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Abstract: For a city to be livable and walkable is the ultimate goal of future cities.
However, conflicts among pedestrians, vehicles, and cyclists at traffic intersections are becoming
severe in high-density urban transportation areas, especially in China. Correspondingly, the transit
time at intersections is becoming prolonged, and pedestrian safety is becoming endangered.
Simulating pedestrian movements at complex traffic intersections is necessary to optimize the
traffic organization. We propose an unmanned aerial vehicle (UAV)-based method for tracking and
simulating pedestrian movements at intersections. Specifically, high-resolution videos acquired by
a UAV are used to recognize and position moving targets, including pedestrians, cyclists, and vehicles,
using the convolutional neural network. An improved social force-based motion model is proposed,
considering the conflicts among pedestrians, cyclists, and vehicles. In addition, maximum likelihood
estimation is performed to calibrate an improved social force model. UAV videos of intersections
in Shenzhen are analyzed to demonstrate the performance of the presented approach. The results
demonstrate that the proposed social force-based motion model can effectively simulate the movement
of pedestrians and cyclists at road intersections. The presented approach provides an alternative
method to track and simulate pedestrian movements, thus benefitting the organization of pedestrian
flow and traffic signals controlling the intersections.

Keywords: pedestrian simulation; social force model; intersection; UAV; convolutional neural
network; deep learning

1. Introduction

With rapid economic development, the use of automobiles has greatly increased in developing
countries, especially in China, India, and Vietnam, where vehicles are replacing bicycles as the
dominant transportation mode [1,2]. Facing this great change, the space allocated to automobiles has
been expanded, thus alleviating traffic congestion, which encroaches on the space for cyclists and
pedestrians and constrains bicycling and walking. Consequently, potential conflicts of vehicles,
cycles, and pedestrians not only exacerbate travel delays but also increase the randomness of
pedestrian movements, substantially threatening pedestrian safety. In a recent traffic safety report
released by the World Health Organization (WHO), road collisions are the world’s leading cause of
preventable death; over 1.25 million people die annually on the roads (especially at intersections)
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because of traffic collisions [3]. In some ways, active transportation users, such as cyclists and
pedestrians, are more vulnerable to injuries than other road users due to their labile speed and
direction [4]. Therefore, a walkable city for people is regarded as one ultimate goals of future cities [5].
Urban planners have taken several actions to encourage walking, such as configuring special walkable
lanes, designing good walking interfaces, building friendly walkable infrastructures, etc. These actions
also highlight the necessity of pedestrian tracking and simulation.

Traditionally, pedestrian safety inspection largely relies on historical collision records.
However, due to the lack of detailed and precise historical data and the infrequent occurrence
of collisions, the task of inspection often cannot be fully accomplished. Recently, the use of pedestrian
conflicts as an alternative for collisions to analyze road safety has attracted significant interest [6–8].
Pedestrian conflicts can provide detailed information concerning road dynamics at intersections,
allowing the detection of the series of events that lead to collisions [9,10]. Pedestrian conflict analysis
can be conducted by detecting and tracking moving traffic objects or flawed design elements that may
be causing safety issues [10]. The introduction of computer vision algorithms has greatly strengthened
pedestrian conflict and violation analysis by automating the extraction of accurate movements
of traffic objects, overcoming many shortcomings of manual pedestrian analysis techniques [11].
Furthermore, considering the interactions of pedestrians, cyclists, and vehicles, this study aims to track
and simulate pedestrian movements at complex traffic intersections using advanced computer vision
algorithms. These algorithms will provide microscopic simulations of traffic intersections to optimize
traffic organization and promote pedestrian safety.

Recently, many methods have been developed to track pedestrians and vehicles, including the
microwave-based method [12], the global positioning system (GPS)-based method [13,14], the induction
coil-based method, the video-based method [15,16], and the laser radar-based method [17,18].
Favored for its easy data acquisition, the video-based method, which typically uses videos of
traffic intersections to monitor objects, has been extensively applied. Currently, video-based target
recognition and tracking can simultaneously target multiple objects of interest (e.g., pedestrians,
vehicles, and animals) [19,20]. A set of methods involved in this process, i.e., mean shift, particle filter,
and Kalman filter, are typically generative approaches and achieve satisfactory target recognition
results [21]. Tracked pedestrians or vehicles are treated as foreground targets. Detectors with online
learning or offline training (including random forest and support vector machine) are utilized to
distinguish foreground targets from the background, and therefore obtain the positions of the foreground
targets. On the other hand, because of their good performance in target detection and localization,
deep learning methods have provided new approaches for target recognition and positioning [22–24],
including the recurrent-convolutional neural network (R-CNN) [25], faster R-CNN [26], single shot
multi-box detector (SSD) [27], you only look once v3 (YOLOv3) [28], cascade R-CNN [29], and especially
the parallel feature pyramid network (PFPNet) [30], which obtained remarkable performance on
many public datasets while maintaining a relatively high execution speed. Therefore, this study
improves PFPNet and accurately extracts the trajectories of pedestrians, cyclists, and vehicles from
high-resolution unmanned aerial vehicle (UAV) videos to accurately simulate pedestrian movement at
traffic intersections.

Microscopic traffic simulation has been extensively employed as an effective tool to analyze the
movements of vehicles and pedestrians. Widely employed microscopic traffic simulation models
include the cellular automata, lattice gas, and social force models [31,32]. The social force model
(SFM) transforms the internal motivation of individual movement into a corresponding force and
describes the force that pedestrians experience using a force vector. By establishing a traditional
SFM, Helbing and Molnar [32] and Helbing et al. [33–38] successfully simulated the self-organizing
phenomenon in one- and two-way pedestrian flows under normal conditions. Alternative SFMs were
subsequently developed by combining actual situations of pedestrian movements and modifying or
adding new elements. For example, Hou et al. [39] observed that pedestrians are more inclined to
follow leading pedestrians during an evacuation in emergencies, further investigated the impacts
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of leading pedestrians during an evacuation process, and established a social force evacuation
model. Zeng et al. [40,41] analyzed the peculiarities of pedestrian movements at signalized traffic
intersections and proposed the control of traffic signals for pedestrian movements on crosswalks.
They improved the structure and parameters of the social force model and established a microscopic
pedestrian model for traffic intersections. Liu et al. [42] explored various interactions of pedestrians on
crosswalks by considering the collision avoidance behaviors of pedestrians moving backward and
the follow-up behaviors of leading pedestrians, and established a microscopic model to incorporate
the interactions between pedestrians and surrounding pedestrians. These studies provided valuable
insights into microscopic pedestrian traffic simulation. However, the impacts of cyclists and vehicles
on pedestrians have not been well investigated and integrated into microscopic traffic simulation.
Additionally, high-resolution trajectories of pedestrians and other objects, especially cyclists and
vehicles, at complex intersections is lacking.

A UAV is an effective tool to monitor geographical contexts with simple deployment and
a low cost [43–46]. This study employs a UAV to automatically identify and track moving objects,
including pedestrians, cyclists, and vehicles at complex traffic intersections, and to simulate the
pedestrian movements. Especially, we consider interactions between pedestrians and the surrounding
environment and simulate pedestrian movements at intersections affected by cyclists and vehicles.
The traditional social force model is modified to integrate the boundary effects of zebra crossings and
mutual interactions between pedestrians, cyclists, and vehicles. In addition, the model parameters
are calibrated based on the maximum likelihood estimation (MLE) method. An experiment in
Shenzhen City was conducted to evaluate the performance of the presented approach. The results
demonstrate that the presented approach can accurately simulate pedestrian movements at traffic
intersections. The improved social force model describes complex interactions within a complex
intersection environment and outperforms the traditional social force model.

The main contributions of this study are summarized as follows: (1) This study successfully and
accurately extracts high-resolution movements of pedestrians, cyclists, and vehicles at intersections
using a UAV and a convolutional neural network. (2) The classic SFM is improved to integrate
the interactions among cyclists, vehicles, and pedestrians, and the inherent law of pedestrians is
verified and revealed. (3) The MLE method is introduced to calibrate the model parameters and
quantify the range and extent of the impacts of surrounding pedestrians, cyclists, right-turning vehicles,
and boundaries, which provide a useful reference for subsequent research on further calibration.

The remainder of this article is organized as follows: Section 2 introduces the study area and
the presented methodology. Section 3 describes the experiment and analyzes the results. Section 4
concludes the results and outlooks on future research.

2. Study Area and Methodology

The study was conducted in Shenzhen City, the first special economic zone of China,
covering 1996 km2. Since the foundation in 1979, Shenzhen has experienced fast urban growth.
The population has increased from 0.6 million to 18 million in 2018. Shenzhen has become one of
the highest density cities in China. During rush hour, the pedestrian density at some complex traffic
intersections may be up to 2–5 persons/m2. Therefore, there are highly potential conflicts for pedestrians
at these intersections, which highlights the importance of pedestrian monitoring. Here, we present
a UAV-based approach to monitor pedestrians, cyclists, and vehicles at complex traffic intersections and
simulate pedestrian movements with an improved social force model. The workflow of the presented
approach is displayed in Figure 1. First, UAVs are used to capture pedestrians, cyclists, and vehicles.
Objects are recognized and localized using state-of-the-art PFPNet. High-resolution trajectories are
produced for further microscopic traffic simulation. Considering cyclists and vehicles, an improved
social force-based motion model is developed to simulate pedestrian movements at intersections.
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Figure 1. Workflow of tracking and simulating pedestrian movements at intersections using an
unmanned aerial vehicle.

2.1. Pedestrian, Cyclist, and Vehicle Detection Using a UAV

To obtain high-quality data and reduce noisy information contained in traffic videos, we use
a UAV to capture pedestrians, cyclists, and vehicles at road intersections. Compared with a traditional
camera installed along the roadside or at intersections [45], the UAV surveillance approach has the
following advantages: the hovering location and flying height of the UAV can be conveniently set and
changed; the camera scope is substantially greater than that of traditional cameras; and high-resolution
UAV videos can simultaneously capture richer information about pedestrians, cyclists, and vehicles.

Using high-resolution UAV videos, we extract pedestrian and cyclist trajectories. The PFPNet [30]
is used to detect pedestrian and cyclist locations. Compared with current object detection methods,
PFPNet constructs a feature pyramid by widening the network instead of increasing the depth,
which aims to predict the locations of “hard-to-detect” objects, such as small (e.g., pedestrians are
considerably smaller than vehicles), occluded (e.g., pedestrians can be in close proximity to each other),
and blurred (e.g., the camera can shake) objects. Therefore, PFPNet is suitable for pedestrian, cyclist,
and vehicle detection.

The architecture of PFPNet is illustrated in Figure 2. First, the base network produces a W ×H
output feature map with C channels. Second, spatial pyramid pooling (SPP) [23] is employed to
generate a wide feature pyramid (FP) pool with feature maps of various sizes. An additional feature
abstraction strategy is applied to these feature maps in a parallel manner to balance the semantic
abstraction levels. The multiscale context aggregation (MSCA) module rescales the feature maps to
a uniform size and aggregates their contents to produce different levels of the final FP. Each MSCA
module is followed by a prediction subnet, which is used to classify and localize objects, such as
pedestrians and cyclists.
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Figure 2. Overview of object detection using the improved PFPNet

The base network is important for object detection and localization. We employ the prevalent
VGGNet-16 [47] as the base network. The fully-connected layers are replaced with newly designed
convolutional layers with downsampling. The modified VGGNet is pre-trained on the ILSVRC
dataset [47]. A set of bottleneck layers [48] are employed in PFPNet for the feature transformation.
In the bottleneck layer, a 1× 1 convolution is used to reduce the channel number to half of the original
count. Batch normalization [49] without shift and the rectified linear unit (ReLU) [50] are used for
normalization and activation.

The workflow to detect pedestrians, cyclists, and vehicles is displayed in Figure 2. Given a UAV
image (a), the modified VGGNet-16 is employed as the base network to generate the input feature map.
The high-dimensional FP pool (b) is formed via the SPP module, and the low-dimensional FP pool (c)
is obtained by feature transformation with the bottleneck layer. Using these feature maps, these MSCA
modules produce the final FP for multiscale object detection. The FP is fed into the prediction subnets
to obtain the detected objects (e). Non-maximum suppression [51] is used to guarantee that each
prediction corresponds to a single object.

After detection, we track the movements of pedestrians, cyclists, and vehicles at the crosswalks in
videos. With the PFPNet results, the kernelized correlation filter (KCF) [52] is used to track a single
object. The objective of a KCF tracker is to teach a classifier to distinguish the objects from their
surrounding environment. Unlike other trackers that focus on the objects of interest, the KCF tracker
develops circulant matrices to obtain additional environment samples (e.g., locations and scales
of image patches) to train the classifier and produce the diagonal matrix with a discrete Fourier
transformation, thus reducing the computational complexity. We select a single target from the PFPNet
results, send its bounding box to the KCF, track pedestrian, cyclist, and vehicle movements, and collect
its location in the UAV video to generate a two-dimensional point set. When the objects of interest are
no longer on the crosswalk, the tracking is finished. These generated trajectories are reported in the
final frame for further pedestrian movement simulation.

2.2. Pedestrian Movement Modeling

Using acquired trajectories of pedestrians, cyclists, and vehicles, the SFM is improved to simulate
pedestrian movements at traffic intersections. Regarding pedestrians as particles satisfying the laws
of mechanics, the classic SFM models the movements of a pedestrian α as being derived from the
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where ξ is the random fluctuation term of the joint force, which indicates the movement of a pedestrian
that accidentally deviates from the normal movement. Figure 3 gives an example of the impacts on
pedestrian movements considered.Remote Sens. 2019, 9, x FOR PEER REVIEW  6 of 18 
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2.2.1. Self-Driving Force

When pedestrians are moving toward their destinations at an expected speed, they are inevitably
influenced by their surrounding environments. Therefore, a deviation emerges between the actual
velocity and the expected velocity. In this context, following Helbing et al. [38], the self-driving force
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2.2.2. Boundary Force

In general, pedestrians always walk within a crosswalk boundary. When an outward object
exists at the crosswalk boundary, the boundary will exert a repulsive force to maintain a certain safe
distance between the pedestrian and the boundary (Figure 4a). However, when there are high-density
pedestrians, for example, 2–5 persons/m2 at some intersections in Shenzhen, pedestrians may walk
out of the crosswalk to avoid serious conflict with other pedestrians. Conversely, the boundary force
becomes attractive rather than repulsive when a pedestrian steps out of the crosswalk (Figure 4b) to
attract the pedestrian to return to the crosswalk [40]. Therefore, the force exerted by the boundary on
pedestrians can be expressed as an exponentially decreasing function of the distance, as follows:
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2.2.3. Repulsive Force Exerted by Other Pedestrians

Pedestrians at traffic intersections tend to repel each other to create a comfortable walking
space. The elliptical potential field of human interaction is generally employed to describe the
interaction among pedestrians in the traditional SFM, which disregards crowding and bumping.
Specifically, following Johansson et al. [38], the repulsive force between pedestrians α and β can be
expressed as follows:

→

f αβ = −
→

∇→
d αβ

Vαβ(bαβ) (4)

where ∇ denotes the gradient operator,
→

dαβ is the vector from pedestrian β to pedestrian α, Vαβ(bαβ) is
the potential field.

Assuming that elliptical equipotential lines exist in this potential field I, an exponentially decreasing
function should exist as Equation (6), depending on the short semi-axis of the ellipse (bαβ), where Aαβ
is the strength of the repulsive force between two pedestrians α and β, Bαβ is the extent of the repulsive
force between two pedestrians.

Vαβ(bαβ) = AαβBαβ exp (−
bαβ
Bαβ

) (5)

where bαβ is the short semi-axis of the elliptical potential field defined as:

bαβ =

√
(‖
→

dαβ‖+ ‖
→

dαβ −
→
v β∆t‖)

2
− (
→
v β∆t)

2

2
(6)

where
→
v β is the walking velocity of pedestrian β, ∆t is the simulation time step.

According to the relationship between the potential field and the force, we obtain:

→

f αβ(
→

d ) = −
→

∇→
d αβ

Vαβ(bαβ) = −
dVαβ(bαβ)

dbαβ

→

∇→
d αβ

bαβ(
→

d ) (7)
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Combining ‖
→
z ‖ =

√
(
→
z )

2
and ∇z‖

→
z ‖ =

→
z /
√
(
→
z )

2
=
→̂
z to simplify the operation (7), thus,

we obtain:
→

f αβ(
→

d ) = Aαβ exp (−
bαβ
Bαβ

)·
‖

→

d ‖+ ‖
→

d −
→
v β∆t‖

2bαβ
·
1
2


→

d

‖

→

d ‖
+

→

d −
→
v β∆t

‖

→

d −
→
v β∆t‖

 (8)

2.2.4. Repulsive Force Exerted by Cyclists on Pedestrians

According to China transportation regulations, cyclists should walk in the crosswalk at
traffic intersections, following traffic lights. Cyclists have an equal road right to the pedestrian.
Consequently, cyclists have an important impact on pedestrian movements at complex traffic
intersections. Given the potential conflict between pedestrian movements and cyclists, we improve the

classic SFM and assume another potential field II for the repulsive force of a cyclist γ,
→

f αγ, as follows:

→

f αγ = −
→

∇→
d αγ

Vαγ(bαγ) (9)

where
→

dαγ is the vector from the cyclist γ to pedestrian α, Vαγ(bαγ) is the potential field following the
exponentially decreasing function as follows:

Vαγ(bαγ) = AαγBαγ exp (−
bαγ
Bαγ

) (10)

Considering the difference in speed between cyclists and pedestrians, the short semi-axis of the
elliptical potential field II (bαγ) is assumed to be:

bαγ =

√
(‖
→

dαγ‖+ ‖
→

dαγ − (
→
v γ −

→
vα)∆t‖)

2
−

[
(
→
v γ −

→
vα)∆t

]2
2

(11)

where
→

dαγ is the vector from cyclist γ to pedestrian α,
→
v γ is the velocity of the cyclist, and

→
vα is the

walking velocity of the pedestrian.
To verify the superiority of elliptical potential field II over the elliptical potential field I in describing

the cyclist impact mode, two scenarios are simulated to compare the two potential fields. Assuming that
the cyclist is stationary,

→
v γ = 0, the short semi-axis bαγ is obtained according to Equation (11) in

elliptical potential field II.

bαγ =

√
(‖
→

dαγ‖+ ‖
→

dαγ +
→
vα∆t‖)

2
− (−

→
vα∆t)

2

2
(12)

According to Equation (6) in the elliptical potential field I, we can obtain:

bαγ = ‖
→

dαγ‖ (13)

(1) Scenario 1

When the pedestrian α moves in the same or opposite direction as a cyclist γ with a common

speed of
→
vα, they share the same values of ‖

→

dαγ‖ and
→
vα∆t but have slightly different values of

ri = ‖
→

dαγ +
→
vα∆t‖. As shown in Figure 5a, r1 is smaller than r2. As the repulsive force monotonously

decreases with the short semi-axis bαγ, the repulsive force exerted by the cyclist on the pedestrian when
they are moving in the opposite directions ( f1) is greater than the force when they are moving in the



Remote Sens. 2019, 11, 925 9 of 19

same direction ( f2), which is consistent with the real-world experience of the pedestrian. In elliptical

potential field I, bαγ = ‖
→

dαγ‖ is a constant value, which indicates equal disturbing forces in both
scenarios and no influence of the relative movement direction on the disturbing force exerted by
the cyclist.
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(2) Scenario 2

When pedestrian α moves toward cyclists with different speeds of v1
α and v2

α (v1
α < v2

α) (Figure 5b),
the pedestrian will respond to the larger repulsive force exerted by the cyclist moving at a higher speed,
which is also consistent with real-world experiences. Conversely, the elliptical potential field I is not
sensitive to speed, and the repulsive force exerted by a cyclist is not related to the speed of pedestrian
α and only related to the distance between the cyclist and the pedestrian.

2.2.5. Vehicle Force

According to Chinese traffic law, vehicles in China are allowed to turn right at a traffic signal even
if it is red. However, drivers do not always yield to pedestrians. Instead, they tend to take advantage
of short pedestrian clearance intervals to pass through intersections; therefore, they exert repulsive
forces on pedestrians and force pedestrians to decelerate and avoid the vehicles. Given the different
speeds of vehicles and pedestrians, similarly, the force of a turning vehicle ω on a pedestrian α in
elliptical potential field II can be expressed as follows:

→

f αω = −
→

∇→
d αω

Vαω(bαω) (14)

where
→

dαω is the vector from the vehicle ω to pedestrian α,Vαω(bαω) is the potential field following the
exponentially decreasing function as below:

Vαω(bαω) = AαωBαω exp (−
bαω
Bαω

) (15)

where Aαω is the strength of the repulsive of a vehicle ω on pedestrian α, and Bαω is the extent of the
vehicle force.
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The short semi-axis bαω of the ellipse of
→

f αω can be expressed as follows:

bαω =

√
(‖
→

dαω‖+ ‖
→

dαω − (
→
vω −

→
vα)∆t‖)

2
−

[
(
→
vω −

→
vα)∆t

]2
2

(16)

where
→
vω is the velocity of the vehicle, and

→
vα is the walking velocity of the pedestrian.

As shown in Figure 6, right-turning vehicles are assumed to be stationary at different positions.
When the pedestrian moves toward the opposite exit at the speed

→
vα, a shorter distance between

the pedestrian and the vehicle corresponds to a smaller elliptical short semi-axis bαω of the force
potential field and to a larger force experienced by the pedestrian. The repulsive force exerted by the
right-turning vehicle is inversely proportional to the distance between the vehicle and the pedestrian.
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2.3. Simulation of Pedestrian Movements at Complex Traffic Intersections

According to the aforementioned influential factors of pedestrian movements, the classic SFM
model is improved to generate an acceleration vector of pedestrians to simulate the movements at
complex traffic intersections. To evaluate the simulation results, the Verlet algorithm is employed to
estimate the pedestrian trajectory. The purpose of the Verlet algorithm is to update the position of
a pedestrian x(t + ∆h) at time t + ∆h using the position x(t) and the acceleration a(t) of the pedestrian at
time t and the sample interval ∆h. First, we perform the Taylor expansion on x(t + ∆h) and x(t− ∆h):

x(t + ∆h) = x(t) + v(t)∆h +
a(t)∆h2

2
+

b(t)∆h3

3!
(17)

x(t− ∆h) = x(t) − v(t)∆h +
a(t)∆h2

2
−

b(t)∆h3

3!
(18)

By adding these two expressions, we can obtain the following positional expression:

x(t + ∆h) = 2x(t) − x(t− ∆h) + a(t)∆h2 (19)

By differentiating these two expressions, we obtain the speed and acceleration:

v(t + ∆h) = v(t) + a(t)∆h +
b(t)∆h2

2
(20)
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a(t + ∆h) = a(t) + b(t)∆h (21)

By substituting b(t) in Equation (22) into Equation (20), we can obtain updated equations for
pedestrian speed and position:

v(t + ∆h) = v(t) + 1/2[a(t) + a(t + ∆h)]∆h (22)

x(t + ∆h) = x(t) + 1/2[v(t) + v(t + ∆h)]∆h (23)

where ∆h is a fixed time interval and accelerations a(t) and a(t + ∆h) are calculated by the improved SFM.

2.4. Calibration of the Pedestrian-Cyclist Conflict Model

The improved SFM involves a variety of parameters, including the free speed of a pedestrian and
the strength and range of forces exerted by the boundary, cyclists, other pedestrians, and vehicles
(see Table 1). The MLE method, a widely used parameter calibration method based on statistical
principles, is employed, using the extracted trajectories of pedestrians, cyclists, and vehicles.

The position of a pedestrian in the next simulation time step,
→

Pα(tk+1), is assumed to be predicted

by the model parameter θ. The moving distance from points
→

Pα(tk) and
→

Pα(tk+1) obeys the normal
distribution with a mean µ and a standard deviation σ. According to the observed trajectories, the mean
µ and a standard deviation σ of the single step distance ∆dα(θ) are estimated. The likelihood function
concerning θ is obtained:

L(θ) =
∏ 1

σ
√

2π
e(−(∆dα(θ)−µ)

2

2σ2 )

=
(2π)−

n
2

(σ2)
−

n
2

exp (−
∑
(‖
→

d
obs

α (tk+1)−
→

d
obs

α (tk)‖−µ)
2

2σ2 )
(24)

Table 1. Count results from the test UAV video

Type TP FP FN Correctness Completeness Quality

Pedestrian 132 5 3 0.964 0.978 0.943
Cyclist 29 2 2 0.935 0.935 0.879
Vehicle 37 0 0 1.0 1.0 1.0
Overall 198 7 5 0.966 0.975 0.943

For simplicity, both sides of Equation (24) are converted by logarithmic functions.
Therefore, the value of θ that corresponds to the maximum of L(θ) can be obtained:

ln L = −
1
2

n ln (2π) −
1
2

n ln (σ2) −

∑
(‖
→

d
obs

α (tk + 1) −
→

d
obs

α (tk)‖ − µ)
2

2σ2 (25)

3. Experiment and Result Analysis

3.1. Experimental Configuration

To evaluate the performance of the proposed approach, this study used the DJI Inspire 1 Pro to
conduct experiments in the high-tech development zone at Nanshan district, Shenzhen. The used
DJI Inspire 1 Pro is equipped with a GPS receiver and a built-in inertial measurement unit (IMU),
which incorporates both a 6-axis gyroscope and an accelerometer for movement compensation.
The camera mounted by the used DJI Inspire 1 Pro is capable of stably recording road traffic at
4K (3840 X 2187) resolution (30fps). The experimental area is located in the center of the Science
and Technology Park, which is a key intersectional area in terms of the massive traffic around the
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commercial and industrial parks. Data were acquired by experienced drone pilots during peak hours
(on- and off-duty hours and lunch breaks) when the pedestrian flow is large to ensure sufficient
numbers of pedestrians, cyclists, and vehicles. The hovering height of the UAV was set to 50 meters
above the ground. Videos of five road intersections were captured and processed. Flying permission
was guaranteed by the local transportation administration. Extreme weather events (i.e., rain, winds,
etc.) were avoided to ensure the safety.

3.2. Pedestrian and Cyclist Detection and Localization

To build the training set, we subsampled the raw UAV videos every 60 frames to generate the
image set and manually annotated categories and locations of ground objects, such as pedestrians,
cyclists, and vehicles. We trained PFPNet using these annotated images. Then, testing images were fed
into the trained detector to produce sets of predicted boxes with class confidence scores, which were
used to generate final trajectories.

To evaluate the performance of the proposed detection and tracking algorithm, we counted
the number of pedestrians, cyclists, and vehicles in a sample of the obtained UAV videos. To be
more specific, we used PFPNet to detect the ground objects (203 in total) and employed the KCF
algorithm to keep track of them. We used the bounding box coordinates to mark the type and the
location of the tracked objects. Hence, counting was done by simply tallying the number of bounding
boxes. We quantitatively evaluated the counting result via the correctness (Cor), completeness (Com),
and quality (Qua), which are defined in [45] as:

Correctness =
TP

TP + FP
(26)

Completeness =
TP

TP + FN
(27)

Quality =
TP

TP + FP + FN
(28)

The true positives value (TP) denotes the number of correctly detected ground objects, the false
positives value (FP) represents the number of invalid detections, and the false negatives value (FN)
denotes the number of missed objects. Among the three evaluation criteria, quality is most important,
since it considers both the correctness and completeness of detection algorithms.

We report the count results for all types of ground objects in Table 1. The detection and tracking
algorithm works very well, and nearly all types of ground objects are accurately detected and
tracked, especially vehicles, which achieve 100% quality. We noted that a few pedestrians and cyclists
cannot be correctly recognized as the quality of the results for pedestrian and cyclist are 94.3% and
87.9%, respectively. These results occurred because some bicycles were largely occluded by their
cyclists, making them look very similar to pedestrians from the bird’s eye view of the high-resolution
UAV videos.

After processing the UAV videos, we extracted 2134 trajectories of pedestrians, cyclists, and vehicles.
A total of 203 trajectories were of pedestrians and were impacted by cyclists, vehicles, or both.
Figure 7 provides an example of an extracted pedestrian trajectory at one intersection.



Remote Sens. 2019, 11, 925 13 of 19
Remote Sens. 2019, 9, x FOR PEER REVIEW  13 of 18 

 

 

Figure 7. An example of a pedestrian trajectory. The image with the yellow boundary is the tracking 
result of one pedestrian in one frame. After processing one UAV video, the table at the upper left is 
obtained, showing the location set of the target. 

The improved SFM contains a set of parameters, including the free speed of a pedestrian and 
the strength and range of forces exerted by the boundary, cyclists, other pedestrians, and vehicles. 
The parameters that are measurable but difficult to derive from the observed dataset were set by 
referring to related studies. Other parameters that do not have concrete physical meanings but can 
be indirectly derived from the pedestrian trajectories were calibrated by MLE in the MATLAB 
program. According to related studies, the free passage speed can be 1.5 m/s and the time needed for 
a pedestrian to recover from their actual speed to the expected speed is 0.5 s. The p-value of the 
strength and range of each force is less than 0.05 at the 95% confidence level; all the parameters in the 
improved SFM are significant. 

Both the classic and improved SFM were used to simulate pedestrian positions at complex traffic 
intersections, assuming a pedestrian mass ranging from 45 to 75 kilograms and a simulation time step 
∆t of 0.2 s. The simulation results were compared with the corresponding pedestrian trajectories 
acquired by the UAV, in terms of absolute positioning accuracy and mean average percent error 
(MAPE). The obtained results are reported in Table 2. The results demonstrate that the classical SFM 
achieves a positioning accuracy of 0.33 meters, with a MAPE of 12.43%. By considering additional 
influences of cyclists and vehicles, the improved SFM provides better performance, with a 
positioning accuracy of 0.25 meters and a MAPE of 9.04%.  

Table 2. Accuracy of simulation results using the social force model  

 Classical SFM Improved SFM 

Positioning accuracy (meters) 0.33 0.25 

MAPE 12.43% 9.04% 

 
Figure 8 provides an example to evaluate the performance of the improved SFM. Figure 8a 

shows the recognition results of the pedestrian movements influenced by the boundary and cyclists. 
Figure 8b illustrates the force that the pedestrian experiences in the improved SFM. The boundary 

Figure 7. An example of a pedestrian trajectory. The image with the yellow boundary is the tracking
result of one pedestrian in one frame. After processing one UAV video, the table at the upper left is
obtained, showing the location set of the target.

3.3. Performance of the Improved Social Force Model

To assess the performance of the improved SFM, 80% of the pedestrian trajectories were selected
to calibrate the SFM. The remaining 20% of the pedestrian trajectories were employed to simulate
pedestrian movements at complex traffic intersections to evaluate the SFM’s accuracy.

The improved SFM contains a set of parameters, including the free speed of a pedestrian and
the strength and range of forces exerted by the boundary, cyclists, other pedestrians, and vehicles.
The parameters that are measurable but difficult to derive from the observed dataset were set by
referring to related studies. Other parameters that do not have concrete physical meanings but can be
indirectly derived from the pedestrian trajectories were calibrated by MLE in the MATLAB program.
According to related studies, the free passage speed can be 1.5 m/s and the time needed for a pedestrian
to recover from their actual speed to the expected speed is 0.5 s. The p-value of the strength and range
of each force is less than 0.05 at the 95% confidence level; all the parameters in the improved SFM
are significant.

Both the classic and improved SFM were used to simulate pedestrian positions at complex traffic
intersections, assuming a pedestrian mass ranging from 45 to 75 kilograms and a simulation time
step ∆t of 0.2 s. The simulation results were compared with the corresponding pedestrian trajectories
acquired by the UAV, in terms of absolute positioning accuracy and mean average percent error
(MAPE). The obtained results are reported in Table 2. The results demonstrate that the classical SFM
achieves a positioning accuracy of 0.33 meters, with a MAPE of 12.43%. By considering additional
influences of cyclists and vehicles, the improved SFM provides better performance, with a positioning
accuracy of 0.25 meters and a MAPE of 9.04%.

Table 2. Accuracy of simulation results using the social force model

Classical SFM Improved SFM

Positioning accuracy (meters) 0.33 0.25
MAPE 12.43% 9.04%
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Figure 8 provides an example to evaluate the performance of the improved SFM. Figure 8a
shows the recognition results of the pedestrian movements influenced by the boundary and cyclists.
Figure 8b illustrates the force that the pedestrian experiences in the improved SFM. The boundary
force always exists when the pedestrian is crossing an intersection. The boundary force behaves as
an attractive force during the first 17 s when the pedestrian is within the crosswalk, and the force
strength is proportional to the distance between the pedestrian and the boundary. As the pedestrian
enters the crosswalk, the boundary force becomes a repulsive force with a strength that is inversely
proportional to the distance between the pedestrian and the boundary. The initial repulsive force
exerted by cyclists is 0. During the time interval between 19 and 32 s, conflicts among the pedestrian
and cyclists γ1 and γ2 emerge. Because the distance between them is small, the repulsive forces
suddenly increase. Once the pedestrian passes a cyclist, the force exerted by the cyclist gradually
reduces to zero. Figure 8c shows the estimated position and trajectory of pedestrian α1 in different
models. To visually analyze the model performance, the MAPEs of estimated trajectories in the x and y
directions are calculated. The maximum error of the improved SFM is 0.21 m, less than 0.47 m for
classic SFM. The difference between the two models is primarily observed in the conflict area between
pedestrians and cyclists. The improved model can estimate the pedestrian position and trajectory
better than the traditional model.

Figure 9 shows another pedestrian’s movement affected by the boundary, cyclists, and nearby
pedestrians. Figure 9a illustrates the recognized pedestrians and cyclists. Figure 9b shows that the
cyclist force has the largest influence on the pedestrian’s movement, which is determined by their
speeds and the distance between the cyclist and the pedestrian. The force exerted by surrounding
pedestrians has the second largest impact on the pedestrian’s movement, which primarily occurs
during the first 40 s when conflicts among pedestrians emerge; its strength is inversely proportional to
the distance between two pedestrians. The boundary force always exists as the pedestrian remains
within the crosswalk. Figure 9c displays the extracted and simulated trajectories. The maximum
error of the improved SFM is 0.58 m, less than 0.88 m for classic SFM, which demonstrates the better
performance of the improved SFM in describing the pedestrian movement as impacted by complex
disturbances. In addition, the MAPE, which reflects the average error of the estimated position in each
step of the simulation, is evenly distributed in the conflict area throughout the simulation process,
which causes an indistinct difference in the model simulation accuracy.
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Remote Sens. 2019, 11, 925 16 of 19

4. Conclusions

Simulation of intersections is important to track and simulate pedestrian movements at these
intersections. Correspondingly, a UAV-based method is proposed to track and simulate pedestrian
movements at complex traffic intersections. High-resolution UAV videos of the intersections are
employed to extract high-resolution movements of pedestrians, cyclists, and vehicles. Given the
potential conflicts among pedestrians, cyclists, and vehicles, an improved social force model that
considers the surrounding pedestrians, boundaries, cyclists, and right-turning vehicles is proposed
and calibrated for pedestrian movement simulation. Videos acquired of intersections in Shenzhen City
are utilized for high-precision pedestrian movement simulation. The results demonstrate that

In this study, a UAV is employed as a pedestrian monitoring platform to provide high-precision
pedestrian trajectories at complex traffic intersections for the improved social force model,
which significantly improves the simulation accuracy. The following aspects require additional attention
in future research: (1) the UAV-based method is subject to slight drift during flight, which reduces
the accuracy of trajectory data acquisition. Ground control points can assist in UAV image correction
and improve absolute positioning accuracy. On the other hand, additional factors associated with
pedestrians movements should be included in the presented SFM, such as pedestrian’s psychology
and pedestrian density. (2) Following the connected UAV approach [53,54], the experiment at one
traffic intersection will be extended to monitoring and simulating pedestrian movements at a set of
intersections, simultaneously using connected UAVs [55] and cloud services [43].
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