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Abstract: Point cloud rectification is an efficient approach to improve the quality of laser point cloud
data. Conventional rectification methods mostly relied on ground control points (GCPs), typical
artificial ground objects, and raw measurements of the laser scanner which impede automation and
adaptability in practice. This paper proposed an automated rectification method for the point cloud
data that are acquired by an unmanned aerial vehicle LIDAR system based on laser intensity, with the
goal to reduce the dependency of ancillary data and improve the automated level of the rectification
process. First, laser intensity images were produced by interpolating the intensity data of all the
LiDAR scanning strips. Second, a scale-invariant feature transform algorithm was conducted to
extract two dimensional (2D) tie points from the intensity images; the pseudo tie points were removed
by using a random sample consensus algorithm. Next, all the 2D tie points were transformed to three
dimensional (3D) point cloud to derive 3D tie point sets. After that, the observation error equations
were created with the condition of coplanar constraints. Finally, a nonlinear least square algorithm
was applied to solve the boresight angular error parameters, which were subsequently used to
correct the laser point cloud data. A case study in Shehezi, Xinjiang, China was implemented with
our proposed method and the results indicate that our method is efficient to estimate the boresight
angular error between the laser scanner and inertial measurement unit. After applying the results of
the boresight angular error solution to rectify the laser point cloud, the planar root mean square error
(RMSE) is 5.7 cm and decreased by 1.1 cm in average; the elevation RMSE is 1.4 cm and decreased by
0.8 cm in average. Comparing with the stepwise geometric method, our proposed method achieved
similar horizontal accuracy and outperformed it in vertical accuracy of registration.

Keywords: LiDAR; boresight angular error; laser intensity; unmanned aerial vehicle; automated
rectification

1. Introduction

Unmanned aerial vehicle (UAV) Light Detection and Ranging (LiDAR) is a new technology
in the field of survey and mapping that is equipped with low-altitude UAV platform for LiDAR
data acquisition and composed of three core components, including laser measurement, differential
Global Navigation Satellite System (GNSS), and inertial navigation unit (IMU) [1,2]. Comparing with
conventional aerial photogrammetry techniques, UAV LiDAR bears a number of advantages such as
being less impacted by flying conditions (e.g., cloud cover and flexible ground control), high-level
automation, more precision and density data, and high flexibility. Thus, it has been widely used
in acquiring digital elevation model [3-5], disaster monitoring [6], heritage protection [7], forestry
survey [8-11], and 3D modeling [12]. In these applications, attention was often given to the surveying
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accuracy of height or altitude, which is important for most situations. Among those factors that
degrade the surveying accuracy of UAV LiDAR data [13-15], boresight angular error is a systematic
error and has significant influence on the geolocation of laser points [15,16]. It usually happens
during the payload installation of a UAV LiDAR system and the unstable UAV flying process, and
consequently the boresight angular error cannot be considered to be negligible and is hard to be
directly measured [17,18]. Moreover, it can lead to systematic positional deviations in all LIDAR
scanning strips and misalignment of the same objects in overlapping areas in different LIDAR scanning
strips [19,20]. Therefore, it is necessary to estimate and reduce down the errors in LiDAR point data
processing. Obviously the accuracy of laser points has significant impact on the quality of mapping
products, especially for applications such as matching and fusion of multisource remote sensing
data [15,21]. Thus, it is currently a key step to explore reliable, intelligent, and efficient methods for
error rectification to improve the quality of laser point cloud data that are captured by UAV LiDAR
systems [2].

The mainstream idea for the error rectification of point cloud data captured by a LiDAR system
is based on the LiDAR georeferencing equations, in which, all the possible error sources of a LIDAR
system are considered to build and resolve error equations [18,19,22,23]. The core procedure is the
construction of the observation error equation that is usually achieved by tie points, and the error
parameters can be solved by a matrix operation. Zhang and Forsberg [24] proposed a simple boresight
angular error rectification method, termed stepwise geometric correction. In this method the boresight
angular parameters was examined by analyzing the relationship between the positioning displacement
and the selected regular shape of the ground objects such as horizontal plane surface, which was used
to build a model for estimating the geometric errors. Considering a calibration field or sufficient ground
control points are necessary in the method; consequently the UAV flight lines need to be specially
designed in the implementation. However, due to the fact that the modeling is still not accurate enough,
the method is only applicable for rough estimation [24]. To overcome the difficulty in identifying tie
points from overlapping LiDAR scanning strips, the complanate features were extracted interactively
and the coplanar condition was used as a constraint to solve the boresight angular parameters [18].
However this method showed a low-level automation and heavily depended on typical artificial objects
in the scanned area. In addition to the flight path data of the UAV, it also requires raw data of the laser
scanner which is not accessible for most users in most cases because most producers of the UAV LiDAR
systems do not release the raw data format in the software package. Considering the complexity of the
rectification model and systematic error sources, a new boresight angular error rectification method
that is not affected by GNSS and IMU observation errors was proposed by Le Scouarnec et al. [25].
This method requires scanning horizontal and vertical planes as reference objects, and the laser scanner
must be kept static in the scanning process. The original observation information of the LiDAR scanner
is a must when solving the boresight angular error, and as a result, it is more suitable for terrestrial laser
scanning system. Due to the fact that the end user has difficulty in accessing raw observations of the
laser scanner after a flight, a rigorous rectification model that does not need the raw observations of the
laser scanning system has been proposed by Bang et al. [19], which considers almost all error sources
besides boresight angular error, but still needs many ground control points and ground features of
objects to resolve the model. In addition to the above-mentioned methods, Zhang et al. [15] noticed
that previous studies paid less attention to the rectification of relatively low accurate position and
orientation system (POS) data, and proposed an aerotriangulation-aided adjustment rectification
model for LiDAR scanning strips to eliminate positioning and angular errors caused by boresight
angular errors and POS errors. In the model proposed by Zhang et al. [15], the error rectification model
was established by combining time-independent boresight angular error and time-dependent POS
data error in order to correct the LiDAR strip data. This method requires sufficient accurate GCPs to
ensure accurate aerial triangulation, and consequently the model is complicated with relatively low
automation. In order to improve the automation of rectification of boresight angular error, a novel
rectification model was proposed using the coplanar constraints, in which an automated approach
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for retrieving the rooftop facet and building walls was designed based on a region growth and a
Random Sample Consensus (RANSAC) segmentation algorithm, and the tie planes were extracted
from different LIDAR scanning strips and used as matching elements [16]. However, this method was
limited to urban areas where dense rooftops exist, and the LiDAR data must be acquired by an oblique
forward-looking full-waveform laser scanner to guarantee the acquisition of laser point cloud data of
the building rooftop and building facades [16].

Generally speaking, the existing methods for boresight angular error rectification in previous
studies mostly depend on precise ground control points or manually selected features of objects,
and consequently they were implemented in a low degree of automation. Some researchers tried to
create automated rectification models independent of ground control points, but to solve the models
requires GNSS trajectory data as well as raw observations of the laser scanner(e.g., laser ranges and
scan mirror angles), which were not often available for the end users in many cases. Thus, some
studies added some restrictions to the experimental conditions to simplify the solving of the models,
but the generality of the methods was reduced down. Most importantly, previous studies paid little
attention to the laser intensity in building rectification models for boresight angular error, and the
values of the laser point cloud have not been fully explored and utilized. In addition, a low-altitude
UAV LiDAR system is prone to the boresight angular error during the pre-fly and flying stages because
of its much lower installation precision and stability than a manned airborne platform. Removal of
boresight angular error can ameliorate the quality of LIDAR point cloud data, which is the key step to
realize accurate matching of different laser scanning strips. It is significant to develop a method for
boresight angular error rectification with high degree of automation independent of ground control
points, feature objects, and raw observations.

As mentioned above, the geolocation error induced by boresight angle is a main systematic error
in a low-altitude UAV LiDAR system compared to other ones, and has a non-negligible impact on the
laser point cloud data. Thus, this study is focused on the boresight angular error rectification problem,
and presents an automated boresight angular error rectification method for a low-altitude UAV LiDAR
system based on the laser intensity information. A case study in the Shihezi area, Xinjiang, China has
demonstrated that our proposed method could reduce down the geolocation error of the LiDAR point
cloud data without support of any ground control points, feature objects and raw observations of the
scanner. In Section 2 we talk about data acquisition and the method; the results and analysis will be
presented in Section 3. In Section 4 we discuss the influence of some factors on the accuracy of error
rectification, and finally we conclude this research in Section 5.

2. Data and Methods

2.1. Study Area and Data Acquisition

The study area is located in a farming area in the northwest of Shihezi city, Xinjiang, China
(44°24'06""N, 85°53/41”E). The UAV LiDAR payload contains the OXTS xNAV550 GNSS/IMU
dual-GNSS antenna navigation system and the RIEGL VUX-1UAV laser scanner, which were integrated
on a Swiss-made ScoutB1-100 unmanned helicopter [26]. Detailed information of the payload is listed
in Table 1. Time synchronization is based on GNSS provided by the GNSS/IMU unit, and the UAV
LiDAR system flew above the experimental area on 29 July, 2017 with the proper flight configuration
of planned flight lines (Figure 1). The laser scanner was set to a field angle of 110° with a scanning
rate at 550 kHz. The UAV flew at a low altitude above ground level of 30 m and a cruising speed of
5m/s, and captured two flight strips with opposite directions in the experiment. The point density
for each scanning line is ~400-600 pts/m? (Figure 2), the ground scanning width is ~85.7 m, and the
spacing between the two flight trajectories is ~10 m. Each laser point attribute includes X, Y, and Z
coordinates, the number of echoes at that point, scanning time, and laser intensity. In addition, the
POS data of the strips can be derived from the inertial navigation system, including time, latitude,
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longitude, elevation, roll angle, pitch angle, and heading angle. These two data sets are the basic data
sources for the following boresight angular error rectification.
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Figure 1. Geographic location of the study area and the unmanned aerial vehicle (UAV) flight strips
acquired in the experiment; the green and blue lines in the right image indicate the two flight lines.

Y (b)

Figure 2. Point cloud derived from the two flight strips from south to north (a) and from north to south
(b). The laser point density for each scanning line is ~400-600 pts/m?.
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Table 1. The core specifications of the UAV Light and Detection Ranging (LiDAR) system.

Laser Scanner! Specifications GNSS/IMU? Specifications
Minimum Range 5m Positioning Mode RTK
Pulse Repetition Rate 550 KHz Data Frequency 100 Hz
Measurement Accuracy  0.015m Position Accuracy(CEP)  H:0.02 m; V:0.03 m
Scanning Speed 200 scan/s Speed Accuracy 0.1km/h
Angle Resolution 0.001° Roll Accuracy (10) 0.05°
Field of View 330° Pitch Accuracy (10) 0.05°
Echo Signal Intensity 16 bit Heading Accuracy (10) 0.10°

1 http:/ /www.riegl.com/products/newriegl-vux-1-series /newriegl-vux-1lr/. 2 https:/ /www.oxts.com/products/
xnav/.

2.2. Rectification of UAV LiDAR System Errors

2.2.1. LiDAR Georeferencing Equations

The geolocation error sources of a UAV LiDAR system usually include laser ranging error, GNSS
positioning error, orientation angular error, lever arm error (displacements between laser scanner, IMU,
and GNSS antenna), boresight angular error, and others. Among these errors, the boresight angular
error and lever arm error belong to systematic errors, and the lever arm error can be measured by
surveying instrument and usually has little effect on the accuracy of LIDAR point cloud data. However,
the boresight angular error is usually caused by artificial factors or instable platform during the UAV
LiDAR system installment stage prior to the flight. Although boresight angular error is not easy to be
measured by surveying instruments, it can be estimated through a rigorous mathematic model. Based
on the previous studies [20,22,27,28], the LIDAR georeferencing equation can be expressed as

X 0 dx Xc
ZW Y dz ZG

where [Xw Yw Zw]T refers to the mapping frame coordinate of laser points; p denotes the distance
measured by the laser scanner; [dx dy dz]T refers to the direction vector from the laser scanner center
to GNSS antenna phase center, which can be measured by surveying instruments or obtained from
the configuration file; [Xw Y Z;]T refers to the mapping frame coordinate of GNSS antenna phase
center; Ry is a 3*3 rotation matrix that transforms the instantaneous scanning coordinate system into
the scanning reference coordinate system, i.e., the current direction of laser pulse emission; R; is a
3*3 rotation matrix that transforms the scanner reference coordinate system into the IMU coordinate
system; Ry is a 3*3 rotation matrix that transforms the IMU coordinate system into the navigation
coordinate system; and Ryy is a 3*3 rotation matrix that transforms the navigation system into the
mapping frame coordinate system. Let

X; 0
Y; | =RR.| 0 )
Z; P

Then Equation (1) can be rewritten as

X] XW XG dx
Y; | =Ry'Ry! Yw | =1 Yo — | dy
Z[ ZW ZG dz
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2.2.2. Boresight Alignment Model

The principle of boresight angular error rectification is based on the LiDAR georeferencing model
and the laser scanning reference coordinate system with axes deviation error can be rectified by rotating
to the real laser scanning reference coordinate system with three boresight angular corrections. If the
boresight angular error parameters of the LIDAR system in three directions of rolling, pitching, and
heading are w, ¢ and «, respectively, the rotation matrix derived from the boresight angular error in
the three directions can be described as [29]

cosk —sink 0 cosp 0 sing 1 0 0
Ry = | sink cosx 0 |- 0 1 0 -1 0 cosw —sinw 3)
0 0 1 —sing 0 cos¢ 0 sinw cosw

where, Ry is the rotation matrix of the boresight angular error parameters. Considering that the
boresight angular error parameter is usually small in number, Equation (3) can be approximated:

1 —x ¢
Ry ~ K 1 —w 4)
—¢ w 1

If we only consider the boresight angular error and ignore the other error sources, the LIDAR
georeferencing equation can be described as

XW XI dx XG
YW =RwRN |Rpm| Y; + dy + YG (5)
ZW Z] dz ZG

where [Xw Y Zw]T denotes the coordinate of laser points in the mapping frame and Ry and Ry refer
to the matrix that transforms navigation system into the mapping frame coordinate system and the
matrix that transforms the IMU coordinate system into the navigation coordinate system, respectively.
[X; Y1 Z]T denotes the coordinate of laser points in IMU reference frame and [X¢ Y Z;]T denotes
the coordinate of GNSS antenna phase center in the mapping frame. [dx dy dz]T refers to the direction
vector from the laser scanner center to GNSS antenna phase center.

When P; and P; are two tie points, they should satisfy the following conditions.

Xw1 Xn dx X1
P Y = RWRNl Rum Y + dy + YGl
- Zw | [ Zn | ldz || | Za | ©)
Xw2 X dx Xa2
Pz : sz = RWRNZ RM Y]z + dy + YGZ
| Zwz | [ Ze | [ dz]] | Zc |

where, [Xw1 Ywi1 Zw1]T and [Xwa Yo Zwo]T are the coordinate of tie points P; and P; in the mapping
frame, respectively; [X;1 Y11 Zn1Y and [Xps Yo Z1p]T are the coordinate of tie points P; and P; in IMU
reference frame, respectively; [Xg1 Yi1 Zc11T and [Xco Yo Zeo]T are the coordinate of GNSS antenna
phase center of tie points P; and P; in the mapping frame, respectively.

After applying the rectification model, conceptually, P; and P, would be the same point,
which means

Xn dx X1 X dx X2 Xtrue
RwRN1|Rm| Yn | + | dy + | Yo1 | =RwRn2|Rm| Yo |+ | dy +| Yoo | = | Yerue (7)
Zn dz Zg1 Zp dz Zg Zirue
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where Ry; and Ry are matrixes that transform from the IMU coordinate system to the navigation
coordinate system for tie points P; and P,, respectively, and Ry, is the rotation matrix of the boresight
angular error parameters. [Xyue Yirue Zirue]T denotes the actual coordinate of tie points P; and P,. Let

XIl dx XGl
Fi = RwRn1 |Rpm | Y + | dy + | Yo
Zn dz ZGl
[ [ xe ] [ax]] [ Xe ]
FE=RwRn2 [Rm| Y | + | dy + | Yo
ZIZ dz ZGZ
Then
F=F—-F=0 (8)

In Equation (8), F is a nonlinear function and can be linearized by using the Taylor series expansion.
Fj and F; are the rectified coordinates of P; and P in the mapping frame, respectively. If only the
first-order term and the constant term remain, Equation (8) can be rewritten as
oF oF oF
F~F+ —A —A —Ax =0 9
0+aw w-i—aq) (P-l—aKK 9)
where, Fy represents the constant term that is an approximate value estimated using Equation (8)
when Ry is set with the initial value of boresight angular error parameters. Aw, Ad, and Ak are the
first-order terms.
Therefore, the observation error equation can be expressed as
oF oF oF
V=-—A —A —Ax — (—F 10
where, V denotes the residual error matrix. If there are n pairs of tie points, then the observation error
equation is

V = A X - L (11)
3nx1 3nx33x1  3nx1

Equation (11) is given with the following notions.

— | 9E 9oF OF
A[Bwa(pak}

X=[dw ag AK}T

9F,  oF aR *n aR X
JF
0 = 3w e = RwRN1GEH| Yo | — RwRnaTt | Yoo
Zn Zp
9F,  oF aR Xn aR X1
oF _oh _ db _ IRM _ IRM
3o = 99 — a9 — RwRn17, ?1 RwRN2754 ?2
1 2
9F,  oF R Xn aR X
9F _ _
5 = 3¢ — 3 = RwRnmi75H% | Yn | —RwRmFH2 | Y
Zn Zp

Applying the least squares algorithm proposed by Marchant et al. [30], the solution of the Equation

(11) is
X = (AAT) AL (12)
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Thus we can get the approximate solution of three unknown parameters: Aw, Ag, and Ak.
Since only the first-order term of the Taylor expansion in Equation (9) is considered, we can solve the
observation error equations in an iterative way, where the coefficient values and constant terms are
modified successively till the observation error converges to a presetting threshold. Finally, the value
of each unknown boresight angular error parameter can be obtained as follows

w=wy+ Awy +Awy + - --
=0t Ap1+Ap2+-
K = ko + Axy + Axg + - - -

where w, ¢, and « are the solution of the boresight angular error parameters, and wg, ¢, and kg are
the initial values of the boresight angular error parameters. Aw;, Ad;, and Ak; represent the increment
of the boresight angular error parameters at each iteration.

2.3. Automated Rectification Based on the Laser Intensity

When a UAV LiDAR system is used to scan terrain or targets over the scanned area, it can acquire
the geospatial information and also record the reflection intensity of the scanned terrain and targets.
The Rigel VUX-1LR laser scanner emits laser light pulses at the near-infrared wavelength centered at
1550nm. Due to the differences in the reflectivity of near-infrared laser light among different ground
targets, the laser intensity may be helpful for feature points extraction and matching of the LiDAR
flight strips. The Scale-Invariant Feature Transform (SIFT) algorithm [31] is more robust and ascendant
in feature extraction and matching, but is only applicable for 2D image data. Therefore, we proposed
a new approach, and the technical steps can be described as follows. First, the intensity of the point
cloud data are interpolated to produce intensity images and the tie points are then retrieved based on
the 2D adjacent intensity images, and based on the tie points in 2D intensity images, the tie points in 3D
point cloud data can be also determined using a 2D-to-3D mapping strategy. After that, an observation
error equation will be built based on the LiDAR georeferencing equation. The boresight angular error
can be finally estimated by resolving the error equation using the extracted 3D tie point sets.

Because the distribution of laser points is spatially irregular and discrete, it is difficult to guarantee
that the same ground point can be scanned in different scanning strips. Consequently, the tie points
extracted from different LiDAR strips using SIFT algorithm are not real laser footprint points. This
situation makes it difficult to obtain the corresponding observation information such as scanning time
and POS data and, as a result, it becomes difficult or impossible to construct the LiDAR georeferencing
equation. Considering there is a spatial constrained relationship between the tie points and their
surrounded laser points, the K-nearest neighbor points of the tie points can be used as matching unit
and an error equation can be constructed for every matching unit. The boresight angular error can
then be solved iteratively and different flight lines can be aligned by applying the boresight angular
error corrections.

If the boresight angular error is not well rectified, the geolocations of the laser points might have
spatial displacements, which cause tie points in adjacent flight strips to not be spatially coincident.
As shown in Figure 3, S; and S; are the same area in the two adjacent UAV scanning strips, but the
boresight angular error caused geolocation displacement, and the centroids in dark black color do not
coincide spatially each other.
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S

Centroid

Figure 3. Sketch map of positional displacement caused by the boresight angle error. The two centroids
in dark black color should be coincident and the same point with the red one if there is no boresight
angular error.

2.4. Workflow of Our Proposed Method

2.4.1. Generation of the Intensity Images

The laser point intensity data is to be transformed onto a horizontal plane and then rasterized,
and each grid cell is assigned mean intensity value of all the laser points that fall into current grid cell.
The resolution of the grid cell can be set as the average point spacing, as for some grid cells that have
null value (i.e., hollow), the strategy is to find the nearest grid cell that is not more than two pixels
apart and to assign the nearest grid cell value to this null grid cell, which can enable the intensity image
to be more smoothly and homogeneously. Finally, the intensity image of each strip can be obtained
after the processing abovementioned.

2.4.2. Tie Point Extraction in 2D Space

SIFT is robust for changes in illumination or viewing angle and shows a good strong potential
in antinoise and is widely used in target tracking, image mosaic, etc. [32]. The SIFT algorithm was
adopted in our study to extract the key points from the intensity image of each strip and obtain initial
tie points by matching key points from the adjacent images. It is inevitable that there will be some
pairs of pseudo matching points in the initial tie points, and thus, the RANSAC algorithm is used to
optimize the initial tie points [33]. The local affine transformation invariance is used as a constraint
between the adjacent strips to eliminate pseudo matching points.

2.4.3. Refining Tie Point Sets in 3D Space

The tie points retrieved from the intensity images are mapped to 3D point cloud space, and a
K-neighborhood search algorithm was applied to find the K-nearest neighboring points in the 3D
point cloud space. The resultant K-nearest points are considered as a tie point set or matching units
among the different LIDAR scanning strips. The value of K needs to be determined according to terrain
conditions and laser point spacing, so that the K-nearest neighboring points can be located on the same
surface as much as possible to avoid 3D leap. Since we only consider the radiation characteristics of
targets in the extraction of tie point sets and do not take into account the geometric characteristics
inside the neighborhood of the tie points, as well as the influence of observation noise, some tie point
sets can be found in areas with obvious radiation characteristics such as buildings edges and vegetation
canopies. However, these tie point sets with unstable geometric features are more likely to cause
matching errors, and need further optimization therefore. In our study, a 3D plane is fitted for each tie
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point set firstly, and then the normal angle between the pair of planes derived from the tie point set is
calculated. The pairs of the tie points with a normal angle greater than a certain threshold 4, and a
height difference greater than a certain threshold oy, will be eliminated and the optimized tie point sets
can be achieved finally.

2.4.4. Estimation of Boresight Angular Error Parameters

Step 1: Assigning initial values

The initial values of boresight angular parameters are given based on prior knowledge, since the
number of the boresight angular error parameters is relatively small, therefore the initial values of the
three boresight angular parameters can be all set to 0.

Step 2: Construction of the observation error equation

For the tie point set in the n-th LIDAR scanning strip, if there is a point that is named P; =
(xlyyiyzly) in it, then the coordinate of the point in IMU coordinate system can be derived from
Equation (1). Thus its corrected coordinate in the mapping frame coordinate system can be derived
from Equation (5) with known boresight angular parameter values, and the centroid coordinate of the
tie point set can be derived with following equation.

1 K ,
_ K,Z X%/\/n
o & l?l
Fo=| Y | =| gL Yy, |(n=12) (13)
Tn 1;1
Py

A=
ll
N
s~
N

where 1 denotes the number of the UAV flightlines. The residual of the observation error equation is
L=h-h (14)

We first calculate the unknown coefficient for each point of the tie point set, and then average the
coefficients as the coefficient matrix of the normal equations with the following two equations.

T _ 1y O
Jw ~ K. Jw
i=1
K .
JF, 1 JF}
LA VT (15)
K N
JF, __ 1 JF!
W TR
i=1
_ | 9k _ 9K 9R _ 9K 0F _ 9h
A= [ dw  dw  J¢ dp ok oK (16)

If there are only two adjacent strips, only three observation error equations can be derived for
each pair of tie points. For three or more LiDAR strips, three observation error equations can be listed
between any two strips and then a total of 3*C?,, equations will be derived.

Step 3: Solving observation error equations

There are three unknown parameters in the unknown matrix, since each pair of tie points can list
three equations, so the boresight angular error can be solved using at least one pair of tie point set.
Many pairs of tie point sets will cause redundant observations and form a complete observation error
equation. The approximate solution to the boresight angular error is obtained by Equation (12) in this
section, and the three boresight angular parameters are updated as follows
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w=w+Aw
¢=¢+Agp (17)
K=k + Ax

Step 4: Determining the termination of iterative running

Whether the residual is convergent and whether the parameter value keeps almost unchanged is
used as a termination condition of the iterative running. If both are satisfied, the iterative calculation
will be stopped and the estimated values of the boresight angular parameters will be output. If both
are not satisfied, then the current estimated parameter values will be set as new values of the boresight
angular parameters of the next iteration, and go back to step 2 to continue the iterative running.
The flowchart for the proposed method is illustrated in Figure 4.

LiDAR -strip-1. / LiDAR 'strip 2. /

Interpolation. Interpolation.
A,

Intensity image 1.

Intensity image 2-

SIFT+RANSAC. SIFT+RANSAC.

2D tie points.

2D tie-points-

Finding' corresponding Finding- corresponding

oints. oints.
v P v P

3D tiepoints. 3D tie-points.

l LiDAR geo-referencing equation.

‘ Building-observation error-equations.

l Non-linearleast squares-algorithm.

‘ Solving boresight-angular-error. ‘

'

‘ Rectifying laser-point-cloud-data.

!

‘ Accm‘acy assessment. ‘

Figure 4. Flowchart for the proposed method with two experimental UAV LiDAR flight strips.

In the implementation of the technical flowchart in our study, the 3D tie points were classified
into two groups, the training set and testing set. The training samples were extracted from the total
samples of 3D tie points in a random way, and the rest of the total samples were used as the testing
samples. The training samples were applied to estimate the parameters for the boresight angular error
while the testing ones were prepared for the verification of the model, and the disparity between the
tie point pairs was adopted to be an index for measuring the model fitting effect. The random sample
dividing operation were performed 100 times in the experiment to guarantee the best estimate of the
model parameters, and finally the model parameters of the best verification were chosen to achieve
robust and reliable estimation of the boresight angular error.

3. Results

3.1. 2D Tie Points Extraction in the Case Study

The two LiDAR strips” data was captured with the RIEGL VUX-1UAV laser scanner onboard on
a Swiss-made ScoutB1-100 unmanned helicopter on 29 July, 2017 were de-noised with an anomaly
detector such as Gaussian distribution statistics model to remove the elevation anomaly points in
a local neighborhood. After that, the intensity images were generated by interpolating the laser
intensity data, and the SIFT algorithm was applied to detect feature points on the two intensity images.
A 128-dimensional feature descriptor was generated using the SIFT algorithm to describe the local
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features of the key points such as position, scale, and rotation. Next, the Euclidean distance between
the two descriptors was calculated and used as a similarity metric of the two-image matching points.
The matching strategy is as follows. Take a given key point in the query image and find the key point
that is closest to the target one based on the ranking of the similarity. A certain number of pairs of tie
points of the two images were able to be extracted out from the 2D intensity images. The RANSAC
algorithm was applied to remove pseudo matching pairs with the condition of affine invariance.
Finally a total of 63 pairs of tie points were extracted with the SIFT algorithm and 23 pairs of refined
tie points were remained after removing pseudo matching points. It can be seen that the tie points are
mainly located near the flat ground and the edge of the buildings. The spatial distribution is relatively
uniform and the link lines between all pairs of refined tie points are basically parallel and show a
good consistency.

3.2. 3D Tie Point Sets Construction with the Two Flight Lines

Considering the flat topography in the study area and the spatial distribution of the tie point
pairs in 2D space, the thresholding values of the normal vector angle parameter 5, of the tie point set
and the elevation range parameter 6, of each point set were set to 30° and 0.5 m, respectively. In the
transformation of the tie points from 2D to 3D, the value of the core parameter K has a great influence
on the final results (for details see Section 4.1). After a series of experiments and comparisons in the
selection of optimal tie points in 3D space, the best performance can be derived when K is set to 200,
the discrepancy of the tie point set is the best and the standard deviation is the smallest at the same
time. Therefore, the value of K is set to 200 to extract the tie point set in 3D space finally, and a total of
12 pairs of optimal 3D tie points were retrieved in the study (Figure 5).

(b) 250m

Figure 5. The tie point pairs by transforming the tie points from 2D to 3D space. The two intensity
images were generated from the intensity of the flight strips captured from south to north (a) and from
north to south (b).

3.3. Correction of the Boresight Angular Error of the Two Strips

The boresight angular errors of the Scount-100/RIEGL VUX-1UAYV system were resolved with
an automation workflow, in which only the POS data and laser point cloud data needed to be inputs.
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The operation for randomly creating the training set and testing set from the total 3D tie point samples
were conducted 100 times in the experiment of this study. Each training set was used to train the model
and estimate the parameters, and each testing one was used to verify the parameters. The training and
testing sets that achieved the best estimation of the model parameters were adopted and the resultant
estimation of the boresight angular error were used to correct the laser point cloud data of the two
flight lines. To validate our proposed method, the data obtained by the commonly used stepwise
geometric method [15] were used as a comparison. It can be seen in Table 2 that the values of the three
boresight angular parameters are relatively small in number, almost within 1°, which is consistent
with the results in previous studies.

Table 2. Estimated boresight angle error parameters.

Method Stepwise Geometric Method Our Proposed Method
Parameter w ) K w [0} K
Estimated value —1.050° —0.2580° —0.7980° —0.7384° —0.2245° —0.7219°

The resultant boresight angular error parameters were then substituted into Equation (5) to rectify
the point cloud data of the two LiDAR scanning strips captured in Shihezi, Xinjiang, China on 29 July,
2017, and adjusted laser point data were achieved after the rectification using the parameters. A visual
check of the corrections was illustrated in Figure 6, and it can be seen that the horizontal offset of the
building facades have been effectively corrected after applying the rectification parameters.

1# 1# 1#

. 2# 2#
;—ﬂ'” = ——— i i PRIN  F8 T

(a) raw point cloud (b) rectified by geometric method (c) rectified by proposed method

™" (g) raw point cloud (h) rectified by geometric method (1) rectified by proposed method
- .
#

. Lo

(j) raw point cloud (k) rectified by geometric method (1) rectified by proposed method

Figure 6. (a-1) Visual check of the performance of the laser point cloud data after the rectification with
the proposed method in this study and the stepwise geometric method found in the literature [15].
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Specifically it showed that our proposed method has a better performance than the stepwise
geometric rectification method (e.g., 1# in Figure 6), but the stepwise geometric rectification method
showed a slight better result in vertical direction (e.g., 2#). The displacement of the rooftop surfaces of
the buildings were well aligned in horizontal direction and the rectification performance of the two
methods showed few differences (e.g., 3#). The laser points of the vehicles have been well adjusted and
became more coincident in the overlapping areas, and our proposed method slightly outperformed the
stepwise geometric method (e.g., 4# and 5#). Because the diameter of the electricity poles is small and
the spacing distance between the poles is relatively large, consequently, the rectification performance
is not very distinct. However, the positional shift has been improved after the rectification (e.g., 6#
and 7#). Generally speaking, our proposed method outperformed the stepwise geometric rectification
method in most cases in this study, and has better automation and less ancillary data requirements
such as GCPs, and thus can effectively improve the quality of laser point cloud data and enable good
matching between adjacent flight lines.

3.4. Accuracy Assessment

The effect of the boresight angular error rectification on the position of the tie point set was
analyzed quantitatively by using the absolute coordinate deviation of the tie point set before and
after rectification processing. In Figure 7, the X axis indicates the sequence number of the tie point
set, and the Y axis represents the discrepancy of the centroid coordinates of the tie point set. On the
whole, the discrepancy of the XYZ coordinate before the rectification is basically between 0.04 m and
0.35 m, and the discrepancy of the rectified XYZ coordinate is basically less than 0.1 m, which shows
that after the rectification the offset error between the tie points was effectively corrected. In addition,
the discrepancy of Z axis is significantly smaller than that of the XY axes, indicating the rectification
performance in vertical direction is better than in horizontal directions.

—e— X_before Y_before —e— Z_before
- = - X_after Y_after --=--Z_ after
0.35
0.30
0254
E
& 0.20
|
o
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£ 0.15 1
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u N . . '.,
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Figure 7. Absolute deviations between sets of tie points before and after boresight angular error
correction. The x-axis indicates the sequence number of the tie point set and the y-axis represents the
discrepancy of the centroid coordinates of the tie point set.

Due to the lack of accurate ground control points in study area, the RMSE statistic is chosen to
evaluate the rectification accuracy of all the laser point cloud data. The planar RMSE of the point
cloud data was calculated by projecting vertical wall points into horizontal plane to form a series of
discrete points, based on which, the fitted residual error was calculated. The elevation RMSE was also
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calculated by projecting the roof points to vertical plane to form a series of discrete points, and the
standard deviation of elevation of these points was calculated. The rooftop and vertical walls of the
buildings in the study area were selected as planar and vertical reference planes. Totally six vertical
reference planes and six horizontal rooftop planes were selected in each flight strip to perform the
accuracy assessment (Table 3).

Table 3. Accuracy assessment based on all the laser points.

Error Planar RMSE/m Elevation RMSE/m
Stepwise Proposed Step-wise Proposed
Method Raw data geometric method method Raw data geometric method method
Strip 1 0.060 0.049 0.050 0.024 0.015 0.014
Strip 2 0.075 0.059 0.064 0.020 0.015 0.014
Average 0.068 0.054 0.057 0.022 0.015 0.014

It can be seen that after the rectification of boresight angular error, the accuracy in planar and
elevation improved and the planar RMSE is 5.7 cm and decreases by 1.0 cm to 2.0 cm, while the
elevation RMSE is ~1.4 cm and decreases by 0.5 cm to 1.0 cm. The RMSE reduction in elevation
is slightly smaller than that in X-Y plane. In addition, our rectification method can achieve better
correction in elevation than the stepwise geometric rectification method in the case study. As for the
two LiDAR strips, the rectification of strip 1 is better than that of strip 2 in general.

4. Discussion

It can be seen in the case study that the proposed method can remove most of the boresight
angular error caused by the unstable low-altitude UAV LiDAR system, and can achieve good matching
of the two adjacent flight lines based on the laser intensity information. Compared to the stepwise
geometric correction method, our method does not require any ground control points, feature objects,
or raw observations of the laser scanner, and thus has larger degree of automation. However, the
parameterization in our method may have influence on the final result, so we will discuss about it in
the next subsections.

4.1. The Influence of Parameter K

The K-nearest neighbor has a great impact on the spatial distribution of 3D tie points, and the
proposed method requires extremely good quality tie point sets for accurately solving the error model.
Thus, it is necessary to understand how K value influences on the final result. To empirically explore
the influence of K, we selected a series of K values that fall between 0 and 500, and tried to resolve the
parameters for the boresight angular error for each K value. Some results of the K values are shown in
Table 4. It can be seen that the most sensitive parameter of the boresight angular error is «, second ¢,
and third w. Applying each solution under different K values to make a rectification for the tie point
sets and the disparity statistical result is shown in Figure 8. It is found that regardless of the value
of K, the minimum value of disparity tends to be 0 and shows little change. However, the maximum
value of disparity is not stable, and shows an obvious trend of first increasing and then decreasing.
The mean disparity seems to be stable and shows a general trend, decreasing first and followed by
an increase, and reaches its minimum value when the K value is 200. The standard deviation of the
disparity shows similar trends and reaches the minimum value when the K is 200. Empirically, the
optimal value of K is determined by comparing the mean value and the standard deviation of disparity.
Therefore, the rectification was processed with the optimal K value of 200.
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Table 4. The boresight angle errors of different K values.

K value Match count w/° P/° K/°
20 13 -0.7302 -0.3353 -2.3283
40 12 -0.7366 -0.2530 -1.1801
60 12 -0.7384 -0.2507 -1.1319
80 12 -0.7373 -0.2451 -1.0975
100 12 -0.7395 -0.2382 -0.9498
200 12 -0.7384 -0.2245 -0.7219
300 11 -0.7492 -0.2951 -1.6186

400 11 -0.7500 -0.2955 -1.6275
500 10 -0.7498 -0.2490 -1.6450
0.35 } min —e— max —a— mean —v Std‘
0.30
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Figure 8. The disparity of the 3D tie point sets with different K values. The K value of 200 is recognized
as the proper value that can achieve smallest mean geolocation disparity.

4.2. The Influence of Calibration Parameter on Geolocation Error

Besides the K value, it is necessary to examine the influence of the boresight angular error on the
positioning error of laser point cloud data quantitatively. Assuming that the remaining errors are all 0,
according to the basic principle of laser point cloud geolocation, the influence of the boresight angular
error parameters can be derived from the difference between Equation (5) and Equation (1), and is
expressed in Equation (18).

ex 0
ey = RWRN(RW - I)R[RL 0
p

1

0

0

ez
[0 -« ¢ oo|]fo o 0 0
= RwRy| « 0 —w 1 0 0 cosf —sinf [-]| O (18)
-9 w 0 01 0 sinf cosf 0
I xpsin @ + @p cos O [ xtand + @
= RwRy —wp cos B = RwRyH —w
—wpsin® —wtan6

where 6 is the laser scanning angle; H is the altitude of the flight; w, ¢, and k are boresight angular
error parameters in three directions of rolling, pitching, and heading, respectively; and p denotes the
distance measured by the laser scanner. It can be understood in Equation (18) that the geolocation error
of a LIDAR system is proportional to the altitude H, and the higher the altitude is, the larger the planar
and elevation error. When the laser scanning angle 6 is constant, the pitching direction ¢ and heading
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direction k together affect the X-direction error of the point cloud data, and the error increases with the
increase of these two parameters. The rolling direction w mainly affects the Y-direction and Z-direction
errors of the point cloud data, and both are proportional to w, and as the error increases, w increases.
It is worth noting that the scanning angle is also an important factor influencing the positioning error
of the LiDAR system, and has only a direct effect on the X and Z direction errors of the laser point
cloud data.

4.3. Influence of the Initial Values on Model Convergence

In addition to the parameters abovementioned, the convergence speed also has a significant
impact on the practicability and robustness of the model for estimating the boresight angular error.
Considering the assumption that the boresight angular error is relatively small in number, thus we
preset the initial values of w, ¢, and « to zero, and the parameters of the boresight angular error can
be solved after three iterations. If this is not true and the parameters are big in number, does the
initial values of w, ¢, and « affect the convergence speed of the model? A series of initial values
was preset and used to test the convergence speed (Table 5). It can be seen in Table 5 that the initial
values of the boresight angular error parameters have slight influence on the convergence speed, and
three or four iterations can achieve the convergence in our experiment. Even if the initial values were
intentionally set to a very large value, i.e., 60°, the convergence can also be achieved only after six
iterations. Therefore, empirically speaking, the initial values of the boresight angular error parameters
have slight influence on the convergence speed. In other words, our proposed method is not sensitive
to the initial values and possesses robustness and stability.

Table 5. The relationship between the convergence speed and the initial values.

Initial Value

Iteration Count Converges to Same Value
w/° d/° Kk/°
0 0 0 3 —
10 0 0 4 yes
0 10 0 3 yes
0 0 10 3 yes
10 10 0 3 yes
10 0 10 3 yes
0 10 10 4 yes
10 10 10 4 yes
30 30 30 4 yes
60 60 60 6 yes

5. Conclusions

This paper presents a new method for the boresight angular error rectification of a UAV LiDAR
system based on the laser intensity information. Our proposed method has been verified with tens of
millions of laser point cloud data acquired by the Scount-100/RIEGL VUX-1UAV LiDAR system in a
farmland located in the northwestern of Shihezi city, Xinjiang, China. A comparison with conventional
stepwise geometric rectification method [15] was also conducted with the same data sets. It can be
concluded that the boresight angular error is one of the main error sources leading to the positional
error between different scanning strips of UAV LiDAR data. The boresight angular errors in the UAV
LiDAR system used in our study were estimated by our proposed method, and the angular parameters
are w=-0.7385°, ¢=-0.2245°, and k=-0.7219°. After the rectification, the planar RMSE is 5.7 cm and
decreased by 1.0 to 2.0 cm, and the elevation RMSE is 1.4 cm and decreased by 0.5 to 1.0 cm. It is also
found that K value in K-nearest analysis has great influence on the estimation of the boresight angular
error parameters. Due to the difficulty in the determination of a best K value theoretically, an empirical
solution has been proposed in our study, simply put, it can be determined through comparing the
rectification performance under a series of different K values. In this experiment, the best K value of
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200 was adopted for the implementation of our proposed method, and can achieve best adjustment
of the two LiDAR scanning strips. The sensitivity analysis of the angular parameters shows that w
is the weakest, followed by ¢, and « is the strongest. It should be noted that our proposed method
is not sensitive to the initial values of w, ¢, and . In spite of different initial values, the resolving of
the boresight angular error model can be accomplished in less than ten iterations. Thus our proposed
method shows good robustness and stability in practice.

One limitation of this study is that the testing was just based on the two UAV LiDAR strips, and
the experimental area is a relatively flat area and the main ground object types are vegetation and
road pavement. Consequently, there is a potential uncertainty in the extraction of tie points. In the
future, more validation work needs to be done on a larger dataset with more UAV flight lines. For
example, testing work can be expanded to mining areas, built-up areas, and other regions with various
topographical conditions and ground object types. In addition, in this paper we only considered
the boresight angular error of the point cloud data, lacking of the analysis and comparison of other
potential error sources. Future work will be focused on the combination of other error sources to
design robust algorithms and make more improvement in the practicability of our proposed method.

Author Contributions: X.Z. conceived and designed the study, including preparation of the UAV LiDAR system,
design of the methods, and English composition. R.G. designed and implemented the methods, analyzed the data,
and performed the experiments. Q.S. collected in situ data as team leader and analyzed the data. ].C. designed
the UAV flight paths and accomplished the data preprocessing.

Funding: This research was jointly funded by the National Natural Science Foundation of China, grant number
41571331 and by the Xinjiang Production and Construction Corps, grant numbers 2017DB005 & 2016 AB001.

Acknowledgments: We would like to give our heartfelt thanks to the Xinjiang Corps Center for Geospatial
Information Technology & Engineering Research for the support in the UAV flight and in situ data acquisition in
Shihezi City, Xinjiang, China in July, 2017. We also want to extend our thanks to the anonymous reviewers for
their valuable comments and suggestions that have improved our manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Chiang, K.W,; Tsai, G.J.; Li, Y.H.; El-Sheimy, N. Development of LIDAR-based UAV system for environment
reconstruction. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1790-1794. [CrossRef]

2. Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR system with application to
forest inventory. Remote Sens. 2012, 4, 1519. [CrossRef]

3. Kanuk, J.; Gallay, M.; Eck, C.; Zgraggen, C.; Dvorny, E. Technical Report: Unmanned Helicopter Solution for
Survey-Grade Lidar and Hyperspectral Mapping. Pure Appl. Geophys. 2018, 175, 3357-3373. [CrossRef]

4. Chen, C.F;Li, Y;; Zhao, N.; Yan, C. Robust interpolation of DEMs from LiDAR-derived elevation data. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 1059-1068. [CrossRef]

5. Lin, Y; Hyypp4, ].; Jaakkola, A. Mini-UAV-borne LIDAR for fine-scale mapping. IEEE Geosci. Remote Sens.
Lett. 2011, 8, 426-430. [CrossRef]

6. Kwan, M.P; Ransberger, D.M. LiDAR Assisted Emergency Response: Detection of Transport Network
Obstructions Caused by Major Disasters. Comput. Environ. Urban Syst. 2010, 34, 179-188. [CrossRef]

7. Hou, M, Li, SK,;Jiang, L.; Wu, Y,; Hu, Y;; Yang, S.; Zhang, X. A new method of gold foil damage detection
in stone carving relics based on multi-temporal 3D LiDAR point clouds. ISPRS Int. ]. Geo-Inf. 2016, 5, 60.
[CrossRef]

8. Guo,Q.;Su, Y,;Hu, T; Zhao, X,; Wu, E; Li, Y,; Liu, J.; Chen, L.; Xu, G.; Lin, G.; et al. An integrated UAV-borne
lidar system for 3D habitat mapping in three forest ecosystems across China. Int. |. Remote Sens. 2017, 38,
2954-2972. [CrossRef]

9.  Sankey, T.; Donager, ].; McVay, J.; Sankey, ].B. UAV lidar and hyperspectral fusion for forest monitoring in
the southwestern USA. Remote Sens. Environ. 2017, 195, 30-43. [CrossRef]

10. Wieser, M.; Mandlburger, G.; Hollaus, M.; Otepka, J.; Glira, P.; Pfeifer, N. A case study of UAS borne laser
scanning for measurement of tree stem diameter. Remote Sens. 2017, 9, 1154. [CrossRef]


http://dx.doi.org/10.1109/LGRS.2017.2736013
http://dx.doi.org/10.3390/rs4061519
http://dx.doi.org/10.1007/s00024-018-1873-2
http://dx.doi.org/10.1109/TGRS.2017.2758795
http://dx.doi.org/10.1109/LGRS.2010.2079913
http://dx.doi.org/10.1016/j.compenvurbsys.2010.02.001
http://dx.doi.org/10.3390/ijgi5050060
http://dx.doi.org/10.1080/01431161.2017.1285083
http://dx.doi.org/10.1016/j.rse.2017.04.007
http://dx.doi.org/10.3390/rs9111154

Remote Sens. 2019, 11, 811 19 of 19

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Falkowski, M.J.; Evans, J.S.; Martinuzzi, S.; Gessler, PE.; Hudak, A.T. Characterizing forest succession with
LiDAR data: An evaluation for the inland northwest, USA. Remote Sens. Environ. 2009, 113, 946-956. [CrossRef]
Diaz-Varela, R.A.; De la Rosa, R.; Ledn, L.; Zarco-Tejada, PJ. High-resolution airborne UAV imagery to assess
olive tree crown parameters using 3d photo reconstruction: Application in breeding trials. Remote Sens. 2015,
7,4213-4232. [CrossRef]

Dan, J.; Yang, X.; Shi, Y.; Guo, Y. Random Error Modeling and Analysis of Airborne LiDAR Systems. Remote
Sens. 2014, 52, 3885-3894.

Glennie, C. Rigorous 3D error analysis of kinematic scanning LIDAR systems. J. Appl. Geod. 2007, 1, 147-157.
[CrossRef]

Zhang, Y.; Xiong, X.; Zheng, M.; Huang, X. LiDAR strip adjustment using multi-features matched with aerial
images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 976-987. [CrossRef]

Hebel, M; Stilla, U. Simultaneous calibration of ALS systems and alignment of multiview LiDAR scans of
urban areas. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2364-2379. [CrossRef]

Li, E; Cui, X,; Liu, X.; Wei, A.; Wu, Y. Positioning errors analysis on airborne LIDAR point clouds. Infrared
Laser Eng. 2014, 43, 1842-1849.

Skaloud, J.; Lichti, D. Rigorous approach to boresight self-calibration in airborne laser scanning. ISPRS J.
Photogramm. Remote Sens. 2006, 61, 47-59. [CrossRef]

Bang, K.I.; Habib, A.; Kersting, A. Estimation of Biases in LIDAR System Calibration Parameters Using
Overlapping Strips. Can. ]. Remote Sens. 2010, 36, S335-S354. [CrossRef]

Habib, A.; Kersting, A.P; Bang, K.I; Lee, D. Alternative methodologies for the internal quality control of
parallel LiDAR strips. Canadian 2010, 48, 221-236. [CrossRef]

Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS
J. Photogramm. Remote Sens. 2014, 92, 79-97. [CrossRef]

Filin, S. Elimination of systematic errors from airborne laser scanning data. In Proceedings of the 2005 IEEE
International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25-29 July 2005.

Rodarmel, C.; Lee, M.; Gilbert, J.; Wilkinson, B.; Theiss, H.; Dolloff, J.; O’Neill, C. The universal LiDAR error
model. Photogramm. Eng. Remote Sens. 2015, 81, 543-556. [CrossRef]

Zhang, X.; Forsberg, R. Retrieval of Airborne LiDAR misalignments based on the stepwise geometric method.
Surv. Rev. 2010, 42, 176-192. [CrossRef]

Le Scouarnec, R.; Touzé, T.; Lacambre, ].B.; Seube, N. A new reliable boresight calibration method for mobile
laser scanning applications. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 67-72. [CrossRef]
Gallay, M.; Eck, C.; Zgraggen, C.; Kanuk, J.; Dvorny, E. High resolution airborne laser scanning and
hyperspectral imaging with a small UAV platform. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
2016, 41, 823-827. [CrossRef]

Filin, S. Recovery of systematic biases in laser altimetry data using natural surfaces. Photogramm. Eng. Remote
Sens. 2003, 69, 1235-1242. [CrossRef]

Schenk, T. Modeling and Analyzing Systematic Errors of Airborne Laser Scanners;, Technical Notes in
Photogrammetry; The Ohio State University: Columbus, OH, USA, 2001.

Baumker, M.; Heimes, EJ. New Calibration and computing method for direct georeferencing of image and
scanner data using the position and angular data of a hybrid inertial navigation system. Proc. Natl. Acad. Sci.
USA 2001, 97, 14560-14565.

Marchant, C.C.; Moon, T.K,; Jacob, H.G. An Iterative Least Square Approach to Elastic-Lidar Retrievals for
Well-Characterized Aerosols. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2430-2444. [CrossRef]

Lowe, D.G. Distinctive image features from scale-invariant key points. Int. J. Comput. Vis. 2004, 60, 91-110.
[CrossRef]

Wang, EB.; Tu, P.; Wu, C.; Chen, L.; Feng, D. Multi-image mosaic with sift and vision measurement for
microscale structures processed by femtosecond laser. Opt. Lasers Eng. 2018, 100, 124-130. [CrossRef]

Guo, B,; Li, Q.; Huang, X.; Wang, C. An improved method for power-line reconstruction from point cloud
data. Remote Sens. 2016, 8, 36. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.rse.2009.01.003
http://dx.doi.org/10.3390/rs70404213
http://dx.doi.org/10.1515/jag.2007.017
http://dx.doi.org/10.1109/TGRS.2014.2331234
http://dx.doi.org/10.1109/TGRS.2011.2171974
http://dx.doi.org/10.1016/j.isprsjprs.2006.07.003
http://dx.doi.org/10.5589/m10-054
http://dx.doi.org/10.1109/TGRS.2009.2026424
http://dx.doi.org/10.1016/j.isprsjprs.2014.02.013
http://dx.doi.org/10.14358/PERS.81.7.543
http://dx.doi.org/10.1179/003962610X12572516251763
http://dx.doi.org/10.5194/isprsarchives-XL-3-W1-67-2014
http://dx.doi.org/10.5194/isprsarchives-XLI-B1-823-2016
http://dx.doi.org/10.14358/PERS.69.11.1235
http://dx.doi.org/10.1109/TGRS.2009.2038903
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1016/j.optlaseng.2017.08.004
http://dx.doi.org/10.3390/rs8010036
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methods 
	Study Area and Data Acquisition 
	Rectification of UAV LiDAR System Errors 
	LiDAR Georeferencing Equations 
	Boresight Alignment Model 

	Automated Rectification Based on the Laser Intensity 
	Workflow of Our Proposed Method 
	Generation of the Intensity Images 
	Tie Point Extraction in 2D Space 
	Refining Tie Point Sets in 3D Space 
	Estimation of Boresight Angular Error Parameters 


	Results 
	2D Tie Points Extraction in the Case Study 
	3D Tie Point Sets Construction with the Two Flight Lines 
	Correction of the Boresight Angular Error of the Two Strips 
	Accuracy Assessment 

	Discussion 
	The Influence of Parameter K 
	The Influence of Calibration Parameter on Geolocation Error 
	Influence of the Initial Values on Model Convergence 

	Conclusions 
	References

