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Abstract: An in situ soil moisture observation network at pixel scale is constructed in cropland in
the northeast of China for accurate regional soil moisture evaluations of satellite products. The soil
moisture products are based on the Japan Aerospace Exploration Agency (JAXA) algorithm and the
Land Parameter Retrieval Model (LPRM) from the Advanced Microwave Scanning Radiometer 2
(AMSR2), and the products from the FengYun-3B (FY3B) satellite are evaluated using synchronous
in situ data collected by the EC-5 sensors at the surface in a typical cropland in the northeast of
China during the crop-growing season from May to September 2017. The results show that the
JAXA product provides an underestimation with a bias (b) of -0.094 cm3/cm3, and the LPRM soil
moisture product generates an overestimation with a b of 0.156 cm3/cm3. However the LPRM
product shows a better correlation with the in situ data, especially in the early experimental period
when the correlation coefficient is 0.654, which means only the JAXA product in the early stage, with
an unbiased root mean square error (ubRMSE) of 0.049 cm3/cm3 and a b of -0.043 cm3/cm3, reaches
the goal accuracy (±0.05 cm3/cm3). The FY3B has consistently obtained microwave brightness
temperature data, but its soil moisture product data in the study area is seriously missing during
most of the experimental period. However, it recovers in the later period and is closer to the in
situ data than the JAXA and LPRM products. The three products show totally different trends with
vegetation cover, soil temperature, and actual soil moisture itself in different time periods. The LPRM
product is more sensitive and correlated with the in situ data, and is less susceptible to interferences.
The JAXA is numerically closer to the in situ data, but the results are still affected by temperature.
Both will decrease in accuracy as the actual soil moisture increases. The FY3B seems to perform better
at the end of the whole period after data recovery.
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1. Introduction

Soil moisture is vital to the earth’s water cycle, energy cycle, ecological environment, and
agriculture. It is a critical boundary between the land surface and the atmosphere and a key medium
surface evapotranspiration [1–7]. Satellite microwave remote sensing technology can be used to
monitor surface soil moisture changes in near real time at regional and global scales. Therefore, the
evaluation of the accuracy of onboard soil moisture products is of great significance for the calibration
of products and the future scientific research on the global water cycle.

In recent decades, satellite remote sensing technology has been continuously developed, and
many satellites have been used to monitor various parameters of surface soil. Compared with the
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visible light band, microwave remote sensing has long wavelength, strong penetrability, and is not
affected by cloud layer and weather conditions. It can realize global all-weather monitoring and ground
observation, and is widely used for retrieval of surface soil moisture [8–11] and temperature [12].

In recent years, the L-band is considered to be the most suitable band for soil moisture observation
because of its longer wavelength and deeper penetration depth. The Soil Moisture and Sea Salinity
(SMOS) mission of the European Space Agency (ESA) can achieve the soil moisture observation at
multi-angles [13]. The Soil Moisture Active and Passive (SMAP) mission of the National Aeronautics
and Space Administration (NASA) is equipped with a RADAR (stopped transmitting on 7 July 2015)
and a radiometer, and it could improve the retrieval accuracy and spatial resolution [14]. Compared to
the L-band, the X-band has a much longer temporal sequence of soil moisture observations. The AMSR2
was mounted on the Global Change Observation Mission 1-Water (GCOM-W1) satellite launched on
18 May 2012 and started to acquire observed data on 3 July 2012 [15]. It is the successor to the AMSR-E,
which successfully operated for almost ten years from June 2002 to October 2011 [16]. The FY-3B
satellite, launched on 5 November 2010, is the second satellite of FY3 (Feng Yun 3) series, a member of
China’s second generation of polar-orbiting meteorological satellites. It provides measurements of
terrestrial, oceanic, and atmospheric parameters, including precipitation rate, sea ice concentration,
snow water equivalent, soil moisture, atmospheric cloud water, and water vapor [17]. There was a
gap of about ten months between the AMSR-E ceased and the AMSR2 operated, and the Microwave
Radiation Imager (MWRI) onboard the FY3B had been running successfully during this period.
The AMSR-E, the AMSR2 and the FY3B/MWRI all provide soil moisture products based on X-band.
The difference between equatorial local crossing times (the GCOM-W1 at 1:30 a.m./p.m. and the FY3B
at 1:38 a.m./p.m.) is within 10 minutes. FY3B/MWRI can fill up the window period if the consistency
can be confirmed. Therefore, the evaluation of AMSR2 and FY3B soil moisture products to obtain
continuous data on global soil moisture monitoring by the same type of microwave radiometer is of
great significance for global water cycle monitoring and long-term continuous monitoring of climate
change [18].

In recent years, there have been many studies on the evaluation of soil moisture products.
They use a variety of error analysis methods to compare the performance of various products and
algorithms based on single site or multiple site data at local or global scales [19–24]. However, due to
the complexity of surface soil moisture in the temporal and spatial changes of the surface, experiments
at this stage are still insufficient to confirm the superiority and inferiority of various soil moisture
products. As the environmental factors change, the performance of soil moisture products may reverse
the change results [25].

An in situ soil moisture observation network at pixel scale was constructed in the corn cropland
located in the northeast of China, and the experimental period was from early May to late September
2017 which was the only frost-free period in this typical area. In addition, the surface soil structure
remained naturally stable without artificial damage during this period. The JAXA and the LPRM
soil moisture products from AMSR2 and FY3B/MWRI soil moisture product were evaluated by
the performance metrics [26] using the up-scaled in situ soil moisture collected synchronously by
the EC-5 probes at 2.5 cm depth. All the three products are all based on X-band where Radio
Frequency Interference (RFI) issues are less severe for the X-band soil moisture retrievals than lower
frequencies [27,28]. Vegetation has always been one of the main attenuation factors in microwave
transfer. Compared to the L-band, the X-band is more susceptible to the surface vegetation cover
due to its shorter wavelength [29,30]. The surface temperature also affects the calculation of the
vegetation optical thickness and the soil surface emissivity. In the LPRM algorithm, the temperatures
of vegetation and soil are approximately equal. In the JAXA algorithm, although the multi-frequency
is used to overcome the influence of the surface temperature, the previous research has shown that
soil moisture retrieval results were still affected by temperature [25]. Vegetation has always been
one of the main attenuation factors in microwave transfer. Compared to the L-band, the X-band is
more susceptible to the surface vegetation cover due to its shorter wavelength [29,30]. The microwave
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radiation is affected by the temperature. Although the JAXA algorithm hoped to eliminate the effects
by frequency difference, the brightness temperature value itself is directly affected by the surface soil
temperature (SST). The ranges of products are different, and the field capacity will also vary depending
on the climate, environment, and time change. Therefore, the accuracy of soil moisture products
under different actual soil moisture conditions may change. The performance of all the products was
discussed according to the effect factors including vegetation cover, SST, and actual soil moisture itself
in different time periods.

2. Materials and Methods

2.1. Study Area

As shown Figure 1, the study area is in the north of Changchun City in the northeast of China
where the climate is temperate monsoon climate with four distinct seasons. It is a semi-humid area
with a flat terrain. The land features are simple, and the main type is cropland with scarce water bodies.
The annual sunshine hours are about 2695.2 hours. The average annual precipitation is 520 mm which
is mainly concentrated in July and August in summer. The annual average temperature and annual
accumulated temperature are 4.4 ◦C and 2851 ◦C, respectively. The average daily temperature is below
0 ◦C from November to March. The temperature difference is large between winter and summer over
50 to 60 ◦C, and this region is significantly colder than other regions in the same latitude in winter.
The frost-free period is about 140 to 150 days from May to September which is also the crop-growing
season. The most suitable crop for growing in the region is corn. The study area is a typical and
representative cropland in the northeast of China. The research in this paper is of great significance
due to the distinctive and specific climate characteristics in the northeast of China unlike the other
parts of the world. In this paper, the observation network was established with the SMAP pixel as
spatial reference, so that it could include the coverage of pixels of other microwave products. Then the
scale of the in situ soil moisture was converted using Thiessen Polygons method to match the pixel
size of the target product.
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3 as the RGB. 

2.2. Satellite Soil Moisture Products Based on X-band 

Three X-band soil moisture products, the AMSR2/JAXA product, the AMSR2/LPRM product 
and the FY3B/MWRI product, were selected in this paper. All the three algorithms use a simple 
radiative transfer model, the tau-omega model [10]. To minimize environmental interference, only 
the descending products were used while the geophysical conditions were complicated at day 
times but simple at night times [8,9,31,32]. 

Figure 1. Study Area. (a) shows the geographical location of the study area in the northeast of China;
(b) shows the distribution of the points from the in situ observation network, the satellite pixels in the
study area. The background is a false-color Landsat 8 image at 25 September 2017 with band 5, 4, 3 as
the RGB.

2.2. Satellite Soil Moisture Products Based on X-Band

Three X-band soil moisture products, the AMSR2/JAXA product, the AMSR2/LPRM product
and the FY3B/MWRI product, were selected in this paper. All the three algorithms use a simple
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radiative transfer model, the tau-omega model [10]. To minimize environmental interference, only the
descending products were used while the geophysical conditions were complicated at day times but
simple at night times [8,9,31,32].

1. The AMSR2/JAXA L3 Soil Moisture Product

The AMSR2/JAXA Level 3 0.25◦ global grid soil moisture product used is acquired at the
GCOM-W1 Data Providing Service (https://gcom-w1.jaxa.jp/auth.html). The JAXA algorithm uses
a forward radiative transfer scheme to calculate brightness temperatures in multiple frequencies
and polarizations according to different vegetation and soil conditions and the surface temperature
is assumed constant at 293 K. The soil moisture is estimated by a lookup table built up based on
the results and the polarization ratio (PI) at 10.65 GHz and index of soil wetness (ISW) at 36.5 and
10.65 GHz horizontal channels [8,33,34].

2. The AMSR2/LPRM L3 Soil Moisture Product

The AMSR2/LPRM Level 3 0.25◦ global grid soil moisture product used is acquired at the Goddard
Earth Sciences Data and Information Services Center (GES DISC) (https://gcmd.gsfc.nasa.gov/).
The LPRM algorithm is developed by the Vrije Universiteit (VU) University Amsterdam and NASA
for multiple frequencies. It uses brightness temperature at 36.5 GHz V channel to estimate land surface
temperature and retrieve the soil moisture vegetation optical depth at the same time by an iteration
using PI [9,35,36]. For consistency with the other two products, only the X-band LPRM product was
used in this paper.

3. The FY3B/MWRI L2 Soil Moisture Product

The FY3B/MWRI L2 EASE-Grid Soil Moisture Product is acquired at the FENGYUN Satellite Data
Center (http://satellite.nsmc.org.cn/). The FY-3B soil moisture retrieval algorithm uses the brightness
temperature at 10.65GHz H/V channels based on a parameterized surface emission model (the Qp
model) [37] for the bare surface and the empirical relationship between the Normalized Difference
Vegetation Index (NDVI) and the vegetation water content to estimate the vegetation optical depth [38]
for the vegetation correction.

2.3. The In Situ Observation Network on Pixel Scale

2.3.1. Selection of Each Point Location in the In Situ Observation Network

The in situ soil moisture observation network using Decagon EC-5 sensors at pixel scale was
constructed to better represent the real surface soil moisture corresponding to the depth of satellite
products. At first, the location of each observation site is a key factor in determining whether the
observation network is a good representation of the whole experimental area. As shown in Figure 2,
a 36 km × 36 km SMAP pixel grid was used as the spatial coverage reference, and the pixel was then
subdivided evenly. According to the spatial heterogeneity factors including soil types and bare soil
thermal inertia related to bare soil moisture, representative sub-pixels were selected to represent the
overall distribution of soil moisture in the whole experimental area, and to minimize the impact of
spatial heterogeneity.

https://gcom-w1.jaxa.jp/auth.html
https://gcmd.gsfc.nasa.gov/
http://satellite.nsmc.org.cn/
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Figure 2. Location of each point in the in situ observation network and the distribution of soil types in
the experimental area.

2.3.2. The Sensor Tests of the In Situ Soil Moisture

The Decagon EC-5 probe was selected due to its effective soil moisture measurement at shallow
depths as close as possible to satellite data. The measured soil moisture data were hourly collected
from in situ points distributed in the study area. The parameters of all the EC-5 probes had been
previously tested and confirmed through:

• The sensing boundary test
• The consistency test
• The calibration according to actual soil from study area

The sensing boundary of the EC-5 probe was confirmed in the laboratory with dry sand and
water. The experimental apparatus is shown in Figure 3. A plastic cylindrical container with a height
of 30 cm and a diameter of 15 cm is filled with dry sand and placed in a big container filled with water
surrounding the plastic container. The EC-5 probe was inserted into the dry sand completely, and
gradually collected data from the edge to the center of the container. With a movement interval of
0.5 cm, the data were collected for five times at each position, and the time interval between each data
collection was one minute.

The experimental results are shown in Figure 4. During the process of the probe moving from
the distance of 0.5 cm to 2.5 cm, the voltage measurement value becomes significantly smaller as the
distance becomes larger. Between 2.5 cm and 3 cm, the voltage decreases significantly; after 3 cm, the
voltage measurement remains stable. This explains that the probe’s boundary measurement range is
2.5–3 cm around.

Due to the precisions of the EC-5 sensors, there existed subtle differences in measurement precision
and range between the untested probes. To minimize these differences, we performed a consistency test
on all EC-5 sensors with ethanol and dry sand. All the EC-5 soil moisture sensor probes synchronously
collected data in ethanol then dry sand at the same temperature. The data sampling rate was once
every minute, and the total sampling time was 10 to 15 minutes. The measurement results in ethanol
and dry sand are shown in Figure 5a,b. Then the data average of each probe in ethanol and dry sand
were calculated. Based on the theoretical values of ethanol and dry sand, the probe with the average
value closest to the standard value was selected as the standard probe to correct all the other probes.
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The results after correction are shown in Figure 5c,d. The error of the measurement baseline of each
probe was significantly reduced after the consistency test.
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Figure 3. Inductive boundary test of EC-5 sensor. The plastic cylindrical container with a height of 30
cm and a diameter of 15 cm was filled with dry sand and placed in a bigger container filled with water
to surround the plastic container. Insert the EC-5 probe into the dry sand completely, and gradually
collect data from the edge to the center of the container. d was the distance from the probe to the edge
of the small container.
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Figure 5. Consistency comparison and correction results of EC-5 sensors in ethyl alcohol and dry sand
measurements, and different colored lines represent different sensors. (a) shows the data collected in
ethanol, (b) shows the data collected in dry sand. (c) shows the ethanol data after correction, and (d)
shows the dry sand data after correction.

The consistency-tested EC-5 sensors met the uniform accuracy requirements of measurement, but
the same sensor probe’s response to soil moisture would still vary attributed to different soil types.
To acquire accurate in situ data of soil moisture, we calibrated the sensors according to the actual soil
samples collected in the study area. Subject to the soil components based on the Harmonized World
Soil Database (described in Section 2.4.3), the soil in the study area was divided into sandy loam soil,
clay soil, and sandy silt soil, of which the specific contents are shown in Table 1.

Table 1. Content of each component in different classification of soil samples.

Soil Texture Clay (%) Silt (%) Sand (%)

Sandy Loam Soil 12.41 64.28 23.31
Clay Soil 11.80 57.71 30.48

Sandy Silt Soil 11.81 55.87 32.32

Firstly, various types of soil samples collected in the field need pretreatment, and the soil samples
were dried at 105 ◦C for 48 hours, and the dried soil samples were ground and sieved to remove debris
such as stones. The sieve pore size is not less than the specific soil type particle size. Then, the pretreated
soil was filled into a container (50 cm × 50 cm × 40 cm in volume) and was slowly sprayed with
fresh water about 10% of the weight of the soil. The watered soil was kept being stirred to mix evenly.
After that, the uniformly mixed wet soil was filled into a small container (13 cm × 13 cm × 15 cm in
volume) in a natural state without pressing. The standard EC-5 probe selected in the consistency test
was used for calibration. The probe was vertically inserted into the soil at a position greater than 3 cm
from the container wall and totally collected 5 data with a sampling interval of 60 seconds. Then a soil
sample was taken using a cutting ring (100 cm3 in volume) at its adjacent position and was weighed as
its fresh weight. After that, the remaining soil was put back into the container used for mixing. Then
all the procedures above were repeated until the soil moisture content was saturated. Finally, all the
soil samples collected with cutting ring were dried (105 ◦C, 48 hours) and weighed. We calculated the
volumetric water content of the soil samples, then linearly fit the probe readings corresponding to soil
moisture to obtain the calibration parameters and equations of the EC-5 sensor to the three soil types
in the study area as shown in Figure 6.
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Figure 6. The calibration parameters and equations of the EC-5 sensor to the three soil types in the
study area, wherein (a) is clay soil, (b) is sand silt soil, and (c) is sandy loam soil.

The accuracies after calibration for different soil types are 0.021 cm3/cm3, 0.017 cm3/cm3 and 0.017
cm3/cm3, which are better than the standard accuracy (0.02 cm3/cm3) of the EC-5 sensor. The specific
parameters of the EC-5 sensors after testing and calibration are listed in Table 2.

Table 2. Parameters of the EC-5 sensor after testing and calibration.

Sensing Range (cm) 2.5~3
Operating Temperature (◦C) −40~+60

Measurement Range of SM (%) 0~100
Accuracy (cm3/cm3) 0.02

2.3.3. The In Situ SST

The temperature sensors used to measure SST were the DS18B20 soil temperature sensor with a
range of −55 ◦C to +125 ◦C and an accuracy of ± 0.5 ◦C. Similarly, the DS18B20 temperature sensors
were also installed 2.5 cm below soil surface like EC-5 probes. To avoid measurement interference
between them and to ensure that the two measurements represent the same position, the DS18B20
temperature sensor should be installed within 5 to 15 cm from the EC-5 probe.

2.3.4. Placement of Sensors at In Situ Points

All the sensors were laid in the field at the middle of May after all the land in the experimental
area was fully cultivated and were retrieved at the end of September before harvesting. It was also in
the frost-free period at this time, which ensured the measured data valid. The surface soil structure
remained naturally stable without artificial damage. To exclude the influence of other factors, the
sensors were placed under the plain surface of pure soil at 2.5 cm depth that was more than 40 cm
away from the plant seed position. As shown in Figure 7a,b, a section was dug next to the selected
position and measured with a ruler. The sensor probe was horizontally inserted into the soil at 2.5 cm
from the upper soil surface so as not to damage the natural structure of the soil in the vertical direction.
The host was buried aside as shown in Figure 7c. The specific terrain of the agricultural land in the
study area was the alignment arrangement of ditches and ridges. As shown in Figure 7d, two EC-5
sensors were separately placed at the ditch and the ridge of each in situ point to enable the collected
soil moisture data to be more representative. The data were recorded once every hour.
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Figure 7. Installation and arrangement of the soil moisture and temperature sensors at in situ points. (a)
shows the actual installation of the EC-5 probe, (b) describes the specific installation details of the EC-5
probe, (c) shows the situation of host and probes after installation, and (d) shows the position details of
the probes and host. W1 and W2 are the EC-5 probes, and T1 and T2 are the temperature sensors.

2.4. Ancillary Data

2.4.1. Meteorological Data

The global meteorological station’s timed observation data were downloaded at the National
Meteorological Information Center (http://data.cma.cn/data/cdcdetail/dataCode/A.0013.0001.html),
the site data is updated every three hours. With the satellite equatorial crossing time (1:30 A.M.) as the
node, all precipitation in the past 24 hours was accumulated as the daily precipitation data.

2.4.2. The Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Index

The NASA vegetation index product, MOD13C1 VIs 16-day 0.05deg data, was used to represent
the surface vegetation cover situation in the study area [39]. According to different calculation formulas,
there are two vegetation indices in this product, the NDVI and the Enhanced Vegetation Index (EVI).
The original 0.05◦ resolution product was resampled to 0.25◦ by taking the average value. As shown in
Figure 8, the trend and amplitude of NDVI and EVI were basically the same, but their change intervals
were different, and the correlation between them was significant in the study area.

http://data.cma.cn/data/cdcdetail/dataCode/A.0013.0001.html
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Figure 8. The comparison of NDVI and EVI in the study area during the study period. (a) shows the
changes of NDVI and EVI during the study period, and (b) shows a linear relationship between NDVI
and EVI.

The EVI was mainly used for analysis in this paper which exhibited the EVI changing obviously.
The EVI was at a low level at first, then sharply increased, and maintained at a high level. At the end
of the study period, the EVI showed a gradual decline.

2.4.3. The Harmonized World Soil Database

The Harmonized World Soil Database is the result of a collaboration between the FAO with IIASA,
ISRIC-World Soil Information, Institute of Soil Science, Chinese Academy of Sciences (ISSCAS), and
the Joint Research Centre of the European Commission (JRC). It is a 30 arc-second raster database with
over 15,000 different soil mapping units [8]. In this paper, we used it to identify the soil types in the
study area according to its texture and components.

2.5. Methodology

2.5.1. Thiessen Polygons Method for Pixel Scale Matching of the In Situ Data

The pixel size of the passive microwave soil moisture product used in this paper was
25 km × 25 km. To make the point data well represent the actual soil moisture of the whole passive
microwave data pixel, the point data, including surface soil moisture and SST, were all up-scaled
using Thiessen Polygons (TP) method [40,41] and compared with directly averaged value. As shown
in Figure 9, the Thiessen Polygons method divided the entire target pixel area into several polygons
according to the position of each point. Every edge of the polygon is in the middle of two points
and is perpendicular to the connecting line between the two points. The ratio of the polygon to the
total area is the weight of the center point. The sum of all weighted point data is the value of the
entire target pixel. The advantages of the Thiessen Polygons method are the simple operation, smooth
interpolation results, and basically closed contours generated. Its disadvantage is that it is greatly
affected by the known points and only considers the factor of distance. The Thiessen Polygons (TP)
approach as an up-scaled method takes the spatial distribution of in situ points into account, while
direct average treats the proportion of each point equally. The difference between them is small when
the distribution of the points is uniform. However, when some points are gathered together and
they have a significant spatial difference from other locations in the pixel, the direct average will be
overestimated or underestimated because of the high or low data of the gathered points. However, it
could be avoided by the TP approach.
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Figure 9. Thiessen Polygons calculated from the spatial distribution of the in situ points of soil moisture
in microwave pixels, where (a) is the AMSR2 pixel with a spatial resolution of 0.25 degrees and a total
of 8 in situ points, and (b) is the FY3B pixel with a spatial resolution of 0.25 degrees and a total of 9 in
situ points.

2.5.2. The Performance Metrics for the Evaluation with In Situ Data

The performance metrics including the root mean square error (RMSE), the unbiased root mean
square error (ubRMSE), the bias (b) and the correlation coefficient (R) were used to evaluate the soil
moisture products [26]. The formulas are expressed as follows:
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where E[·] is the expected or linear average operator, SMpro represents the passive microwave remote
sensing soil moisture product estimate, and SMinsitu represents the ascending scale measured soil
moisture. i means the data number.

3. Results

3.1. In situ Soil Moisture Data from the Network

All the in situ soil moisture data, separately for the AMSR2 and FY3B pixels, from the in situ
observation network are shown in Figure 10. The effective period of the data is from a consecutive
period of 141 days from 129th to 269th day of the year (DOY). The numbers shown in the figure
represent different sensors. Since the AMSR2 pixel and the FY3B pixel mostly overlap, some sensor
data were shared by both. The sensors needed replacing the battery and memory card. To ensure the in
situ data were continuously obtained, the data may be collected alternately using different numbered
sensors at the same in situ point. It can be seen that the soil moisture at each experimental point shows
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a highly distinct correlation with precipitation. The soil moisture at each point shows a sharp rise
upon the increase and shows a slow downward trend when decreasing.
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Figure 10. Measured soil moisture data from the in situ observation network and the cumulative
24-hour precipitation. Among them, (a) is the AMSR2 pixel case, and (b) is the FY3B pixel case.
The numbers shown at the bottom of the figure are the sensors’ numbers.

As shown in Figure 11, the in situ soil moisture data at each point were compared with the
up-scaled results. It reveals that the data point from both AMSR2 and FY3B pixel are evenly distributed
on both sides of the diagonal, and the direct average is very close to the result of Thiesson Polygons
method. That indicates that the in situ points were evenly distributed in the pixel, and the up-scaled
average value could well represent the average soil moisture of the entire pixel. There is not much
difference between the results of the two methods. The results of Thiessen Polygons method were
mainly used as the in situ soil moisture in the later part of this paper. The evaluation results using the
direct average will be displayed in Appendix A. Figure 11g shows the comparison of the up-scaled
results of AMSR2 pixel and FY3B pixel using Thiessen Polygons method, which reflects that the results
are almost the same due to pixels overlapping.

In this experiment, we usually placed more than one sensor in close distance to prevent the
individual sensor from failing, and most of the results of the TP approach and the direct average were
also very close. To some extent, that indicated that the in situ points were evenly distributed and
the spatial variation within the pixel was stable and uniform. However, there were also some large
differences between the results of the TP approach and the direct average because of the big changes
of the gathered points’ data. Because such situations were relatively small, the impacts on the whole
time period were limited, so the statistical results also would not be significantly affected. To eliminate
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the error caused by the artificial distribution of points, the TP results were preferentially used for
calculation. The direct average results were also given as a reference in the attached table.
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spring, summer, and autumn when the vegetation cover and temperature changed greatly. 

Figure 11. The comparison of the in situ point soil moisture data and the up-scaled results in the
study area. (a,d) are respectively the comparison of the in situ soil moisture at each point and the
direct average in the AMSR2 pixel and the FY3B pixel. (b,e) are respectively the comparison of the in
situ soil moisture at each point and the result of Thiessen Polygons method in the AMSR2 pixel and
the FY3B pixel. (c,f) are respectively the comparison of the direct average and the result of Thiessen
Polygons method in the AMSR2 pixel and the FY3B pixel. (g) is the comparison of the results of
Thiessen Polygons method in AMSR2 pixel and FY3B pixel.

The experimental period was 141 days, nearly four and a half months, and the seasons spanned
spring, summer, and autumn when the vegetation cover and temperature changed greatly. Therefore,
according to the objective environmental conditions, mainly seasonal vegetation cover, the whole
experimental period was divided into two stages with the DOY of 169 as the node. The first stage was
the DOY from 129th to 169th day. At this time, the study area was from spring to early summer, and
the surface was mostly from bare soil to low vegetation. The second stage was the DOY from 170th to
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269th day. During that period, the season was summer and ended at early autumn while the EVI was
high and the land surface was densely covered by vegetation.

As shown in Figure 12, the distribution of the in situ soil moisture of the AMSR2 and FY3B pixels
are totally different at different stages. It manifests that the in situ soil moisture is clearly divided into
two parts at different stages. Soil moisture in both stages shows a downward trend with increasing
temperature. It also can be found that there are two parallel lines separately on the upper side of the
data at the first stage and on the bottom side of the data at the second stage, and there is an obvious
space between the two sides. The data on the upper side correspond to the maximum value of soil
moisture at a specific temperature at the first stage, and the data on the bottom side correspond to the
minimum value of soil moisture at a specific temperature at the second stage. The main difference
between the two stages was the EVI. At the first stage, the soil can no longer absorb water after soil
moisture increased to a certain value because of its yield capacity. Given the land surface of bare soil
without vegetation, the yield capacity was controlled by the soil itself and was inversely proportional
to the SST. The excessive rainwater would flow away with surface runoff. At the second stage, it was
summer with abundant sunshine and high temperature, when much dense vegetation was covering
the surface. By virtue of the evapotranspiration, the vegetation roots had a locking effect on soil
moisture, which would greatly increase the yield capacity. Therefore, it maintained the lowest value
of soil moisture change, and the lowest value was also negatively correlated with the SST. This was
mainly resulted from the evapotranspiration of vegetation. The high temperature strengthened the
evapotranspiration, causing a decrease in surface soil moisture in the root zone. When the temperature
was low, sometimes accompanied by precipitation events, the evapotranspiration became weaker,
causing the surface soil moisture to rise.
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Figure 12. The relationship between the in situ soil moisture and the SST. Both of the in situ soil
moisture in the AMSR2 and FY3B pixels are shown in the figure at two different stages. There are two
parallel lines separately on the upper side of the data at the first stage and on the bottom side of the
data at the second stage, and there is an obvious space between the two sides.

3.2. Satellite Data Evaluation and Intercomparison

Figure 13 shows the change of the JAXA, LPRM, and FY3B soil moisture products, daily
precipitation, and the EVI with the DOY in the study area. It can be seen that the in situ soil moisture
is sensitive to precipitation events, with which the local peaks of the soil moisture always appear.
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The increasing magnitude of the soil moisture is also consistent with the amount of precipitation at the
first stage. The in situ soil moisture generally shows an upward trend during the whole experimental
period. The EVI remained at a low level at the first stage while it was spring, and the surface was
mostly bare soil. Then the EVI increased slightly from the 161st to the 176th day when the season
was late spring and early summer and the surface was covered with low vegetation, but the EVI still
remains at a low level. After that, the EVI increased sharply in the DOY from 177th to 192th day when
the season was summer, and the vegetation grew densely on the land surface. In the last few periods
of the experimental period, the EVI decreased significantly, but it was still significantly higher than
that at the first stage. The JAXA soil moisture product and LPRM soil moisture product well cover the
experimental period. Among them, JAXA soil moisture products are relatively close to the in situ soil
moisture at the first stage and generally less at later. The LPRM product is consistently higher than
the in situ soil moisture all the period and the changes are severe. The FY3B soil moisture product
are severely deficient in the experimental period, and the data are cut off from the 161th of DOY
and recover from the 256th of DOY. The large amount of missing data of the FY3B product is mainly
concentrated in the period with high EVI, high SST, and high precipitation in summer. Moreover, the
brightness temperature data of FY3B at 10 GHz are intact and very close to the AMSR2 data. Therefore,
it can be judged that the missing of the FY3B product is mainly due to the FY3B soil moisture product
algorithm. The maximum of the FY3B product is 0.5 cm3/cm3. In previous studies, it was common for
the algorithms to be saturated or even overflowed under dense vegetation cover. [42,43].

The precipitation data from the meteorological station is the cumulative amount every 3 hours.
The daily precipitation data in this paper was the accumulated precipitation data from the past 24
hours since the satellite transited. The large amount of precipitation that occurred in 176 days was
mainly concentrated at 3 to 6 o’clock, which was a short-term concentrated precipitation. The satellite
transit time was around 17:30, with a gap of 9.5–12.5 hours. The in situ data showed that most of the in
situ points barely reacted. The meteorological station is about 60km away from the study area, and the
study area covered 36 km×36 km. It may be that the precipitation in the area was not obvious. On the
other hand, the EVI rose sharply and the crop grew rapidly at this time. The surface temperature was
also at the highest value during the experimental period. So, the evaporation and transpiration cannot
be ignored. The moisture might be reduced largely before the satellite transited. Therefore, for all the
analysis above, the high precipitation at 176th day did not lead to an increase in soil moisture.
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Figure 13. The change of soil moisture products with in situ soil moisture, daily precipitation, EVI, and
surface soil temperature. Among them, (a) is about the JAXA soil moisture product, (b) is about the
LPRM soil moisture product, and (c) is about the FY3B soil moisture product.

Figure 14 shows the comparisons among the JAXA product, the LPRM product and the in situ
soil moisture in different periods, and Table 3 lists the results of the performance metrics including
the RMSE, the ubRMSE, the b, and the R. The results using the direct average is displayed in Table A1
in Appendix A. It exhibits that the JAXA product generally shows an underestimation of the soil
moisture with a b of −0.094 cm3/cm3. In contrast, the LPRM product generally demonstrates a large
overestimation of soil moisture with a bias of 0.156 cm3/cm3. The JAXA’s RMSE is 0.150 cm3/cm3

that is smaller than the LPRM’s 0.191 cm3/cm3 but the ubRMSE of them are almost the same during
the whole period. Both the JAXA product and the LPRM product are close to the in situ data at
the first stage. The JAXA points are evenly distributed on both sides of the diagonal while the
in situ soil moisture is low in this period. However, the LRPM product has already provided an
obvious overestimation of soil moisture at this time. At the second stage, the JAXA product displays
a significantly underestimation when the in situ soil moisture overall increases, and there are also
some overestimated data. All the performance metrics of the two products become worse except
for the LPRM’s b. However, the LPRM still keep an overestimation of the soil moisture at a high
level. The JAXA product has the best performance of error with the lowest RMSE and ubRMSE of
0.066 cm3/cm3 and 0.049 cm3/cm3, and the b is −0.043 cm3/cm3 that reaches the goal accuracy of
the product (±0.05 cm3/cm3). However, the LPRM product has the highest correlation coefficient
of 0.654 at this time. The JAXA product range is 0 to 0.6 cm3/cm3, while the LPRM product is 0 to
1 cm3/cm3. It can be seen from the linear prediction of the data in Figure 14 that in the two periods,
the LPRM product generally shows an upward trend with the increase of the in situ soil moisture.
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The slope of the linear prediction is basically consistent with the range ratio of the LPRM product to
the in situ soil moisture. Moreover, the LPRM product has better correlation with in situ soil moisture
than the JAXA product throughout the whole experimental period. Comparing the two products, the
LPRM product are generally higher than the JAXA’s. They show a good linear relationship with the
correlation coefficient of 0.94 at the first stage, and the change of the difference between them becomes
very severe at the second stage.
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Figure 14. Comparisons between the JAXA product, the LPRM product, and the in situ soil moisture
in two stages. (a) is the comparison between the JAXA product and the in situ soil moisture. (b) is the
comparison between the LPRM product and the in situ soil moisture. (c) is the comparison between
the two AMSR2 products.

Table 3. The performance metrics of the JAXA and the LPRM soil moisture products at different study
periods. The best one for each performance metric is in bold.

Period Products RMSE (cm3/cm3) ubRMSE (cm3/cm3) b (cm3/cm3) R

Whole Period
JAXA 0.150 0.117 −0.094 0.259
LPRM 0.191 0.110 0.156 0.542

First Stage JAXA 0.066 0.049 −0.043 0.565
LPRM 0.177 0.063 0.166 0.654

Second Stage JAXA 0.173 0.129 −0.115 0.136
LPRM 0.196 0.124 0.152 0.403

Due to the serious lack, the FY3B soil moisture product cannot be evaluated throughout the
experimental period like the JAXA and the LPRM products. Therefore, the three soil moisture products
were evaluated based on the coverage of the FY3B soil moisture product. The results are shown in
Table 4. The results using the direct average is displayed in Table A2 in Appendix A. It can be seen that
the RMSEs of the three products are almost the same. The results of the FY3B product is the neither
the best nor the worst except for the R. The LPRM still has the best R of 0.516 with a P-value of 0.0117
in the significance level. However, due to only 23 days of data in total, the FY3B product does not have
a good performance during the study period.

Table 4. The comparison of the performance metrics of the three soil moisture products as the period
of the FY3B product. The best one for each performance metric is in bold.

Period Products RMSE (cm3/cm3) ubRMSE (cm3/cm3) b (cm3/cm3) R

as FY3B
FY3B 0.237 0.155 0.179 0.042
JAXA 0.231 0.085 0.215 0.180
LPRM 0.233 0.156 0.174 0.516
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4. Discussion

The winter in the study area is long and cold, and the frost-free period of the year is only about
5 months. Only in this period, the soil moisture is guaranteed to be liquid and free of ice. Therefore,
the local climatic conditions determine the effective monitoring period of soil moisture in this study.
The land types and soil types in the study area are stable, most of which are agricultural land.
The crops are basically corn. Although the crops in this area only can be planted once a year, the
black soil here is fertile and the quality of crops is almost the best in the country. The annual climate
change in the study area is basically stable, and the experimental period is representative. Therefore, it
is of great significance to monitor the climatic conditions in this region and the soil moisture change
during the growing season. The effect of the environment on high-quality crop production can be
analyzed by studying the effects of various ecological climate changes in the study area on crop growth.
The preceding results reveal obvious differences among the three soil moisture products, and the
products also have highly varying performance at different periods. Since the pixels in the study area
were monotonous, we analyzed the factors including vegetation, SST, and even the actual soil moisture
itself that may affect the products.

4.1. The Vegetation Cover Effect

As shown in Figure 15, the EVI, representing the vegetation change is used to be compared with
the differences among the products and the in situ soil moisture. With the EVI increasing, only the
JAXA product underestimates more obviously. The differences grow between the product and the
in situ soil moisture. The differences between the LPRM product and the in situ data almost remain
as the EVI rises, but some soil moisture data are clearly underestimated. In the case of lower EVI,
the differences between the LPRM product and the JAXA product are concentrated at a lower level.
With the increase of the EVI, the vegetation coverage becoming dense, the range of the differences
is expanded. According to Figure 13, the EVI keeps rising until declining to 0.33 at the end of the
experimental period. Compared with the high EVI (0.54~0.65) in the dense vegetation cover in summer,
the EVI has decreased significantly, which is much closer to the spring EVI (0.11~0.19). It manifests
that the differences between the products and the in situ data do not grow smaller as the EVI drops
to 0.33. In particular, the JAXA product is still similar to the situation with the high EVI in summer.
The differences between the three products and the in situ data were analyzed after the recovery of the
FY3B product in the later experimental period. It was found that the performance of FY3B seems to be
better than the JAXA and LPRM products at this time. The differences between the FY3B product and
the in situ soil moisture are completely lower than the JAXA‘s and basically lower than the LPRM’s.
In addition, the P values in the significance level were 0.0341 and 0.0001 respectively.
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Figure 15. The effect of the EVI to the soil moisture products. (a) is the difference between the JAXA
product and the in situ soil moisture with the EVI, (b) is the difference between the LPRM product
and the in situ soil moisture with the EVI, (c) is the difference between LPRM product and the JAXA
product with the EVI, and (d) is the difference between the FY3B product and the in situ soil moisture
with the EVI.

4.2. The Effect of the SST

The SST was in situ measurement like soil moisture, and both were consistent in time and space,
which means that the SST is more accurate and reliable. On the other hand, the SST can directly affect
the brightness temperature and emissivity of the surface soil, which will affect the retrieval results of
soil moisture. Therefore, it is meaningful to study the effects of the SST on the results. The performance
of the soil moisture products with the SST is shown in Figure 16. It can be seen that the JAXA product
is very close to the in situ soil moisture at the first stage, and its distribution with SST is also similar to
the in situ soil moisture’s. At the second stage, the JAXA’s distribution becomes dispersed with the
SST increasing. It is different from the in situ soil moisture in Figure 12, and no obvious bevel edge
appears on the lower side. At the same time, the underestimation of the JAXA product with the SST is
not stable, and some data even overestimate the soil moisture. At the second stage, the JAXA product
has larger gap to the in situ data overall. From the linear prediction in Figure 16a, the JAXA increases
with the SST increasing. This offsets the previous underestimation to some extent. Although some of
this is caused by precipitation, the LPRM product that are more sensitive to precipitation events has
not shown an upward trend at this stage. Therefore, we believe that the soil moisture product of JAXA
algorithm is still obviously affected by the SST at this stage. The variation trend of the LPRM product
is relatively consistent during the whole experimental period. At the second stage, its distribution
also has a fuzzy edge similar to Figure 12. However, the range of the LPRM product is different due
to its overall overestimation. In addition, the LPRM product also shows some underestimation as
the SST rises. It all occurs at the SST above 15 ◦C except for one time. The difference between the in
situ data and the products all become more dispersed with the increasing SST at the second stage.
The difference between the JAXA and the LPRM soil moisture products is stable at the first stage, but
it becomes smaller as the SST increases at the second stage. This may be that the JAXA product range
is 0 to 0.6 cm3/cm3, while the LPRM product is 0 to 1 cm3/cm3. When the actual soil moisture rises,
the difference between the two products is enlarged. When there is no rain event accompanied by an
increasing SST, both products become smaller, so that the gap between them is shrunk.
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Figure 16. The effect of the SST to the soil moisture products. (a) shows the JAXA product with the
SST, (b) shows the LPRM product with the SST, (c) shows the difference between the JAXA product
and the in situ soil moisture with the SST, (d) shows the difference between the LPRM product and
the in situ soil moisture with the SST, and (e) shows the difference between the LPRM and the JAXA
products with the SST.
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4.3. The Actual Soil Moisture Change

Both the EVI and the SST have a very significant increase from the first stage to the second stage.
In addition, the performance of the JAXA product and the LPRM product at the first stage is generally
better than that at the second stage. As can be seen from Figure 13, the EVI and the SST decline at the
end of the experimental period, but the errors in the JAXA and the LPRM products are not improved
apparently. On the other hand, although the in situ soil moisture varies locally, it has been increasing
in the overall experimental period.

As shown in Figure 17, the change of the products’ errors and the different between the two
AMSR2 products are compared with the in situ soil moisture. It can show the impact of the actual
surface soil moisture itself on the products’ performance more clearly than Figure 14. It can be seen
that although some data may be close or overestimated, most of the JAXA product more underestimate
the soil moisture as the in situ soil moisture increases. There is a significant bevel edge on the bottom
of the distribution of the difference between the JAXA product and the in situ data, which is related
to the fact that the product value has been maintained at a low level and the product range is 0 to
0.6 cm3/cm3. However, the points of scatterplots of the LPRM product does not have such a clear
edge. Its range of the variability become larger, and so is its error. However, the range of the in situ soil
data is basically below 0.4 cm3/cm3 that is not beyond the product range. As shown in Figure 17b, the
linear predictions of the differences between the LPRM product and the in situ data slightly increase
with the actual soil moisture increasing during the both periods. In addition, two slopes in two periods
are almost the same. One reason is that the difference between the range of the LPRM product and the
field capacity becomes obvious as the actual soil moisture increasing. Previous studies have shown
that the LPRM algorithm is very sensitive to the temporal variability of soil moisture, but its absolute
accuracy is difficult to guarantee [31,32,44,45]. The LPRM product generally overestimates the soil
moisture and is also higher than the JAXA product [24,25]. The reason may be that the soil moisture
range of the LPRM algorithm is 0-1 cm3/cm3, but the field capacity is generally ~0.5 cm3/cm3 [25],
and the LPRM is very sensitive to the temporal variability, so it is more likely to exceed the actual soil
moisture. The LPRM product generally has a good correlation with in situ data without considering
the absolute accuracy [46]. This may also explain that the overestimation bias of the LPRM product is
large, but the correlation is good in this paper. The changes in the two AMSR2 products also lead to an
increase and complexity in the difference between the two soil moisture products as the in situ soil
moisture increases. After that, even though the EVI and the SST both fall to the level close to the first
stage, the performance of the JAXA and the LPRM products are not enhanced. It is worth noting that
as shown in Figure 17d, the FY3B product performs better than the JAXA and the LPRM products in
the case of high soil moisture. Although the amount of the data is limited, the FY3B product seems to
have certain advantages at the end of the experimental range where both the EVI and the SST decrease
but the in situ soil moisture continues to rise.
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Figure 17. The effect of the actual soil moisture to the soil moisture products. (a) shows the difference
between the JAXA product and the in situ soil moisture with the in situ soil moisture, (b) shows the
difference between the LPRM product and the in situ soil moisture with the in situ soil moisture, (c)
shows the difference between the LPRM product and the JAXA product with the in situ soil moisture,
and (d) is the difference between the FY3B product and the in situ soil moisture with the in situ
soil moisture.

5. Conclusions

In this paper, an in situ soil moisture observation network in cropland on pixel scale in the
northeast of China was designed considering the unique climatic characteristics of the regional area
and the detection depth of the satellite sensors. The crop-growing season from May to September 2017,
almost covering the whole frost-free period, was selected as the experimental period. Multiple EC-5
soil moisture sensors were arranged in a typical cropland in the northeast of China as the study area
to obtain data every hour. All the sensors were calibrated according to the soil in the experimental
area, so that the in situ soil moisture was consistent with the satellite products in terms of time, space,
and depth. The results showed that JAXA product underestimated with a b of -0.094 cm3/cm3 and the
LPRM product seriously overestimated the soil moisture with a b of 0.156 cm3/cm3 throughout the
whole experimental period. The FY3B product was severely deficient in the experimental period and
was all absent when the EVI was above 0.5. When it was bare soil or less vegetation cover, the JAXA
product had the best performance of errors with the lowest ubRMSE at 0.049 cm3/cm3 and the b at
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-0.043 cm3/cm3 that reached the goal accuracy of the product (±0.05 cm3/cm3), and the LPRM product
had the best correlation (R = 0.654). When the EVI increased over time, all of them declined. When the
EVI was low, the JAXA product errors were less affected by the SST, but the LPRM product slightly
decreased with the SST increasing. When the EVI was high, the distribution of the JAXA product
errors became more complicated, and some data decreased with the SST increasing, but the LPRM
product did not change significantly at this time. Throughout the experimental period, the ranges and
errors of the JAXA and LPRM products showed an upward trend, and only the in situ soil moisture
showed a similar trend throughout the whole period. Therefore, the JAXA product error was smaller
and the LPRM product correlation was better. At the end, the EVI and SST turned to decrease and
the in situ soil moisture kept increasing. Although the amount of data was limited, the FY3B product
seemed to have a better error performance than the JAXA and LPRM products.
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Appendix A

Table A1. The performance metrics of the JAXA and the LPRM soil moisture products at different
study periods with the in situ data using direct average. The best one for each performance metric is
in bold.

Period Products RMSE (cm3/cm3) ubRMSE (cm3/cm3) b (cm3/cm3) R

Whole Period
JAXA 0.144 0.113 −0.090 0.321
LPRM 0.194 0.109 0.160 0.551

First Stage JAXA 0.061 0.049 −0.037 0.413
LPRM 0.184 0.063 0.173 0.579

Second Stage JAXA 0.167 0.124 −0.112 0.252
LPRM 0.198 0.122 0.155 0.424

Table A2. The comparison of the performance metrics of the three soil moisture products as the period
of the FY3B product with the in situ data using direct average. The best one for each performance
metric is in bold.

Period Products RMSE (cm3/cm3) ubRMSE (cm3/cm3) b (cm3/cm3) R

as FY3B
FY3B 0.236 0.155 0.178 0.018
JAXA 0.228 0.087 0.211 0.144
LPRM 0.232 0.158 0.170 0.500
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