 below).

For many blobs the blob value is very large (Ipjop > Linax), resulting in an extremely low TIP
value. This happens, for example, if an iceberg with particularly high iDPolRAD value is present in
completely smooth and homogeneous fast ice which reveals very low values. In such cases, we set
the TIP values equal to 0, which means that the probability that any pixel value of the background is
larger than the corresponding I, is zero. In Figure 9, we plotted only the iDPoIRAD values of blobs
for which the TIP is larger than 10~1°. Objects with TIP < 10~!? will be detected in any case since the
PFA-values we chose in Table 11 are higher.

Another problem occurs if there is a larger number of objects in the training window (e.g., other
icebergs or sea ice deformation structures) for which I < I;;;;x but which are bright compared to the
other background pixels. They influence the tail of the background PDEF, and we obtain a larger value
of the TIP.
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Figure 9. TIP values for all blob-detected pixels - both icebergs (orange) and non-icebergs (blue) for the
Generalized Gamma distribution. These data includes both dates from the area of smooth ice (4 and 7
April 2017). Note that in (a) both axes are in log-scale, while in (b) only the x-axis is in logarithmic scale.

4.4. Confusion Matrix

Table 11 presents the automatic detection results for a number of different PFAs using the
Generalized Gamma PDF with Wcpar = 141 for the four scenes in Figure 1. Only the blob-detected
pixels were included in this detection. This means that we have already lost about 50% of the icebergs
(Table 8). The different PFAs were chosen based on the result in Figure 9; they are chosen at those TIPs
where we found abrupt changes in the number of true detections. The final PFA is chosen from the
results in Table 11. Naturally a higher PFA results in larger values of FPcpsar-coupled with a higher
TPcrar. For the selected PFAs the FPcrar is more than 10 times as large as TPcrar (Table 11). This
means that only every tenth detected pixel (or less) is a real iceberg. If the number of false alarms per
unit area cannot be neglected in comparison to the true positives, an unrealistic iceberg areal density is
obtained. Table 12 show that approximately 20% of the icebergs are detected in the smooth fast ice,
while less than 10% are identified in the rough fast ice.

4.5. Comparing Detection Results with and without Blob Detection

To check whether the first step of blob detection is useful or not we compare the results of the
complete processing chain as shown in Figure 4 with the results of excluding the blob detection and
only using the CFAR approach. Because it is a very time consuming task when fitting the Generalized
Gamma function to the background values each time, we calculated the threshold of the iDPolRAD
value only for every tenth pixel and applied linear interpolation to cover the remaining pixels. In the
calculations we used a PFA of 107°. The difference in the computation time for the blob detection
as first step and the CFAR approach (only applied on blobs) as a subsequent step is large. In our
implementation the blob-detector (with Sy =0.1 and 73 =5 X 10~7) needed about 36 min for the image
4 April 2017 11:46:41 (see Table 8), and the subsequent CFAR detection approximately 24 h. The same
time was needed for fixing the threshold for every 10th pixel, interpolating threshold values between
them, and carry out the iceberg detection for every pixel. The long computation times needed for
the CFAR detector are mainly caused by fitting and numerically integrating the Generalized Gamma
function to the background values. For practical applications, this procedure is not directly applicable.
The true detection rate is higher for the pixel-by-pixel CFAR detector (271 true detections) compared to
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including the preceding blob detector (178 true detections). With the two-step approach, 400 icebergs
were missed already in the blob-detection step (Table 8, FNg). However, while the pixel-by-pixel
detection resulted in 3980 false alarms (Figure 10a), the detector with the preceding blob-detector
ended with 2890 false alarms (Figure 10b). We emphasize that the numbers of false alarms (FP) that
we provide in Table 9 are not directly related to the PFA, for which we take only into account the high
iDPoIRAD values in a SAR image. Here the number of false alarms is determined in comparison to
the reference data from the optical images. False alarms are bright signals in the radar image that do
not correspond to an iceberg position in the optical image. SAR pixels covering icebergs that do not
show high values in the SAR image are part of the background PDF but are counted as missed iceberg
in comparison to the optical images. The large number of false alarms (FP) and missed icebergs (FN)
demonstrates that it is difficult to reliably distinguish icebergs from other bright appearing objects in
the SAR image and that not all icebergs are objects with a strong microwave backscattering response.

Table 11. Confusion matrix for three PFA values for the data in each respective scene. Only blob
detected pixels are included in the table meaning that for example FNcp4rR is relative to TPp.

PFA TPcrar  FNcrar FPcrar  TNcrar
2017-04-04

103 237 176 10,182 17,908
10~° 178 235 2890 25,200
109 151 262 1273 26,817
2017-04-07

103 184 186 4565 9742
10— 121 249 1685 12,622
102 88 282 906 13401
2017-04-10

1073 21 44 44007 4292
10~ 11 54 15,679 132,620
109 10 55 7941 140,358
2017-04-19

103 34 60 26,445 72,837
10~° 15 79 8590 90,692
10~? 8 86 4240 95,042

Table 12. Relative values (in percent) for each of the scenes in Table 11, using PFA = 107, Second

column gives the proportion of false positives to the total number of detections, while column three

and four gives the proportion of true detection and misses to the total number of icebergs, respectively.

Date (Year-Month-Day) % [%] TPCFAR-EIIT)IC\;?;R-FFNB [%] TPCFERNi?KT—C‘rFEII:IiFNB [%]
2017-04-04 94.2 21.9 78.1
2017-04-07 93.3 17.8 82.2
2017-04-10 99.9 9.7 90.3
2017-04-19 99.8 8.3 91.7
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() (b)

Figure 10. Detection results using (a) pixel-by-pixel and (b) blob-detection as a first step. Red circles
are manually detected icebergs, blue circles are true positive detected icebergs, and yellow circles are
false alarms. Landmasks are white. Small bright dots are due to high iDPoIRAD values.

4.6. Testing Algorithm for Different Resolutions

To check whether a higher resolution-image improves the detection-results we applied the
algorithm to a Sentinel-1 IWS image. An area representing smooth sea ice at FJL on 1 April 2017, is
used for the comparison. The area contains 101 manually detected icebergs. However, some of the
icebergs are removed by the land- and glacier-filter, leaving 68 for the EWS scene and 85 for the IWS
scene. The lower number of remaining icebergs for the EWS image is due to a broader smoothing at
the border of the landmask which is a result of the coarser spatial resolution. Note that compared to
Table 11, a smaller area was covered which included all true detections but less false alarms.

The images were acquired with a temporal separation of 45 min. They were both acquired on
descending passes but on different orbits. Therefore, the images differ in their orientation relative to
north. The parameters for the blob-detector in the IWS images were selected such that the physical
blob-size (in meters) equals the blob-size used for the EWS image. The value of 13 was increased to
better represent the iDPolRAD-values obtained for the IWS mode.

The results in Tables 13 and 14 show that a larger portion of the icebergs are detectable in the IWS
mode (38.8%) relative to the EWS mode (20.6%). However, many more false alarms occur in IWS than
in EWS mode (87.5% against 41.6% of all detections). This is because the higher resolution in the IWS
mode emphasizes more details than the EWS mode, which results in both a larger number of icebergs
and a larger number of false alarms. The major problem is that also in IWS mode many icebergs
cover only 1-3 pixels, which means that their iDPoIRAD signature is hence difficult to distinguish
from similar signatures of structures in the fast ice. The speckle contribution is larger at IWS mode
(ENL = 4.4) compared to EWS (ENL = 10.7). Narrow deformation structures in the fast ice show up
more clearly in the SAR image.

Table 13. Blob detection results for two Sentinel-1 images on 1 April 2017, with different modes.
The EWS uses 73 = 5 x 1077 and Sj; = 0.1, while INS uses 75 = 1 x 10™* and Sy; = 0.9. The total
number of icebergs identified in the Sentinel-2 images (outside the landmasks) is TPg 4+ FNjp.

Acquisition Mode TPg FNp FPp

Sentinel-1 EWS 29 39 221
Sentinel-1 IWS 34 51 426
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Table 14. Relative values for CFAR-detection (PFA = 10~°) using the blob-detected pixels in Table 13.
Second column gives the proportion of false positives to the total number of detections, while column
three and four gives the proportion of true detection and misses to the total number of icebergs,

respectively.

. ege FP, o TP, ) FN, +FN, o,
Acquisition Mode TPCFAR$%1;’CFAR [%] TPCFAR-FHCVF?FIZR-FFNB [%] TPCFAR-T-FI?KTCFAR '?‘PNB [%]
Sentinel-1 EWS 41.6 20.6 79.4
Sentinel-1 IWS 87.5 38.8 61.2

5. Discussion

We focused on a SAR image product with a relatively coarse spatial resolution (but wider coverage)
since such products are preferably used in operational monitoring of sea ice conditions. As mentioned
in the introduction and in Section 4.2, many small icebergs (more than 50 percent of all identified ones)
were located very close to the coast. They were partly hidden by the landmask (see Figure 3). In many
cases, the training window was overlapping the land so that the corresponding icebergs could not
be included in the analysis. The number of the remaining icebergs was nevertheless large enough to
yield statistically meaningful results. In practice the detection of icebergs located very close to land is
important. This can be achieved by using adaptive training windows in which the test window is not
located in the center but close to one margin.

As our results show, many icebergs cannot be recognized in the Sentinel-1 SAR EWS images,
even if we make use of the contrast enhancement between iceberg and background inherent in the
iDPoIRAD filter. When using IWS mode images with a spatial resolution of 20 m (instead of EWS mode
with 90 m), more icebergs are detected, and the number of missed icebergs after CFAR-detection is low.
However, we also found that the number of false alarms increases when using the IWS mode. Even
though an iceberg may be large enough to cover more than one pixel in the Sentinel-1 images it may not
be visible due to its shape and due to environmental conditions. The visibility depends on the specific
backscattering of the iceberg which is determined by the scattering contributions from its surface and
volume and by multiple scattering from interactions between surface, bottom, sidewalls, and volume
(e.g., [24]). For example, tabular bergs may not be visible under melting conditions because they are
flat and therefore reflect the incident radiation away from the direction to the satellite. We found that
many non-iceberg pixels yield the same magnitude of the iDPolRAD-value as iceberg-pixels, causing
a large number of false alarms. In particular rough sea ice (as for the test site at Nord-Austlandet)
reveals radar scattering characteristics similar to icebergs [24].

To deepen the understanding of the output obtained from the iDPolRAD filter, we investigated
the backscattering characteristics (from the backscattering coefficients 0?;;; and 0¥y, derived from the
EWS images). Figure 11 presents the values of icebergs and non-icebergs, both for iDPolRAD and for
0%, and 0%, The rightmost plot of Figure 11 reveals that backscattering coefficients of icebergs and
non-icebergs cover the same range of values, and the gain in using the iDPolRAD approach becomes
clear. However, only at larger magnitudes of 0%, and 0%y, the difference between iDPoIRAD values of
icebergs and non-icebergs is significant (Figure 11a). This effect is more pronounced at HV-polarization.
For icebergs with lower backscattering intensities, however, the iDPoIRAD values of icebergs and
non-icebergs are similar. This can be interpreted such that not all icebergs are characterized by
scattering mechanisms causing strong depolarization. We expect this, e.g., for icebergs with a wet
surface or with very low volume scattering contributions due to the lack of strong scatterers in the ice.
For the rough fast ice the difference in iDPolRAD values between icebergs and non-icebergs are not as
large as for smooth fast ice (Figure 11b). This can be explained by the low backscattering magnitudes
of icebergs at HV-polarization in the NA-scenes.
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Figure 11. Relationships between backscattering coefficients at HH- and HV-polarization and the
iDPoIRAD for blob-detected icebergs and non-icebergs. Data are from (a) FJL, representing smooth fast
ice, and (b) NA, representing rough fast ice.

As mentioned in Section 3.2, the output of the iDPolRAD filter may also be negative. To check how
often this situation occurs we plotted o%y,, of manually identified icebergs (test window) vs. 0%y, of the
background (training window). Negative iDPolRAD values occur if the background o, is larger than
the iceberg 0¥}, (see Equation (1)). Figure 12 demonstrates that such cases occur frequently in practise,
i.e., icebergs that are only weakly scattering objects are embedded in a background containing one
or several objects with a strong scattering response (values below orange line). Negative values of
iDPolRAD are not considered in the blob detection, hence all negatives are lost in our processing chain
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shown in Figure 4. If the CFAR detector is applied without preceding blob detection, the threshold
determined from the PDF of the background can be <0 if the background reveals negative iDPolRAD
values. A detection of a dark iceberg is successful if the iDPolRAD-value of the iceberg is negative
but larger than the average iDPolRAD-value of the background (hence a “dark” iceberg in a “darker”
background). Nevertheless in conclusion this means that a separate detection scheme has to be applied
for “dark” icebergs in a bright background. This item was, e.g., investigated in Wesche and Dierking [2]
who focused on using single-polarization backscattering coefficients. The major point here is that
even the dual-polarization approach, for Sentinel-1 linked with a relatively high NESZ, is not able to
detect all icebergs and reduce the number of false alarms significantly. The reason is that microwave
scattering patterns from icebergs and background (sea ice, open ocean) obtained at C-band at HH-
and HV-polarization still reveal similarities (e.g., icebergs and deformed sea ice) that prevent a robust
separation. On the other hand, many icebergs in the Barents Sea are too small relative to the spatial
resolution of the operationally used EWS images to include a shape analysis as an additional criterion
for iceberg detection. Environmental conditions like variable wind fields over open water and high
temperatures causing melting complicate the detection process.

-101 °

|
=
w

o
B -20
2 .
L2541 o
[} L] ° L]
L * o o i
> —301
T

_35.

—40 . . . . . .

-40 -35 -30 =25 -20 -15 -10
HV background [dB]
(a)
[ ]

—15.01 .o
_-17.5] . LIRY)
o o0 % °
;—20.0< e gy g e
5 —22.51 ® oo
2 LAY % e’: ®e .
0 -25.0 LY AR oS
> oo &, "‘? °
T 72737 \d “;,.(‘ 2% *e SV,

-300{ & P& % %o

.I.o seg® 8¢
-32.5] o & 0

-325 -30.0 -27.5 -25.0 -225 -20.0 -17.5 -15.0
HV background [dB]

(b)

Figure 12. Backscattering coefficients of icebergs and their corresponding background at
HV-polarization. Data are from (a) FJL, representing smooth fast ice, and (b) NA, representing rough
fast ice. The orange line indicates where the iceberg value equals the background value.

Finally, we investigated the effect of varying radar incidence angles on the detection performance.
From sea ice classification in wide-swath images it is known that changes of the incidence angle
have to be considered (e.g., [29]). For all blob detected icebergs and their corresponding background
(mean value over the training-window) the iDPolRAD-value and backscattering coefficients at HH-
or HV-polarization are retrieved with the corresponding incidence angle. The results are presented
in Figure 13. The iDPolRAD-values do not reveal any clear sensitivity to the incidence angle in the
investigated range from 28 to 46 deg. At a given incidence angle, the backscattering coefficients show
large variations both for the icebergs and for the background. Also in this case a clear sensitivity to
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the incidence angle is not recognizable. However, the background backscattering coefficients reveal
a slight decrease with increasing incidence angles in particular at smaller values of o¥;; and 0¥y .
The latter may arise from smooth fast ice areas (between ridges or other deformation features) for
which a decrease of the backscattered intensity as a function of incidence angle is to be expected. For
volume scattering from air bubbles in the fast ice volume and for ice ridges, the sensitivity to the
incidence angle is in general only weak for the incidence angle range shown here [30].
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Figure 13. iDPolRAD values and backscattering coefficients at HH-polarization and HV-polarization
vs incidence angle for blob detected pixels. Orange dots are true icebergs while blue stars are the
corresponding background values. The images represents (a) smooth ice, and (b) rough ice, each
containing both images for each test site. Note that the iDPoIRAD values are a function of the
background and we therefore only represent icebergs compared to the incidence angles. Note also that
the iDPoIRAD values are in log-scale.

6. Conclusions

In this paper we have investigated the possibility to detect small icebergs between a few meters
and 100 m in size using Sentinel-1 EWS C-band data acquired over smooth and rough fast ice in
the Barents Sea. We validated the detection results in comparison to about 2000 icebergs manually
identified in optical images. Our investigations focus on the potential and limitations of detecting
icebergs with sizes on the order of the SAR spatial resolution typical for data products employed for
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operational ice charting. Many of the icebergs in the Barents Sea are comparable or smaller in size than
the spatial resolution of the Sentinel-1 EWS mode, which is 90 m.

As a starting point we selected the output of the iDPolRAD filter proposed by Marino et al. [12]
which compares the cross-polarization intensities of an object and the background and is in many cases
characterized by a strongly increased image contrast between icebergs and background (sea ice or
open ocean) compared to radar intensities at single polarization. Our results indicate that the output
of the iDPolRAD filter is not affected by the incidence angle. To speed-up the detection process we
used a blob-detector as a first step to pre-select pixels that potentially could represent icebergs, and
applied a CFAR algorithm on each of these pixels for final iceberg detection. We tested three different
PDFs for theoretically describing the distributions of iDPolRAD-values and found the Generalized
Gamma to provide the best fit. The PDF was then used to select a PFA and calculate the threshold
for the CFAR detector. To this end we introduced a concept called TIP (Tail Integrated Probability).
We found, however, that the TIP did not provide any extra gain for detection of small icebergs in
land fast ice. The number of successful iceberg detections increase if the much more time-consuming
pixel-by-pixel CFAR approach is used and the blob detector is omitted, but the number of false alarms
is higher as well.

Even with our more sophisticated (but time-consuming) detection scheme, one obtains a relatively
low number of true detections and a high number of false alarms and missed icebergs when using
the Sentinel-1 EWS images. Also when employing the IWS mode, the number of identified icebergs is
still low and the rate of false alarms high. Many icebergs that we could identify in the optical images
did not cause a strong radar response in both SAR modes. In an investigation of the backscattering
characteristics at HH- and HV-polarization we found that (a) not all icebergs (even larger ones) are
strong scatterers at HV-polarization, and (b) scattering intensities at HV-polarization from structures
present on fast ice (such as ridges, hummocks, cracks) can be similar to those from icebergs. Icebergs
with relatively low HV-polarized scattering responses are not detected, and strong-scattering ice
structures cause false alarms.

7. Data Availability

Python scripts for detection and analyzing the data can be achieved by contacting the first author.
SAR and MSI images are freely available at https://scihub.copernicus.eu/.
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Abbreviations

The following abbreviations are used in this manuscript:

CFAR Constant False Alarm Rate
FJL Franz Josef Land

ENL Equivalent Number of Looks
EWS Extra Wide Swath

GEE Google Earth Engine

GEV Generalized Extreme Value

iDPoIRAD  intensity Dual-Polarization Ratio Anomaly Detector

IWS Interferometric Wide Swath

MSI Multi Spectral Imager

NA Nord-Austlandet

NESZ Noise Equivalent Sigma Zero

PDF Probability Density Function

PFA Probability of False Alarm

SAR Synthetic Aperture Radar

TIP Tail Integrated Probability
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