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Abstract: Multispectral image matching plays a very important role in remote sensing image
processing and can be applied for registering the complementary information captured by different
sensors. Due to the nonlinear intensity difference in multispectral images, many classic descriptors
designed for images of the same spectrum are unable to work well. To cope with this problem, this
paper proposes a new local feature descriptor termed histogram of oriented structure maps (HOSM) for
multispectral image matching tasks. This proposed method consists of three steps. First, we propose a
new method based on local contrast to construct the structure guidance images from the multispectral
images by transferring the significant contours from source images to results, respectively. Second, we
calculate oriented structure maps with guided image filtering. In details, we first construct edge maps
by the progressive Sobel filters to extract the common structure characteristics from the multispectral
images, and then we compute the oriented structure maps by performing the guided filtering on
the edge maps with the structure guidance images constructed in the first step. Finally, we build
the HOSM descriptor by calculating the histogram of oriented structure maps in a local region of
each interest point and normalize the feature vector. The proposed HOSM descriptor was evaluated
on three commonly used datasets and was compared with several state-of-the-art methods. The
experimental results demonstrate that the HOSM descriptor can be robust to the nonlinear intensity
difference in multispectral images and outperforms other methods.

Keywords: remote sensing image; multispectral image; feature matching; oriented structure maps;
guided image filtering

1. Introduction

Feature matching is a process that can obtain the correspondence of interest points among
two or more images of the same scene with varying degrees of overlap [1]. The correspondence
relationships can be used to geometrically align these images [2]. Multispectral images often provide
complementary information about the same scene by capturing the different characteristics of different
spectral bands. For example, an infrared image captures thermal radiation of the objects in a scene,
while a visible image mainly records optical reflection information in a scene. Therefore, feature
matching between the multispectral images is at the base of many computer vision and remote sensing
applications, such as target recognition [3,4], image registration [5,6], modern military surveillance [7,8],
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3D reconstruction [9,10], image fusion [11,12], and medical image processing [13,14]. Due to differences
in sensors and spectra between multispectral images, there are significant nonlinear intensity variations,
which mean that the grayscales and intensity distributions between multispectral images are nonlinearly
correlated. This is because the scene has different reflection characteristics for the electromagnetic
spectrum of different bands [15–17]. Therefore, obtaining accurate and robust matching between
multispectral images is still a very challenging task. Although there are many different feature matching
methods, they all have three steps in common: interest point detection, interest point description, and
interest point matching [18–20]. This study focuses on the interest point description, which is the
difficulty and core problem in the matching task.

In recent years, many excellent feature descriptors have been proposed for different matching
applications. Among these methods, the scale invariant feature transform (SIFT) [21] and speeded-up
robust feature (SURF) [22,23] are the most widely used algorithms. Due to the robustness of these
two descriptors for scale invariance and rotation invariance, they can achieve good performance in
many image matching tasks. However, when these two methods are applied to multispectral image
matching works, they often fail to obtain correct correspondences. This is because they are robust to
illumination and viewpoint changes but sensitive to nonlinear intensity changes [24–26].

Scholars have designed many feature descriptors to deal with the problem of significant nonlinear
intensity differences in multispectral images, in which many methods are improvements to the
classic descriptors. Saleem and Sablatnig [24] proposed a modification to SIFT termed normalized
gradient SIFT (NG-SIFT), which utilizes normalized gradients to compute the feature vector as the
description of interest points to achieve robustness against nonlinear intensity changes in multispectral
images. A combined method based on SURF, partial intensity invariant feature descriptor (PIIFD), and
robust point matching (RPM), called SURF-PIIFD-RPM [25] are presented to improve the matching
performance of multimodal retinal images. This method first employs the SURF detector to extract
scale invariant and stable feature points. And then it constructs the local feature descriptors based on
PIIFD that can keep robust to intensity changes. Finally, the PRM method is used for feature matching
and outliers removing.

Many methods are specially designed to work with multispectral images and can achieve better
robustness and efficiency than these progressive SIFT-like or SURF-like algorithms. The paper [26]
proposed the edge histogram descriptor (EHD) that has been adopted in the MPEG-7 standard. The
EHD employs the spatial distribution of edge points to represent the robust image features, which
can keep reliable texture information even when there are significant intensity variations between
multispectral images. The paper [27] presented a new feature descriptor called the edge-oriented
histogram (EOH), which was used for the matching task between the visible images and the long wave
infrared (LWIR) images. The EOH descriptor uses the edge points distribution of four directional
edges and one non-directional edge to construct the feature description, which can keep reliable
structure information even when there are significant intensity variations between multispectral
images. Although the EHD and EOH can describe image contour information, they have difficulty
extracting highly similar edges from multispectral images. To solve this deficiency, the paper [28]
proposed local descriptor call histograms of directional maps (HoDM), which combined the structure
and texture features to descript a keypoint. Different from the EOH descriptor, the Log-Gabor
histogram descriptor (LGHD) [29] and multispectral feature descriptor (MFD) [30] use multi-scale and
multi-oriented Log-Gabor filters to replace the multi-oriented spatial filters. The LGHD can get richer
and more robust feature representation in multispectral images but suffers from high dimensionality
and low efficiency. The MFD can significantly reduce the feature dimension while maintaining feature
description capabilities.

Figure 1 shows the comparison between the variations of gradient direction in multispectral
images and corresponding structure guidance images. It can be seen that the structure guidance images
of visible and infrared (IR) image can retain the common structures although the gradient directions
are reversed. Many traditional methods usually use the gradient-oriented information to capture the
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edges and to build the local feature vectors in multispectral images, which are good at characterizing
local shape, but are sensitive to changes of the gradient directions, as shown in Figure 1a1,a2 and
Figure 1b1,b2. In order to overcome this deficiency, we propose a new feature descriptor based on
oriented Sobel edge maps with guided filtering.
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Figure 1. Gradient direction variations and structure guidance images between multispectral images
(a) visible image, and (b) infrared image. From top to bottom: (1) source images, (2) gradient directions,
and (3) structure guidance images. The green dot indicates the position of the interest point.

The main contribution in this paper consists of three aspects.
(1) We design a new local feature descriptor called histogram of oriented structure maps (HOSM)

for multispectral image matching.
(2) We propose a new guidance image extractor, as shown in Figure 1a3,b3, which can extract

highly similar structure information from multispectral images.
(3) We provide evaluations on our method in three multi-source datasets and compare it with

several state-of-the-art methods, the experiments show that HOSM is more robust to nonlinear intensity
variations by keeping more structure features with guided filtering.

The remainder paper is organized as follows. Section 2 introduces the proposed HOSM descriptor.
In Section 3, the experimental results and corresponding analyses are exhibited. Finally, we conclude
this paper in Section 4.

2. Materials and Methods

In this part, we present the proposed HOSM descriptor. This method contains three parts. First,
a new local contrast-based operator is proposed to construct the structure guidance image to preserve
the significant contour characteristics in source images. Second, the oriented structure maps are
computed with guided image filtering to capture the common structure properties in multispectral
images. Finally, we calculate the histogram of oriented structure maps to build the feature vector.
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2.1. Construct Guidance Image

The significant contour information of an image is the key feature to characterize structures that
can usually be expressed by the image gradients. Because of the nonlinear intensity variations in
multispectral images, the gradient directions are inconsistent, which leads to the failure to obtain
similar structures. To overcome this problem, we propose an isotropic extractor to construct the
structure guidance image that can capture the significant contours between the multispectral images.
The processing flow is shown in Figure 2 and extractor is expressed as follows.

G(x, y) =
k∑

i=−k

k∑
j=−k

∣∣∣I(x + i, y + j) − Imean
∣∣∣

max(I(x + i, y + j), Imean)
(1)

where I is source image, G is the structure guidance image, (x, y) represents the pixel location of filter
region center, k is the radius of filter window, and Imean is the mean of intensities of the local region.
Then, to get the robust guidance image, we normalize the magnitude of image G to the range of 0–255
as follows.

G(x, y) = 255×
G(x, y) −minG
maxG−minG

(2)
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pixel of the local region.

2.2. Compute Oriented Structure Maps

The Sobel operator has good noise-suppression ability and is simple to carry out but can only
extract the horizontal and vertical edges. The progressive Sobel filters [26] shown in Figure 3 are able to
detect multi-oriented edges in images. They can extract the spatial distribution of one non-directional
edge and four oriented edges, including 0◦, 45◦, 90◦, and 135◦. This filter bank follows the MPEG-7
standard [31] and is able to represent the main structure information of the image [27]. Nunes and
Padua [30] have pointed out that more orientations have little improvement in description capabilities
but can significantly increase time consumption. In order to get a good trade-off between performance
and efficiency, we use the five-oriented Sobel filters to construct structure maps. As shown in Figure 4a,
let fn(x, y), n = 1, 2, 3, 4, 5 denotes the five Sobel filters of 0◦, 45◦, 90◦, 135◦, and no orientation. The
multi-oriented Sobel edges can be extracted by follows.

SEn(x, y) =
∣∣∣I(x, y) ∗ fn(x, y)

∣∣∣ (3)

where I(x, y) is pixel of source image, and SEn(x, y) represents the Sobel edge of orientation n at
the pixel (x, y). “∗” is the convolution operator, and “||” represents the absolute operation. SEn is



Remote Sens. 2019, 11, 951 5 of 19

normalized to the range of 0-255. The largest value at each pixel in different edge images is used to
build the edge maps as follows.

EMn(x, y) =
{

SEn(x, y), i f SEn(x, y) = max
{
SEk(x, y)

}5
1

0, others
(4)

where EMn(x, y) shown in Figure 4b is edge maps. The edge maps maintain the common structure
characteristics of multispectral images but suffer from the deficiencies that are sensitive to noise and
can cause aliasing effects. To address these problems, the structure maps are computed by guided
image filtering [32–34] on edge maps as follows.

SMn = GF(EMn, G, r, ε) (5)

where G is the guidance image, SMn represents structure maps as shown in Figure 4c, r is the local
window radius, and ε is the regularization parameter. In the guided filtering operation, the output
image is computed by a linear transformation of the guidance image, which can be represented as
follows.

SMn(i) = amG(i) + bm,∀i ∈ ωm (6)

where ωm is a local window, am and bm are linear coefficients, and i represents the pixel location in the
local window. To get the linear coefficients, we have to minimize the following cost function.

E(am, bm) =
∑
i∈ωm

(
(amG(i) + bm − EMn(i))

2 + εa2
m

)
(7)

am and bm can be represented as.

am =

1
|ω|

∑
i∈ωm G(i)EMn(i) − µmEMn

σ2
m + ε

(8)

bm = EMn − amµm (9)

where µm and σ2
m represent the mean and variance of the guidance image, EMn is the mean of input

image, and |ω| is the number of the pixels in the local window ωm. Pixel i can be contained in more than
one local windows, in different local windows, the output values are changes. To solve this problem,
the mean of all possible coefficients am and bm are used as the final coefficients, as follows.

SMn(i) = aiG(i) + bi (10)

where ai and bi can be computed as follows.

ai =
1
|ω|

∑
m∈ωi

am (11)

bi =
1
|ω|

∑
m∈ωi

bm (12)Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 21 
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2.3. Proposed HOSM Descriptor Based on Structure Maps

The proposed HOSM descriptor employs the multi-oriented histogram to build the feature vector
based on the oriented structure maps by guided image filtering. Figure 5 illustrates the main flowchart
of the proposed HOSM descriptor, where the green point in the region center denotes an interest point.
The main processing flow consists of three steps that can be summarized as follows.

1. First, a new structure extractor is applied to construct structure guidance images in the local
region around the interest point, which can capture the significant contour information and keep
robust to nonlinear intensity changes in multispectral images.

2. Second, we construct the oriented structure maps by performing guided filtering on multi-oriented
Sobel edge maps. The detailed construction process of structure maps is shown in Figure 4.
(1) The progressive Sobel filters are applied to construct the multi-oriented edge maps, which
can extract the significant structure characteristics of images. (2) We perform guided filtering
on edge maps to get the final structure maps. This guided filtering operation can enhance the
structures in final structure maps while maintaining the advantages of multiple directions in
the edge maps. Therefore, the oriented structure maps are able to remain the common features
between multispectral images and reduce aliasing effects with the guided filtering.
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3. Finally, we calculate the histogram of oriented structure maps in a local region to build the HOSM
descriptor. We first divide the local region around the interest point into 16 sub regions by the
N × N window. We then compute and normalize the 5-orientation histogram by L2 norm in each
sub region. At last, all the histograms of the 16 sub regions are conjoined to form a feature vector.
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3. Experiments and Analyses

3.1. Datasets and Settings

In order to evaluate the description ability of our proposed HOSM descriptor, we carried out
the experiments on three widely used datasets as shown in Figure 6 and compared it with seven
state-of-the-art approaches that are SURF, SIFT, NG-SIFT, EOH, LGHD, MFD, and HoDM. Figure 6a
is a Potsdam dataset that contains 38 visible (VIS) and near infrared (NIR) aerial image pairs and all
image pairs have dimensions of 6000 × 6000. This dataset is generated from a remote sensing image
dataset and can be accessed at [35]. The EPFL dataset was proposed in [36] as shown in Figure 6b. It
consists of 477 visible and NIR images and all image pairs have dimensions of 1024 × 768. The CVC
dataset was proposed in [27] as shown in Figure 6c, which contains 100 visible and long wave infrared
(LWIR) image pairs and has dimensions 506 × 408 for all images.



Remote Sens. 2019, 11, 951 8 of 19

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 21 

Remote Sens. 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 
 

image pairs have dimensions of 6000 × 6000. This dataset is generated from a remote sensing image 
dataset and can be accessed at [35]. The EPFL dataset was proposed in [36] as shown in Figure 6b. It 
consists of 477 visible and NIR images and all image pairs have dimensions of 1024 × 768. The CVC 
dataset was proposed in [27] as shown in Figure 6c, which contains 100 visible and long wave infrared 
(LWIR) image pairs and has dimensions 506 × 408 for all images. 

 
Figure 6. Samples of the multispectral image pairs from three datasets. (a) Potsdam (VIS/NIR) dataset, 
(b) EPFL (VIS/NIR) dataset, and (c) CVC (VIS/LWIR) dataset. 

All the three datasets satisfy homography, so the ground truth of each image pair can be 
computed precisely by manually selected checkpoints. The match was regarded as correct 
correspondence if the residual error computed by the ground truth was less than 3 pixels. The local 
feature points are extracted by the FAST extractor [37]. The number of correct feature point matches 
has a great influence on the matching performance of the descriptors. 

Euclidean distance is used as a measure of similarity for feature matching. To preserve as many 
correct matches as possible, the nearest neighbor distance ratio (NNDR) is used as the matching 
strategy in the experiments. The NNDR can be expressed as follows. 

( ) ( )•0 0 0 1D a ,b <η D a ,b  (13) 

where ( ) ,  indicates the Euclidean distance, a  and b  are the feature vectors in two images, 

and b1  is the second-closest neighbor to a0  compared with the nearest b0 . η  is the threshold of 
the NNDR. 

In the experiment implements, the same region size (80 × 80) with EOH was adopted in our 
descriptor. The guided image filter parameters were set as =r 7 , and ε = 0.3 . The threshold η  was 
set from 0.8 to 1.0 with intervals of 0.05. The parameters of all competing methods were set as the 
original papers. For all testing images, the same parameters in the proposed method and other 
competing methods were adopted. 

Three metrics, i.e., precision, recall, and F1-score, are used to validate the matching performance, 
they are defined as follows. 

Figure 6. Samples of the multispectral image pairs from three datasets. (a) Potsdam (VIS/NIR) dataset,
(b) EPFL (VIS/NIR) dataset, and (c) CVC (VIS/LWIR) dataset.

All the three datasets satisfy homography, so the ground truth of each image pair can be computed
precisely by manually selected checkpoints. The match was regarded as correct correspondence if
the residual error computed by the ground truth was less than 3 pixels. The local feature points are
extracted by the FAST extractor [37]. The number of correct feature point matches has a great influence
on the matching performance of the descriptors.

Euclidean distance is used as a measure of similarity for feature matching. To preserve as many
correct matches as possible, the nearest neighbor distance ratio (NNDR) is used as the matching
strategy in the experiments. The NNDR can be expressed as follows.

D(a0, b0)<η•D(a0, b1) (13)

where (·, ·) indicates the Euclidean distance, a and b are the feature vectors in two images, and b1 is the
second-closest neighbor to a0 compared with the nearest b0. η is the threshold of the NNDR.

In the experiment implements, the same region size (80 × 80) with EOH was adopted in our
descriptor. The guided image filter parameters were set as r = 7, and ε = 0.3. The threshold η was set
from 0.8 to 1.0 with intervals of 0.05. The parameters of all competing methods were set as the original
papers. For all testing images, the same parameters in the proposed method and other competing
methods were adopted.

Three metrics, i.e., precision, recall, and F1-score, are used to validate the matching performance,
they are defined as follows.

precision =
Nc

Nc + N f
(14)

recall =
Nc

Nc + Nc
(15)

F1− score = 2×
precision× recall
precision + recall

(16)

where Nc indicates the number of correct matches, N f is the number of false matches, and Nc indicates
the number of discard correct matches.
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3.2. Qualitative Evaluation on Feature Matching

In the qualitative evaluation experiments, we conduct the feature matching tests on the three
datasets by our proposed HOSM descriptor. Figures 7 and 8 show some samples of the multispectral
image feature matching results by η is set to 0.8 on three datasets, i.e., Potsdam in Figures 7a and 8a,
EPFL in Figures 7b and 8b, and CVC in Figures 7c and 8c, for subjective visual analysis.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 21 
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As shown in Figure 7, it can be seen that our proposed HOSM descriptor can get a good matching
performance by preserving a large number of correct correspondences between the multispectral
image pairs on all three datasets. In details, our method can get the maximum number of correct
correspondences in EPFL dataset, followed by the results in Potsdam dataset, and the third best
performance in CVC dataset. In Figure 7a,b, the matching point pairs are extracted in most areas, while
the matching point pairs in Figure 7c are mainly preserved for the vegetation areas. This difference is
caused by a variety of factors. First, FAST detector tends to get feature point responses in complex
structures in the image. This results in the most responses being obtained in the vegetation areas, with
almost no feature point responses in the grayscale smooth region, such as the wall portion, of the
image. Second, due to the larger spectral differences in the CVC dataset, the number of initial matching
points in Figure 7c is less than that in Figure 7a,b. The last reason is that when the mismatch points are
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removed with the NNDR test, some correctly matched points are also removed. Even so, our method
still extracts enough correct matching points to get the correct correspondence between the two images.

Figure 8 presents another group of multispectral image matching results on these three datasets.
Figure 8a,b are visible and NIR image pairs selected from the Potsdam and EPFL datasets, and Figure 8c
is a pair of visible and LWIR images selected from the CVC dataset. In general, the number of matches
in Figure 8a,b is greater than that in Figure 8c. It can also be seen from Figure 8c that there are several
pairs of obvious mismatches which are marked by red rectangles. There are several factors that cause
mismatches. First, the spectral difference between visible light and LWIR is greater than that between
visible light and NIR, which leads to more challenging for feature matching. Second, the mismatched
points have highly similar textures within the local regions, which results in producing highly similar
feature vectors. We can also see that these failed matches have similar correspondence relationships to
the correct matches, so they are not removed by the NNDR test. However, enough correct matches
between the two images are still preserved.

The experimental results demonstrate that our proposed HOSM descriptor can be robust to the
intensity nonlinear variations between the multispectral images and obtain good matching performance.

3.3. The Advantages of Guided Filtering

In order to verify the advantages of the guided filtering in structure maps construction, we conduct
the comparison tests between the HOSM descriptor and the descriptor without guided filtering on
EPFL (VIS/NIR) dataset and CVC (VIS/LWIR) dataset. The qualitative and quantitative comparisons
are presented in Figure 9 and Table 1.
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on (a) EPFL (VIS/NIR) dataset and (b) CVC (VIS/LWIR) dataset.

Table 1. Precision, recall and F1-score for HOSM and descriptor without guided filtering.

Pairs
HOSM Descriptor Without Guided Filtering

Precision Recall F1-Score Precision Recall F1-Score

Figure 9a 0.785 0.650 0.711 0.542 0.413 0.468
Figure 9b 0.312 0.243 0.273 0.054 0.045 0.049

Figure 9 illustrates some samples of matching results. In general, it can be seen that the HOSM
descriptor can achieve better matching performance than the descriptor without guided filtering. The
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matching results show that the HOSM descriptor has preserved a larger number of correct matching
points on the two multispectral image pairs and has fewer false matches. This is because the guidance
images have preserved the significant contour information in multispectral images, the guided filtering
operation is able to enhance the structures of the structure maps to improve the description ability [38].
In detail, due to the abundant structures in the visible and NIR images, the descriptor without guided
filtering can also achieve satisfactory results on the EPFL dataset, as shown in Figure 9a. When
performing matching comparisons between visible and LWIR images, the performance of the HOSM
descriptor is significantly better than the descriptor without guided filtering, as shown in Figure 9b.
This is because the structure information in the LWIR image is weak, the enhancement of the structure
by the guided filtering has a great influence on the matching results. Furtherly, the guided filtering
operation can reduce aliasing effects to improve the robustness of the descriptor.

Table 1 presents the quantitative metrics of precision, recall, and F1-score. For all metrics, larger
values indicate better results. From these objective metrics, we can see that HOSM outperforms the
descriptor without guided filtering. Therefore, the experimental results prove that guided filtering can
improve matching performance, especially for images with weak structure information.

3.4. Robustness Evaluations to Noise

To evaluate the robustness of the proposed HOSM method to noise, we make qualitative and
quantitative tests on Potsdam (VIS/NIR) dataset at different noise levels. Figure 10 and Table 2
present the quantitative comparisons on the average of precision and recall results, and the F1-scores.
In Figure 11, some matching results at different noise levels are selected for qualitative comparisons.
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Table 2. Average of F1-score values with different noise levels.

Metrics Values

σ 0 0.01 0.05 0.1 0.15 0.2

F1-score 0.512 0.443 0.397 0.365 0.335 0.305
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Gaussian white noise levels. σ is the variance of Gaussian function, and large variance σ indicates great
noise intensity.

Due to the sensors and imaging principles, noise in IR images usually appears as stationary
random white noise, which means that its position and intensity appearing in the image are randomly
distributed [39,40]. In detail, the noise in the image usually appears as additive noise, and Gaussian
white noise with a mean of 0 is the most common form [41]. For visible images, the intensity of the
noise is small due to the short exposure time. Therefore, in the experiments, we only add zero-mean
Gaussian white noise with different intensity in the IR images. The variance σ of the Gaussian function
can be used to represent the intensity of noise. In the experiment, we set σ to 0, 0.01, 0.05, 0.1, 0.15
and 0.2 respectively. The average of precision and recall curves are illustrated in Figure 10, and the
F1-scores are shown in Table 2. The results show that although the values of precision, recall, and
F1-score are declining as the noise increases, our method can still get good results. This is because the
guided filtering operation can enhance the structures of the structure maps and reduce aliasing effects
to improve the robustness of the descriptor.

For subjective evaluations, some qualitative comparison results are shown in Figure 11. These
results intuitively show that our HOSM descriptors can perform well in cases of intensive noise. Even
when there are some obvious mismatches at σ = 0.2, our method still obtains a lot of correct matching
points. The good matching performances show that our method is efficient and robust to noise.

3.5. Quantitative Evaluation on Metrics

Figure 12 illustrates the average values of precision-recall pairs, and Table 3 shows the average
values of the F1-score for the eight methods on all the three datasets. For all metrics, including
precision, recall, and F1-score, larger numbers indicate better performance. It can be seen that the
HOSM descriptor outperforms the other methods in the metrics on all the datasets. In general, the
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matching metrics of all the methods get the best values on EPFL dataset, the second-best values on
Potsdam dataset, and the last results on CVC dataset. Compared to NIR images in the Potsdam and
EPFL datasets, the LWIR images in the CVC dataset have lower resolution, while having greater
nonlinear intensity differences with corresponding visible images. Therefore, it is most challenging for
the CVC dataset on all descriptors to extract the common structure features from multispectral images.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 21 
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Figure 12. Quantitative comparisons on precision-recall averages with NNDR thresholds from 0.8 to
1.0 in three datasets. (a) Potsdam dataset, (b) EPFL dataset, and (c) CVC dataset.
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Table 3. Average of F1-score values for all eight methods on all three datasets.

Datasets η
Methods

SIFT SURF NG-SIFT EOH LGHD MFD HoDM HOSM

Potsdam

0.8 0.258 0.171 0.283 0.275 0.396 0.417 0.452 0.471
0.85 0.265 0.179 0.295 0.292 0.412 0.422 0.454 0.480
0.9 0.257 0.179 0.294 0.309 0.408 0.424 0.466 0.484

0.95 0.261 0.175 0.284 0.315 0.412 0.418 0.462 0.479
1.0 0.244 0.174 0.274 0.323 0.419 0.414 0.443 0.482

EPFL

0.8 0.671 0.611 0.668 0.471 0.705 0.727 0.736 0.761
0.85 0.687 0.623 0.686 0.508 0.712 0.731 0.741 0.767
0.9 0.691 0.637 0.699 0.537 0.723 0.734 0.745 0.773

0.95 0.698 0.646 0.714 0.557 0.731 0.742 0.751 0.778
1.0 0.709 0.658 0.717 0.563 0.735 0.746 0.762 0.780

CVC

0.8 0.06 0.032 0.082 0.101 0.119 0.129 0.147 0.151
0.85 0.078 0.055 0.082 0.104 0.126 0.135 0.152 0.166
0.9 0.075 0.058 0.082 0.107 0.126 0.134 0.156 0.174

0.95 0.077 0.067 0.082 0.107 0.126 0.137 0.159 0.184
1.0 0.08 0.074 0.080 0.112 0.132 0.144 0.149 0.191

As shown in Figure 12a–c, the HOSM descriptor achieves the best performance in all precision-recall
curves, followed by HoDM. Due to the oriented structure maps preserving the common features and
structure guidance images overcoming nonlinear variations in the gradient direction between the
multispectral images, the HOSM descriptor can be robust to get high precision and recall values in
these datasets. The HoDM can get good matching performance due to the combination of structure
and texture information. The MFD and LGHD have similar performance because both descriptors
are progressive methods based on the EOH, in which the multi-scale and multi-oriented Log-Gabor
filters were used to replace multi-directional spatial filters. Because the Log-Gabor filters are better at
retaining the oriented edge characteristics of multispectral images, the MFD and LGHD methods can
achieve better matching performance than the original EOH. It can be seen from the Figure 12a,c that
the EOH is superior to SIFT, SURF and NG-SIFT, but the results are opposite in Figure 12b. This is
because in the EPFL dataset, the spectra of the image pairs are close, SIFT, SURF, and NG-SIFT can
obtain stable descriptors to get better matching results than EOH. However, EOH is more robust to
image pairs with significant nonlinear intensity variations, as shown in Figure 12a,c.

From the average of F1-score values in Table 3, where the best scores are marked in bold, we can
more accurately compare the matching performance of all methods. Table 3 indicates that the HOSM
method can obtain the highest average scores in all cases, followed by HoDM. LGHD can get good
performance similar to MFD on all datasets, while EOH can achieve third best scores on Potsdam and
CVC datasets. For EPFL dataset, these three SIFT-like methods are able to obtain better performance
than EOH. The high F1-score values demonstrate that the HOSM descriptor not only achieves good
matching performance, but also achieve a good balance between precision and recall.

3.6. Quantitative Comparisons on Running Time

A desktop with 4 GB memory and 2.5 GHz Intel Core i3 CPU is used to carry out the experiments
and all these methods are implemented by the MATLAB codes. Figure 13 shows the average
computation time of the methods in each feature point on all the three datasets, in details, Figure 13a is
the average running time of Potsdam dataset, Figure 13b is the average running time of EPFL dataset,
and Figure 13c is the average running time of CVC dataset. It can be seen that the HOSM is faster than
other methods and achieves the best time consumption. This is because we have previously established
the structure maps with linear guided filtering operation. The values of structure maps are directly
used to build the HOSM descriptor, without other preprocessing. From all experimental results, it
can be seen that our HOSM descriptor is robust to the nonlinear intensity variations in multispectral
images and is superior to other methods.
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dataset, (b) EPFL dataset, and (c) CVC dataset.
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4. Conclusions

In this paper, we propose a new local feature descriptor termed HOSM for multispectral remote
sensing image matching task. First, we propose a new local contrast based operator to construct
the structure guidance images for keeping the significant contour features in multispectral images.
Then, construct the oriented structure maps based on multi-oriented Sobel edges with guided filtering.
Guided image filtering can achieve better computational efficiency than traditional time-consuming
trilinear interpolation methods. Finally, the histograms of oriented structure maps are computed
to build the feature vectors. In order to verify the HOSM descriptor, three widely used datasets
named Potsdam, EPFL, and CVC are employed to conduct feature matching tests, and seven state
of the art methods are used for comparison. The experimental results show that our method is
outstanding to address the nonlinear intensity changes in multispectral images and can achieve better
matching performance.

In the future, we will further study how to enhance the description ability of our method, because
the HOSM descriptor is robust to nonlinear intensity changes but sensitive to rotation and scale
invariance. We can assign a main orientation to the HOSM to cope with the rotation variance and use a
multiscale keypoint detector to keep scale invariance.
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