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Abstract: The existing unsupervised multitemporal change detection approaches for synthetic
aperture radar (SAR) images based on the pixel level usually suffer from the serious influence of
speckle noise, and the classification accuracy of temporal change patterns is liable to be affected
by the generation method of similarity matrices and the pre-specified cluster number. To address
these issues, a novel time-series change detection method with high efficiency is proposed in this
paper. Firstly, spatial feature extraction using local statistical information on patches is conducted
to reduce the noise and for subsequent temporal grouping. Secondly, a density-based clustering
method is adopted to categorize the pixel series in the temporal dimension, in view of its efficiency
and robustness. Change detection and classification results are then obtained by a fast differential
strategy in the final step. The experimental results and analysis of synthetic and realistic time-series
SAR images acquired by TerraSAR-X in urban areas demonstrate the effectiveness of the proposed
method, which outperforms other approaches in terms of both qualitative results and quantitative
indices of macro F1-scores and micro F1-scores. Furthermore, we make the case that more temporal
change information for buildings can be obtained, which includes when the first and last detected
change occurred and the frequency of changes.

Keywords: time-series SAR images; change detection and classification; statistical feature extraction;
temporal clustering

1. Introduction

Change detection is a process of automatically analyzing and identifying the variation of Earth’s
surface objects based on multitemporal remote sensing images acquired in the same region at different
times [1–3]. As an important application of remote sensing image analysis, change detection provides
an effective technological mean for land use and land cover monitoring [4,5], urban planning and
management [6,7], natural disaster assessment and rescue [8], etc.

Optical images have been widely used in remote sensing change detection due to the good
interpretability and rich variety of band information [9]. However, in practice they are limited
by various weather factors and by nighttime, especially for some urgent tasks, such as real-time
damage investigation in disaster areas, which is usually accompanied by bad weather conditions.
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In contrast, synthetic aperture radar (SAR) is an active microwave imaging radar capable of imaging
all day without relying on a light source. In addition, it is immune to severe weather such as clouds,
fog, and rain because of the microwave working band, enabling all-weather imaging. Accordingly,
change detection studies based on multi-temporal SAR images have recently been paid more attention
by researchers [10–13].

Since the 20th century, a variety of spaceborne SAR systems have been launched and put into use,
with the new generation of SAR satellites with high resolutions and short revisit periods making it
possible to acquire time-series SAR images in the same area [14–16]. On the one hand, the objective
situation is that large amounts of historical SAR data have been accumulated over the past decades,
and the temporal resolution of SAR images is getting higher and higher. On the other hand, bi-date
change detection presents a difficulty for meeting the subjective requirements of processing a large
number of remote sensing data analysis tasks in terms of efficiency and workload. In addition, long
time-series SAR data completely record the dynamic change process of the Earth’s surface, while it
is hard for bi-date change detection methods to fully mine and exploit this spatiotemporal change
information. Therefore, this paper explores change detection based on time-series SAR images (more
than two dates) in order to analyze the temporal pattern of change in ground objects.

Many change detection methods have been proposed to efficiently and accurately extract change
information from remote sensing images, and these can be grouped into two categories [17,18]:
(i) unsupervised direct comparison methods; (ii) supervised post-classification comparison (PCC)
methods. PCC methods uses the image object as the basic unit in change analysis and simultaneously
detects the change area and the change type. However, it is highly dependent on the accuracy of
single-date SAR image classification, i.e., the accumulative error caused by separate classification will
decrease the precision of change detection. Compared with supervised PCC methods, change detection
based on unsupervised direct comparison is relatively simple, straightforward, and does not require a
manually labeled training set [19]. Due to these reasons, we adopt the unsupervised method to study
change detection in time-series SAR images.

Compared to bi-date change detection, the literature about time-series change detection is
sparse, especially regarding SAR images. Nevertheless, the continued development of SAR satellite
technology is gradually providing a favorable environment for the study of multi-date change
detection. Some researchers have proposed an approach to detecting changes in time-series images by
simply making a pairwise comparison of consecutive images; however, this has several unavoidable
drawbacks, such as the method being time-consuming and unable to detect small, continuous
changes [20]. In general, most existing methods for change detection in multitemporal SAR images can
be grouped into the following two types according to the different ways of using time-series images:
(i) simultaneous comparison; (ii) pairwise traversal comparison. These two methods extend bi-date
change detection to multi-date analysis from different perspectives. The first approach concurrently
compares pixels at all times in the same position by means of statistical hypothesis testing method called
an omnibus test. A method that exploited the analysis of variance (ANOVA) model to detect abrupt
changes in urban areas was presented by Dogan et al. [21], which measured the relationship between and
within pixel groups in the temporal dimension by testing the hypothesis of the means of all distributions
being equal. Conradsen et al. [20] performed a simultaneous test for the hypothesis of homogeneity
of multitemporal polarimetric SAR data and derived a likelihood ratio test statistic based on the
complex variance–covariance matrices to determine if at least one change happened in a time sequence.
Muro et al. [22] applied the omnibus method to wetlands change detection using time-series Sentinel-1
images and demonstrated its superiority over commonly-used pairwise comparisons of successive
images. To suppress speckle noise and decrease the false alarm rate, Liu et al. [23] took advantage of the
statistical region merging (SRM) algorithm to segment the difference image obtained by omnibus test
statistics. The second approach, pairwise traversal comparison, commonly generates a change criterion
matrix (CCM) by bi-date traversal analysis using similarity cross tests, which identifies the presence
of changes between two dates, instead of consecutive dates. For instance, Atto et al. [24] conducted a
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spatiotemporal analysis of time-series images at the image level based on the proposed multi-date
divergence matrices computed on wavelet and curvelet features. In multitemporal change analysis,
an algorithm using similarity measurements was put forward to generate a change detection matrix
(CDM) [25], which was conducive to improving detection accuracy. Su et al. [26] came up with a new
time-series change detection framework combining the modified likelihood ratio-based CCM and
spectral clustering methods to realize change detection and classification simultaneously.

Apart from the abovementioned two major approaches, there are some other methods suitable for
time-series change detection. By computing the log-cumulants on the spatiotemporal neighborhood,
Bujor et al. [27] detected the discontinuity of the cumulants to obtain the change information. In [28],
a method that calculated the adaptive threshold based on the extension of the ratio of different means
was proposed, which was appropriate for both bi-date and multi-date change detection. In practice,
it is not only necessary to detect the changed area, but also to identify and classify the change pattern
(including step change, impulse change, cycle change, and complex change) [26] in the temporal
dimension so as to understand the evolution of the ground features. However, the hypothesis testing
method usually only detects whether change takes place or when the change occurs, and the change
criterion matrix method is time-consuming due to the traversal comparison and suffers from a relatively
high false positive rate because of the pixel-based operation. To overcome these problems, a time-series
change detection method with better detection accuracy and high efficiency that can judge change
behavior and patterns in time should be developed.

In this paper, we propose a novel unsupervised change detection method for SAR image time-series
that makes full use of local spatial information and temporal similarity to reduce the false alarm rate
and enhance the classification accuracy of the change pattern. Firstly, the statistical feature of each
local patch is extracted as the basic analysis object by maximum likelihood estimation (MLE). Secondly,
a direct density-based clustering method (named DBSCAN) is applied in order to obtain similar
categories using the time-series features. Finally, the change pattern is derived by a differential of the
clustering results. As the city of Beijing, China, has undergone rapid changes due to the construction of
an urban sub-center, the proposed method was used to detect and classify the changes in the Tongzhou
District of Beijing.

The rest of this paper is organized as follows: in Section 2, the framework of the proposed
time-series change detection method is described and the theoretical knowledge involved is introduced
in detail. Section 3 shows the experimental results and analysis of synthetic and realistic time-series
SAR datasets to verify the effectiveness of the proposed approach. Section 4 then discusses the results,
and conclusions are drawn in Section 5.

2. Materials and Methods

In this section, we propose a novel time-series change detection method for SAR images to improve
classification accuracy and decrease the influence of speckle noise. Each step of the algorithm will be
introduced in detail. The workflow of the proposed approach is depicted in Figure 1, which illustrates
the overall procedure and the role of each part in the process.
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Figure 1. The workflow of the proposed time-series change detection method.

2.1. Time-Series SAR Data Preprocessing

Before running the time-series change detection algorithm, it is essential to perform several
fundamental preprocessing operations on SAR images that contribute to reducing the impact
of irrelevant factors (e.g., mismatched error and speckle noise) on change detection results.
The preprocessing procedures involved in SAR image change detection are primarily radiometric
calibration, co-registration, and speckle filtering. Radiometric calibration [29] minimizes the differences
between the image radiometry and makes SAR images acquired on different dates comparable.
The pixel values can represent the backscattering characteristics of ground objects after correction.
Image co-registration is another important procedure for change detection that ensures that the spatial
position of the same targets within different images is identical. Mis-registration will result in serious
false alarms and generate many pseudo-change points in the detection results, thus the registration
accuracy of multitemporal images must be at the sub-pixel level [30]. In addition, SAR images suffer
inherent speckle noise due to the imaging mechanism, and speckle filtering is an indispensable step
required to suppress the noise and improve the visual quality and interpretability of SAR images. For the
time-series case, we employ the multitemporal despeckling method to reduce noise, in consideration
of its remarkable effect on details and edge information preservation and its ability to conserve spatial
resolution. In this paper, the GAMMA software packages [31] are used to implement radiometric
calibration and co-registration, and we adopt multitemporal SAR block-matching and 3D filtering
(MSAR_BM3D) [32] for denoising, which can greatly reduce the speckle effect and ensure the ground
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objects in filtering results are unchanged by searching similar points in spatiotemporal neighborhoods
with non-local means.

2.2. Spatial Statistical Feature Extraction

SAR images are susceptible to speckle noise, which often affects the accuracy of applications
that exploit SAR amplitude information, such as ground object classification and change detection.
In particular, the fluctuation of original pixel value sequences caused by speckle noise may lead to
a large amount of false alarms in time-series change detection results. The multitemporal filtering
applied in the preprocessing stage has greatly suppressed speckle noise, but the traditional pixel-based
methods may still be affected. Therefore, we extract features based on local statistics information to
further reduce the influence of speckle noise before temporal clustering, which is the first function of
this step.

In addition, image feature extraction is a key step in image recognition and classification tasks.
In this work, it is necessary to simultaneously detect the changed region in space and classify the
change pattern in time as accurately as possible, which requires that the selected features are not only
able to represent the SAR image well, but also to distinguish between different change categories,
and this is the main aim of this step. Prior knowledge plays an important role in the feature extraction
process, considering that the areas in the experimental data are principally cities and buildings, we use
the lognormal distribution to describe the statistical properties of SAR images [33] as it is a good
representation of heterogeneous terrain in high resolution SAR data. The probability density function
(PDF) of the lognormal distribution is as follows:

f (x) =
1

xσ
√

2π
exp

− (lnx− µ)2

2σ2

, (1)

where x is a positive random variable denoting the pixel amplitude in this study, µ and σ denote the
mean and standard deviation of ln x, respectively.

We assume that the amplitudes of pixels in a local patch in SAR images follow a lognormal
distribution with parameters (µ, σ), i.e., xi ∼ fL(x;µ, σ), i = 1, . . .w0, where w0 is the total number of
pixels in a patch. Specifically, each local patch is a square window centered at the mth pixel with
size of s× s (w0 = s× s), as shown in the feature extraction step in Figure 1. By sliding the window,
the local regions corresponding to each center pixel can be obtained. Thus, the likelihood function for
the parameters of a patch can be derived as follows:

L(µ, σ|x ) =
(

1

σ
√

2π

)w0 1∏w0
i=1 xi

exp
(
−

1
2σ2

∑w0
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(ln xi − µ)

2
)
, (2)

The parameters are then obtained by Equation (3) according to the maximum likelihood estimation
(MLE) method:

µ̂, σ̂ = argmax
µ,σ

L(µ, σ|x ), (3)

By taking the partial derivative of the likelihood L(·) with regard to the parameters (µ, σ),
respectively, and setting it to 0, we can derive the MLE of µ and σ:

µ̂ =
1

w0

w0∑
i=1

lnxi

σ̂2 =
1

w0

∑w0

i=1
(lnxi − µ)

2.

(4)
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Here, the parameter µ̂ is regarded as the statistical feature of each patch in SAR images, which is
able to better suppress the speckle noise and represent the center scatterer of the patch because of the
operation of the statistical mean and proper distribution selection.

2.3. Temporal Grouping Using a Density-Based Clustering Method

After extracting the statistical features of all images, an unsupervised method called density-based
clustering of application with noise (DBSCAN) [34] is introduced to group the temporal feature
sequence at every position. The DBSCAN method assumes that categories can be determined by the
closeness of the sample distribution, thus a clustering category will be obtained by dividing closely
connected samples into one class. Compared to traditional clustering methods, it does not need to
specify the number of clusters in advance and can effectively process abnormal points and find clusters
of arbitrary shapes, which is suitable for similar pixel grouping and change pattern identification in
the temporal dimension.

Consider a set of temporal features D =
{
µl1,µl2, . . . ,µln

}
at a certain position to be clustered,

where n is the number of SAR images, and l denotes the same spatial location in the image. Let ε be
the radius of the neighborhood in a sample and minPts be the minimum number of points required
to form a dense region. The metric used in this study is the Euclidean distance. Some key concepts
related to DBSCAN are defined as follows, and a diagram is given to better illustrate the relationships
among these concepts (see Figure 2):

• Core point: for any sample µl j ∈ D, it is regarded as a core point if at least minPts are included in
the circle area centered on µl j with a radius of ε.

• Directly density-reachable: µli is directly density-reachable from µl j if µli is within the distance ε
of core point µl j. Note that it does not satisfy the symmetry unless µli is also a core point.

• Density-reachable: µli is density-reachable from µl j if there is a sample sequence p1, p2, . . . , pT

with p1 = µli, pT = µl j, and pt+1 is directly density-reachable from pt, where all samples in the
sequence are the core points, or in other words, the density-reachable meets the transitivity.

• Outliers: µl j is an outlier or a noise point if it is not density-reachable from any other sample in D.

Figure 2. The relationships among key concepts of density-based clustering of application with noise
(DBSCAN) (minPts = 4 is used as an example).

In Figure 2, we set the minPts to 4 as an example. The red points are core points because they
all contain at least 4 points within the circle with radius of ε. The green points are non-core points as
they are directly-reachable from the adjacent red point and reachable from other red points, and these
points form a single cluster. The blue point is an outlier and it is not reachable from any other point.
On the basis of the above definitions, the clustering procedure can be summarized in Algorithm 1,
as shown below.
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Algorithm 1. Temporal clustering for the pixel sequence (DBSCAN).

Input: temporal features D =
{
µl1,µl2, . . . ,µln

}
of the patch sequence and the neighborhood parameters

(ε, minPts).
Output: the clustering labels for the pixel sequence.
1: Mark all samples in dataset D as unvisited, initialize the cluster index CI = 0;
2: for each sample q in dataset D do
3: if q has been classified as a cluster or marked as noise then
4: continue;
5: else
6: if the samples contained in neighborhood of q (Nε(q)) is less than minPts then
7: Mark q as a outlier or noise point;
8: else
9: Mark q as a core point, create a new cluster C and add all points in Nε(q) to C,
10: CI = CI + 1 and assign the cluster index of q as CI;
11: for each point (r) unvisited in Nε(q) do
12: Add the point in Nε(r) unclassified into any other cluster to C if Nε(r) contains at least
minPts points;
13: Assign the cluster index of r as CI;
14: end for
15: end if
16: end if
17: end for

2.4. Classification with a Discrete Differential Strategy

In order to identify the temporal change pattern of each scatterer in space, the sequence of
categories obtained after clustering should be classified. According to the clustering results, the change
behavior in time can be divided into four types [26]: step change, impulse change, cycle change,
and complex change (see Table 1 below). A step change means the ground object was unchanged at
first but has changed since a certain date; its cluster label series form is {1,1, . . . ,2,2, . . . }. An impulse
change means the ground object was unchanged at the beginning, then changed since a certain date
but has changed back to the original state since another date; its cluster label sequence form is {1,1,
. . . ,2,2, . . . ,1,1, . . . }. A cycle change indicates that the ground feature changed periodically and the
corresponding label sequence is {1,1, . . . ,2,2, . . . ,1,1, . . . ,2,2, . . . }; the number of clusters of above
change types is 2. Finally, changes with more than two clusters (≥ 3) are defined as complex changes
because of the complicated transformation. For instance, newly-built shopping malls, residential areas,
industrial zones, and other buildings are usually considered as step changes in the urban process,
impulse changes and cycle changes correspond to the variation of construction facilities or moving
targets such as cars, boats, and airplanes in high resolution images, and complex changes include the
remaining cases of complicated change, e.g., changing from bare soil to agricultural land and then
into buildings.

Table 1. The corresponding relation between different change types and category sequences.

Change Types Number of Clusters Category Sequence Example

Unchanged 1 {1,1, . . . }
Step change 2 {1,1, . . . ,2,2, . . . }

Impulse change 2 {1,1, . . . ,2,2, . . . ,1,1, . . . }
Cycle change 2 {1,1, . . . ,2,2, . . . ,1,1, . . . ,2,2, . . . }

Complex change ≥ 3 {1,1, . . . ,2,2, . . . ,3,3, . . . ,4,4, . . . }

The clustering results are usually more complicated in practice and a fast classification method
with generality is needed. Hence, we propose a strategy based on a first-order finite difference method
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to distinguish between different change patterns. The expression of the forward difference can be
given by

∆hF(x) = F(x + h) − F(x), (5)

where the spacing h denotes the time interval between adjacent dates and is taken to be 1, and F(x)
is the cluster label of each pixel in time. After differential processing, the characteristics of each
change type is prominent and easily distinguishable. For instance, the step change is reduced to an
impulse response and the impulse change becomes two impulse responses with opposite positive and
negative symbols.

2.5. Quantitative Evaluation Criteria

To verify the performance and effectiveness of each method, it is necessary to quantitatively
evaluate the change detection results. Given the ground truth, a quantitative assessment can be
obtained by comparing the detection results with a truth map. In bi-date change detection, a series of
indicators based on the binary confusion matrix are often used. Analogously, we utilize multi-class
confusion matrix-based indices that are extended from the binary case as the quantitative evaluation
criteria for time-series change detection results. From the confusion matrix, the precision (PR) and recall
(RE) of each change type are calculated and the comprehensive indices indicating overall performance
are given by the macro F1-score (Fmacro) and micro F1-score (Fmicro) [35], which are defined as follows:

Fmacro =
1
n

n∑
i=1

Fi

Fi =
2× PRi ×REi

PRi + REi

PRi =
TPi

TPi + FPi

REi =
TPi

TPi + FNi
,

(6)

Fmicro =
2× PRmicro ×REmicro

PRmicro + REmicro
=

∑n
i=1 TPi

N

PRmicro =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FPi

REmicro =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FNi
,

(7)

where TPi denotes the number of pixels correctly classified as change type i, FPi denotes the number of
pixels incorrectly classified as type i, FNi denotes the number of pixels of type i that are incorrectly
classified as other types, and Fi denotes the F1-score of each class. N is the total pixel number of the
image, i = 1, . . . , n, and n is the number of change types (here n = 5).

The macro-averaging and micro-averaging measure the accuracy of multi-class classification tasks
from different angles. Macro-averaging gives each class the same weight, while micro-averaging gives
the same weight to each sample. In other words, the former considers each class separately and the
latter takes all categories into account simultaneously. In addition, the micro-averaging is actually
equivalent to the overall accuracy (OA) according to Equation (7).

3. Experiments and Results

3.1. Study Site and Dataset Description

The proposed approach is tested on a time-series dataset of TerraSAR-X remote sensing images.
TerraSAR-X is a commercial Earth observation SAR satellite working at X-band that was jointly
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developed by the German government and industrial circles and was launched in 2007. It can acquire
high-quality SAR images of all areas with a 1~16m spatial resolution under different imaging modes,
and the revisit period is shortened to 11 days. The high resolution of TerraSAR-X images enables the
accurate mapping of independent buildings, urban structures, and infrastructure, which are commonly
used in change detection tasks with regard to the evolution of cities. The study site in this work is
located in the Tongzhou District of Beijing, China (shown in Figure 3a, with the district line in red).
As the administrative sub-center of the capital, Tongzhou has been undergoing rapid changes in
recent years, and the demolition and construction of buildings in this area is conducive to validating
the effectiveness of different change detection algorithms. Figure 3b shows the first image of the
multitemporal dataset, which consists of 8 SAR images of the same region acquired from January 22,
2012 to May 20, 2013 with a size of 1000×1000 pixels and 3 m resolution. The pixel spacing in range
and azimuth directions are 0.9 m and 1.9 m, respectively. The ground features covered by the dataset
are mainly residential areas, roads, bridges, and a river, and the dominating change is caused by
building constructions.

Figure 3. The time-series dataset of TerraSAR-X remote sensing images in the Tongzhou District of
Beijing: (a) The study site; (b) The first scene of the dataset and corresponding optical image.

3.2. Experimental Setup and Paramter Setting

In this paper, two experiments were designed to verify the performance of the proposed method
based on a time-series dataset: a synthetic simulation experiment and a realistic data experiment.
The change region and change type can be set manually in the synthetic test, which ensures the
accuracy of the ground truth and compares each method under a relatively ideal condition. Then,
the proposed approach was evaluated in the real case to demonstrate the effectiveness for time-series
change detection. Both experiments were comprehensively analyzed in terms of qualitative results
and quantitative indices.

In the two experiments, our method was compared with the other three multitemporal change
detection methods to demonstrate its superiority, namely, normalized cut on change criterion
matrix (NORCAMA) [26] and two improved approaches using local information according to the
NORCAMA framework called the normalized cut on Kullback–Leibler divergence-based change
matrix (NOR_KLD) [25] and the normalized cut on two-sample Kolmogorov-Smirnov test-based
change matrix (NOR_KS2) [36], respectively. The optimal parameters of all experiments were obtained
by the trial-and-error method. The parameters involved in the proposed framework are size of local
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window in spatial feature extraction and the ε and minPts in temporal clustering. These were set based
on the heuristic method of the k-distance graph [34,37,38]: the window size was 3×3, ε = 0.3 ∼ 0.4,
and minPts = 2. The details of the parameters set for the three comparison methods are the following:
(1) in the NORCAMA approach, the threshold was set by τGLRT= 0.9 with a false alarm rate of 1%;
(2) the local window size of NOR_KLD was 5×5; (3) in NOR_KS2, the significant level was set as
αKS2 = 0.05, and the window size was 7×7.

It should be noted that the spatial window sizes adopted by the three local statistics-based
approaches of the proposed method, NOR_KLD, and NOR_KS2 are different because they are the
optimal sizes obtained by the trial-and-error method, which ensures that the selected parameters
reflect the best performance of each approach. Therefore, the window sizes used in different methods
may not be the same. To make the process of size selection more clear, the influence of different
window sizes on the quantitative results (macro F1-score and micro F1-score) of synthetic time-series
datasets (see Section 3.3.1) for the above three approaches are analyzed and shown in Figure 4. It can
be seen from the figure that the highest accuracy of the proposed method, NOR_KLD, and NOR_KS2
is achieved when the window sizes are 3×3, 5×5, and 7×7, respectively. Accordingly, these are chosen
as the optimal sizes of the local window in each method.

Figure 4. Quantitative results of macro F1-score and micro F1-score for three local statistics-based
approaches with different spatial window sizes (other parameters are fixed): (a) The proposed method;
(b) normalized cut on Kullback–Leibler divergence-based change matrix (NOR_KLD); (c) normalized
cut on two-sample Kolmogorov-Smirnov test-based change matrix (NOR_KS2).

3.3. Experimental Results and Analysis

3.3.1. Test on Synthetic Time-Series SAR Images

As shown in Figure 5, the simulated experiment is designed on the basis of real SAR images.
Firstly, 8 co-registered TerraSAR-X images are used as input for multitemporal filtering, and one
denoised image is approximately taken as the noise-free image (see Figure 5a). Then, the noise-free
image is regarded as a base map where the change is added at different times. The change areas added
therein are 10 small rectangles that are randomly distributed in images with a length and width of
15~25 pixels, including all 4 change types: step change (in red), impulse change (in green), cycle change
(in blue), and complex change (in yellow). The details of the sizes of the 10 change areas are listed
in Table 2. Finally, 1-Look speckle noise is added in all images to generate 6 realistic SAR synthetic
images. Figure 5c shows an example of each change type. The ground truth map is shown in Figure 5b.
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Figure 5. The synthetic time-series synthetic aperture radar (SAR) dataset (6 1-Look images): (a) The base
map of an approximately noise-free image; (b) Ground truth of manually set changes; (c) Example of
four change patterns (black: no change, red: step change, green: impulse change, blue: cycle change and
yellow: complex change).

Table 2. The size of 10 change areas.

Change
Areas Step Change (Red) Cycle Change (Blue) Impulse Change

(Green)
Complex

Change (Yellow)

Length 20 23 16 19 17 17 18 19 20 21
Width 20 23 18 25 16 23 20 22 17 18

The time-series change detection and classification results of the synthetic SAR images are given in
Figure 6. The spatial change detection results are first analyzed, and it can be seen from the figure that
the 10 rectangular change regions have been well detected by the four methods. However, there are
many false alarm pixels in the detection map of NORCAMA (shown in Figure 6a) due to speckle
noise, which is difficult to avoid in a pixel-based approach. In contrast, the other three methods
take advantage of local statistical information to effectively reduce noise and the false positive rate,
thus the detection accuracy of the unchanged regions (in black) shown in Figure 6b–d has been
greatly improved. The temporal classification performance of each method for the detected change
regions is then compared. All four methods show good classification results for step changes, impulse
changes, and cycle changes, while a relatively large difference occurs when classifying complex change.
To compare different methods more clearly, a white rectangle is used to point out the area where the
complex changes take place, as shown in Figure 7. It can be observed that the proposed method
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shows better classification performance on the yellow block in the lower left corner, especially in the
preservation of edge smoothness. In addition, our method shows the least misclassification of the
type of complex change. This may be due to the robustness of DBSCAN to noise. On the whole,
the proposed method achieves the best detection and classification results on synthetic SAR data from
the aspect of qualitative analysis.

Figure 6. The time-series change detection and classification results of synthetic case: (a) normalized
cut on change criterion matrix (NORCAMA); (b) NOR_KLD; (c) NOR_KS2; (d) Proposed method.

Figure 7. Classification results for complex changes in the white box area: (a) NORCAMA;
(b) NOR_KLD; (c) NOR_KS2; (d) Proposed method.

To assess the change detection and classification results among different approaches more
precisely, we adopt indices of macro F1-score and micro F1-score based on a multi-class confusion
matrix, as previously mentioned. The quantitative results obtained by the four methods are shown in
Tables 3 and 4. Table 3 lists the confusion matrix for each method in detail, which calculates statistics
of the classified pixel number by comparing the actual label in the ground truth with the predicted
types and represents whether the algorithm is confusing different classes. In Table 4, the precision,
recall, and F1-score of five classes are calculated according to the confusion matrix, which embodies the
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classification accuracy of each approach in different change types. From the table, we can see that the
highest macro F1-score and micro F1-score are both achieved by the proposed method. Our method
also attained the best results in the classification of every single category. For the index of micro
F1-score (namely overall accuracy), the gap among all approaches is small as the unchanged class
accounts for a large proportion of all types, i.e., data is imbalanced. This is common in change
detection applications because the changed ground objects are few compared to the unchanged regions.
Therefore, macro-averaging is introduced to provide a more comprehensive evaluation of each method,
especially in terms of classification capability. As a whole, the quantitative results show good agreement
with the above qualitative analysis.

Table 3. The multi-class confusion matrix of different classification results using synthetic data:
(a) NORCAMA; (b) NOR_KLD; (c) NOR_KS2; (d) Proposed method.

Actual Class
Classification Results

Unchanged Step Impluse Cycle Complex

Unchanged 988761 2202 3753 1236 197
Step 0 1214 0 0 3

Impluse 36 0 742 0 0
Cycle 3 0 2 1133 0

Complex 0 138 0 0 580

(a)

Actual Class
Classification Results

Unchanged Step Impluse Cycle Complex

Unchanged 994725 423 358 441 202
Step 10 1179 0 1 27

Impluse 159 1 581 21 16
Cycle 9 0 5 1123 1

Complex 0 251 24 31 412

(b)

Actual Class
Classification Results

Unchanged Step Impluse Cycle Complex

Unchanged 994916 442 509 268 14
Step 9 1181 1 3 23

Impluse 12 0 766 0 0
Cycle 7 0 0 1128 3

Complex 17 65 32 2 602

(c)

Actual Class
Classification Results

Unchanged Step Impluse Cycle Complex

Unchanged 995604 189 154 202 0
Step 1 1216 0 0 0

Impluse 15 0 763 0 0
Cycle 2 0 0 1136 0

Complex 6 87 6 0 619

(d)
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Table 4. Quantitative comparison of change classification accuracy for different methods using
synthetic data.

Indices (%) NORCAMA KLD KS2 Proposed

Unchanged
precision 99.99 99.98 99.99 99.99

recall 99.26 99.86 99.88 99.95
F1-score 99.63 99.92 99.94 99.97

Step change
precision 34.16 63.59 69.96 81.50

recall 99.75 96.88 97.04 99.92
F1-score 50.89 76.78 81.31 89.77

Impulse change
precision 16.50 60.94 58.56 82.67

recall 95.37 74.81 98.46 98.07
F1-score 28.13 67.17 73.44 89.71

Cycle change
precision 47.83 68.86 80.51 84.90

recall 99.56 98.51 99.12 99.82
F1-score 64.61 81.06 88.85 91.76

Complex change
precision 74..36 62.73 93.77 100.00

recall 80.78 57.66 83.84 86.21
F1-score 77.44 60.09 88.53 92.60

Macro F1-score 64.14 77.00 86.41 92.76
Micro F1-score 99.24 99.80 99.86 99.93

3.3.2. Test on Realistic Time-Series SAR Images

A synthetic experiment is, after all, a relatively ideal circumstance, thus it can achieve excellent
detection and classification effects. Nevertheless, changes occurring in real ground features will be more
complex than the synthetic case, and a dataset based on multitemporal TerraSAR-X data is accordingly
created to further verify the effectiveness of the proposed algorithm Figure 8 presents the time-series
change detection results of all methods on this dataset. The ground truth map is labeled manually
and shown in Figure 8a. Figure 8b is the change detection result using the NORCAMA method.
Although it shows a good performance on the classification of temporal change patterns, the result
is inevitably affected by serious speckle noise, even with pre-filtering, because of the pixel-based
operation. Figure 8c,d give the results of NOR_KLD and NOR_KS2, respectively. As can be seen from
the figures, these two methods have a larger number of false alarm pixels than NORCAMA. The main
reason may be the generation process of the similarity matrix, which will influence the clustering
result. In the previous synthetic experiment, the results obtained show a good effect because the pixel
amplitude changes little in time, whereas in practice, neither method handles complicated changes with
large fluctuations well. The result of the proposed method is shown in Figure 8e, where speckle noise
is further suppressed due to the exploitation of local statistical information. Additionally, the change
classification accuracy is enhanced greatly by combining the extracted features and a density-based
clustering approach. Thus, overall, our method achieves the best qualitative result compared with the
other three methods.
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Figure 8. The time-series change detection and classification results using realistic data: (a) Ground
truth map; (b) NORCAMA; (c) NOR_KLD; (d) NOR_KS2; (e) Proposed method.

The multi-class confusion matrices for the four methods are shown in Table 5. The changed regions
consist mainly of step changes and impulse changes since the study area was undergoing the demolition
and construction of buildings during the acquisition time due to the establishment of the sub-center
plan. In contrast, the detected cycle changes and complex changes are few. In order to analyze and
reveal the details of changes in buildings over a long period of time, we chose a representative region
as a sample, as shown in Figure 9. Figure 9a is the change detection and classification result of the
selected area, which mainly consists of step changes (in red) and impulse changes (in green). Figure 9b
illustrates the detailed change process of the building within the region in time, and the corresponding
optical images recording key changes acquired on March 4, 2013 and September 26, 2013 are given in
Figure 9c. It can be seen from these figures that the red step changes on both sides were caused by the
completion of two rows of residential buildings, and the green impulse change in the middle is due
to the dismantlement of the construction facilities after finishing the buildings. The time-series SAR
dataset records the evolution of the city from the construction process of a building to the urbanization
of an entire region, which is of great significance to urban management.
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Table 5. The multi-class confusion matrix of different classification results using realistic data:
(a) NORCAMA; (b) NOR_KLD; (c) NOR_KS2; (d) Proposed method.

Actual Class
Classification Results

Unchanged Step Impluse Cycle Complex

Unchanged 947020 9467 6609 1521 64
Step 3883 18861 145 133 212

Impluse 2074 130 7402 19 202
Cycle 189 70 72 662 70

Complex 16 333 132 34 680

(a)

Actual Class
Classification Results

Unchanged Step Impluse Cycle Complex

Unchanged 928148 15157 16186 4550 640
Step 7174 14461 521 598 480

Impluse 3623 578 5062 210 354
Cycle 400 63 98 442 60

Complex 73 506 202 48 366

(b)

Actual Class
Classification Results

Unchanged Step Impluse Cycle Complex

Unchanged 914919 23245 20767 4663 1087
Step 4413 16123 612 449 1637

Impluse 1519 175 6526 225 1382
Cycle 359 58 94 477 75

Complex 13 234 123 52 773

(c)

Actual Class
Classification Results

Unchanged Step Impluse Cycle Complex

Unchanged 953546 5456 4940 704 35
Step 2383 20500 56 58 237

Impluse 829 37 8863 8 90
Cycle 249 7 5 801 1

Complex 3 329 13 1 849

(d)
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Figure 9. Change detection result of a representative sample in the realistic case: (a) The cropped
change classification result; (b) The details of the change process across time within the cropped area;
(c) Corresponding optical images (2013.03.04 and 2013.09.26) of the area.

The precision, recall, and F1-score of each change type are listed below in Table 6. Compared
to the synthetic result, the macro and micro F1-score obtained by NORCAMA shows a relatively
stable performance in the realistic situation because of the likelihood ratio change matrix. However,
the quantitative indices derived from NOR_KLD and NOR_KS decrease significantly, which indicates
that the generation methods for the similarity matrices adopted in the two approaches are not competent
with real images. Figure 10 clearly compares the classification accuracy of five change patterns and
the comprehensive performance of each method based on F1-scores. It can be seen that the micro
F1-score, namely overall accuracy, is close to the unchanged F1-score, this can be explained by the fact
that the unchanged pixels occupy most of the area in the image. Meanwhile, NORCAMA and our
method yield better a classification results for four types of change due to their robustness. To sum up,
the proposed method still shows the best results for both single pattern classification accuracy and
overall effect, which is consistent with the above qualitative analysis.

Figure 10. Quantitative comparison of change classification accuracies (F1-score) for different methods.
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Table 6. Quantitative comparison of change classification accuracy for different methods in the
realistic case.

Indices (%) NORCAMA KLD KS2 Proposed

Unchanged
precision 99.35 98.80 99.32 99.64

recall 98.17 96.21 94.84 98.85
F1-score 98.76 97.49 97.03 99.24

Step change
precision 65.35 47.00 40.47 77.86

recall 81.18 62.24 69.39 88.23
F1-score 72.41 53.56 51.13 82.72

Impulse change
precision 51.55 22.94 23.21 63.87

recall 75.32 51.51 66.41 90.19
F1-score 61.21 31.74 34.39 74.78

Cycle change
precision 27.94 7.56 8.13 50.95

recall 62.28 41.58 44.87 75.35
F1-score 38.58 12.79 13.77 60.80

Complex change
precision 55.37 19.26 15.60 70.05

recall 56.90 30.63 64.69 71.05
F1-score 56.13 23.65 25.14 70.54

Macro F1-score 65.41 43.85 44.29 77.62
Micro F1-score 97.46 94.85 93.88 98.46

Considering that every pixel series needs temporal clustering, computational efficiency is another
important indicator. Therefore, we undertake a comparison and analysis of the runtime for each
algorithm. Table 7 presents the computational time for each method running on a computer with an Intel
i7 CPU at 2.80 GHz (4 cores) and 8GB RAM. All algorithms are implemented in the MATLAB language
and speeded up using parallel operation. The runtimes of NORCAMA, NOR_KLD, and NOR_KS2
are composed of two parts: similarity matrix generation and spectral clustering, with the latter
step being very time-consuming because of the high time complexity. It can be seen from the table
that the proposed framework achieves the fastest runtime and is significantly faster than the other
three methods.

Table 7. Computational time (in seconds) for time-series change detection of 1000× 1000× 8 SAR images.

Efficiency NORCAMA NOR_KLD NOR_KS2 Proposed

runtime 582 s 776 s 923 s 48 s

4. Discussion

With the development of satellite remote sensing technology, the spatial and temporal resolution
of SAR images are both getting higher and higher. Time-series change detection of high resolution SAR
images is becoming an important approach to reveal the spatiotemporal changes of ground objects and
mine out interesting information. Compared with other multitemporal change detection approaches,
the method proposed in this paper can remarkably improve change detection and classification accuracy,
mainly owing to two factors: (1) local information is exploited by extracting the statistical features of
each patch according to the appropriate distribution of ground objects; (2) temporal grouping using
a density-based clustering method called DBSCAN can improve classification accuracy without a
pre-determined cluster number and considerably reduce the runtime. In both synthetic and realistic
experiments, our method achieves more satisfactory results than the other three methods tested.
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By adopting the discrete differential strategy, we are easily able to identify different change
patterns and obtain the final classification results. In addition, more temporal change information can
be uncovered based on the differential results, which are shown in Figure 11. For time-series change
detection, the ground objects may change many times over a long period of time, thus knowing when
they first and last changed will contribute to urban planning and management. Figure 11a,b show
when the first and last detected change occurred, respectively, during January 22, 2012 to May 20, 2013,
where 0 (black) means no change over the whole time span, 1 means first or last change occurred
between t1and t2, 2 means first or last change occurred between t2and t3, etc. For example, the building
within white box area shown in Figure 11d only changed once over the timespan, so its first detected
change is the same as the last detected change, both of which occurred between t7 and t8. Figure 11c
shows the frequency of changes within the acquisition time range. It can be observed from the figure
that most objects have only changed once or twice, which indicates that the study site is relatively
stable and that changes occur infrequently.

Figure 11. Multidimensional temporal change maps: (a) map when the first detected changes happened;
(b) map when the last detected changes happened; (c) change frequency map (number of changes);
(d) change process of buildings in the white box area over time.

Through the abovementioned multidimensional change information, the time-series change
detection approach can not only provide reliable information for urban planning and supervision,
but it can also serve as an important basis for ecological environment monitoring and protection,
which has a wide prospect in real-world applications.

5. Conclusions

To improve change detection and classification accuracy and reduce the influence of speckle noise
for multitemporal SAR images, a novel and highly efficient time-series change detection method that
takes advantage of local information and temporal similarity was proposed in this paper. Our method
mainly includes three steps. Firstly, the spatial statistical features of each local patch in SAR images
at any date were extracted based on MLE to suppress speckle noise and make the next classification
of change patterns more accurate. Then, because of its outstanding performance, we utilized the
density-based clustering method called DBSCAN to implement temporal grouping. Finally, a discrete
differential strategy was adopted to process the clustering results and identify the change patterns over
time. To validate the effectiveness of the proposed method, we carried out two experiments based on a
synthetic and realistic case using a time-series SAR dataset acquired by TerraSAR-X in the Tongzhou
District of Beijing, China, which is undergoing tremendous changes. The outcome showed that our
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method achieved the best performance in both tests in terms of both the qualitative and quantitative
results. In addition, we discussed the differential results and found that more temporal information
can be obtained, including the change frequency and when changes happened. In future research,
we will consider further improving the classification accuracy and reducing speckle noise, especially
in realistic time-series SAR images.
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