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Abstract: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), which is equipped with the
Advanced Topographic Laser Altimeter System (ATLAS), was launched successfully in 15 September
2018. The ATLAS represents a micro-pulse photon-counting laser system, which is expected to
provide more comprehensive and scientific data for carbon storage. However, the ATLAS system is
sensitive to the background noise, which poses a tremendous challenge to the photon cloud noise
filtering. Moreover, the Density Based Spatial Clustering of Applications with Noise (DBSCAN)
is a commonly used algorithm for noise removal from the photon cloud but there has not been
an in-depth study on its parameter selection yet. This paper presents an automatic photon cloud
filtering algorithm based on the Particle Swarm Optimization (PSO) algorithm, which can be used to
optimize the two key parameters of the DBSCAN algorithm instead of using the manual parameter
adjustment. The Particle Swarm Optimization Density Based Spatial Clustering of Applications with
Noise (PSODBSCAN) algorithm was tested at different laser intensities and laser pointing types
using the MATLAS dataset of the forests located in Virginia, East Coast, and the West Coast, USA.
The results showed that the PSODBSCAN algorithm and the localized statistical algorithm were
effective in identifying the background noise and preserving the signal photons in the raw MATLAS
data. Namely, the PSODBSCAN achieved the mean F value of 0.9759, and the localized statistical
algorithm achieved the mean F value of 0.6978. For both laser pointing types and laser intensities,
the proposed algorithm achieved better results than the localized statistical algorithm. Therefore,
the PSODBSCAN algorithm could support the MATLAS photon cloud data noise filtering applicably
without manually selecting parameters.

Keywords: ATLAS; MATLAS; PSO; DBSCAN; photon cloud noise filtering; forest region

1. Introduction

The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) that was successfully launched on 15
September 2018, is equipped with the Advanced Topographic Laser Altimeter System (ATLAS), and the
main payload of the system is the micro-pulse photon-counting system [1]. Therefore, the system is
expected to provide a reliable estimation of carbon storage [2]. Unlike the Geoscience Laser Altimeter
System (GLAS) on the Ice, Cloud, and land Elevation Satellite-1 (ICESat-1), the ATLAS laser emission
mode has six beams grouped in three beam pairs, each of which is composed of two different beam
energies to increase system dynamic range. Each beam pair is composed of a strong beam and a weak
beam, where the energy ratio of a strong beam to a weak beam is 4:1, and the right-pointed beam and
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left-pointed beam of each pair denote a strong beam and a weak beam, respectively [1]. The laser
emission frequency of the ATLAS laser is 10 kHz. By combining the satellite orbit and laser emission
angle of the ICESat-2, it can be estimated that the diameter of the ATLAS spot on the surface is about
17 m at a 0.7 m center-to-center spacing along the track [2,3]. The center-to-center spacing along the
ATLAS track is narrower than that along the GLAS track. This characteristic enables the ATLAS to
obtain continuous tracking information needed for measuring the carbon storage [1,4,5]. Along with
the advantages of high repetition frequency and high sensitivity, a large number of noise photons
can also be received by the ATLAS system from solar and the system [4]. These noise photons can be
removed by hardware devices such as range gates; however, due to fixed width characteristics of a
range gate, the noise photons cannot be eliminated in the range gate [6]. Therefore, effective noise
filtering is essential to retrieve signal photons from noise photons.

With the aim to improve the ICESat-2 noise filtering algorithm, different noise filtering algorithms
have been tested on the airborne Sigma Space’s Single Photon Lidar (SPL), Multiple Altimeter Beam
Experimental Lidar (MABEL), Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL), and
MATLAS data released before the ICESat-2 launching [7–10]. For instance, Wang et al. [4] proposed
a noise filtering based on the Bayesian method for the MABEL data. Their results showed that the
algorithm could effectively distinguish signal photons from noise photons. However, the distribution
of noise photons was random and related to the observation target, thus it was difficult to judge the
return photon properties accurately based only on the detection probability.

Magruder et al. [11] proposed three methods, namely the modified Canny Edge Detection (CED),
the Probability Distribution Function (PDF)-based signal extraction, and the localized statistical analysis
for noise filtering of the photon-counting data. Their results demonstrated that the modified CED
algorithm could remove noise from data of the forest area. However, the rasterized data of a signal
photon could be lost, which reduced the validity of photon-counting data.

Xia et al. [12] and Xu [13] proposed a localized statistics algorithm with a center-pointed laser by
using the MABEL data as experimental data. The results showed that the algorithm could effectively
eliminate the noise photons. Tang et al. [14] used the SPL data as experimental data and proposed a
new voxel-based spatial filtering method, which could effectively filter noise photons and retain the
fine-scale canopy structure details. Nie et al. [15] proposed an effective noise removal algorithm to filter
out noise photons. By using the MATLAS data as experimental data under the conditions of a laser
center pointing and a strong beam, they proved that their algorithm could effectively remove noise
photons from the photon cloud. However, this algorithm needed to change the threshold parameters
of localized statistics artificially according to different photon densities, which significantly reduced
its applicability.

Further, the Density Dimension Algorithm (DDA) and Density Based Spatial Clustering of
Applications with Noise (DBSCAN) were used as noise filtering algorithms, and they were based
on different densities of noise and signal photons [16–20]. Herzfeld et al. [16,17] proposed a DDA
that utilized the Radial Basis Function (RBF) to calculate the weighted density as a form of data
aggregation in the photon cloud and considered density as an additional parameter used as an aid
in the auto-adaptive threshold determination. The experimental data included SIPML and SPL data.
The experimental results showed that the algorithm had an adaptive ability and could effectively
filter the noise. Popescu et al. [18] employed a multi-level noise filtering approach to classify the
photons into ground and top of a canopy by using the overlapping moving window based method.
The results showed that the algorithm could recognize the background noise and preserve the signal
photons of the original data. Zhang et al. [19] proposed an improved DBSCAN model, whose search
area was a modified horizontal ellipse, and the result showed that smoother surfaces resulted in an
improved-accuracy ground height estimation. Chen et al. [20] proposed different elliptical shapes to
calculate the distance between the photons and used the MATLAS data at center pointing and a strong
beam to evaluate the performance of their algorithm. The results proved that the horizontal-ellipse
searching area performed better than the circle and vertical-ellipse searching areas.
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The DBSCAN algorithm was used to extract the signal photon in the noise filtering experiment.
The algorithm used two parameters, eps and MinPts, to compare the density of data objects. For each
data object in each cluster, the number of objects in an eps-neighborhood with a given radius had
to be higher than a threshold MinPts [21]. The DBSCAN algorithm could efficiently cluster signal
photons without target clusters and was able to discover clusters of an arbitrary shape. In the previous
studies on the DBSCAN algorithm improvement, the parallel processing [22], gridding cells [23],
hierarchical processing [24], combination with some other clustering algorithms [25], reduction of
searching range [26], and constraints increasing [27] were used to improve the clustering accuracy and
efficiency of the DBSCAN algorithm. However, the selection of the two chosen parameters (eps and
MinPts) were not studied profoundly, and these parameters were set mainly by manual selection or
based on an empirical formula, but these two methods could have difficulty obtaining the optimal noise
filtering parameters for different experimental data. Therefore, the selection of optimal noise filtering
parameters for different experimental data is still challenging and represents a research hot spot.

As a representative optimization algorithm in swarm intelligence, the Particle Swarm Optimization
(PSO) algorithm has the characteristics of parallel processing and good robustness in selecting optimal
parameters [28–32]. Besides, it can find the global optimal solution to a problem with a high probability,
and its computational efficiency is higher than of the traditional stochastic algorithms. Consequently,
it has been used in remote sensing image classification parameter optimization [28], wind forecasting
model optimization [29], and medical model optimization [30,31].

Although the existing noise filtering algorithms can achieve high accuracy on the smooth surface,
there are still several challenges. Namely, the noise photons are distributed over a canopy, inside
a canopy, and below the ground in a forest region, which seriously affects the accuracy of signal
photons extraction, which further influences the accuracy of the noise removal algorithm. At the
same time, in the previous research, only strong beam type was considered without considering the
laser pointing and intensity, lacking the comprehensive analysis and evaluation of the noise filtering
effect. Therefore, a new algorithm for noise photon filtering at different laser pointing types and laser
intensities is required.

Aiming to filter out the noise photons, a new photon cloud noise filtering algorithm named
the Particle Swarm Optimization Density Based Spatial Clustering of Applications with Noise
(PSODBSCAN) is proposed in this paper. The proposed algorithm integrates the global optimization
search characteristics of the PSO algorithm and the density search characteristics of the DBSCAN
algorithm. Namely, the PSODBSCAN algorithm uses the PSO algorithm to optimize two important
parameters of the DBSCAN and then employs the optimized parameters to complete the noise filtering
process such that the noise filtering result clearly describes the target height. In this paper, the MATLAS
data at different laser pointing types and laser intensities on the same route over the forest region is
used as test data to validate the noise filtering performance of the proposed PSODBSCAN algorithm.

The rest of the paper is organized as follows. In Section 2, the materials and methods are
introduced. In Section 3, the obtained experimental results are provided. In Section 4, the discussion on
the obtained experimental results is presented. Lastly, in Section 5 the main conclusions and guidelines
for our future work are given.

2. Materials and Methods

2.1. Studied Area

According to the available description of MATLAS data [5], the vegetation area within the
MATLAS coverage area includes Virginia, the East Coast, and the West Coast. Consequently, in this
work, the studied area includes three different locations, namely Virginia, the East Coast, and the
West Coast, as shown in Figure 1. There are two studied locations in Virginia, USA (77◦10′19.99′′W,
37◦10′54.16′′N), one on the East Coast, USA (78◦11′33.78′′W, 36◦54′39.73′′N), and one on the West
Coast, USA (123◦38′45.11′′W, 44◦25′56.05′′N), as given in Table 1. In Table 1, Virginia 1 and Virginia 2
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denote different simulation scenarios under the same observation conditions. All the studied locations
are under the condition of least cloudiness. The characteristics of all the studied locations are given in
Table 1.
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Figure 1. The studied locations.

Table 1. The characteristics of the studied locations.

Studied Site. Studied Area Observation Date Observation Time Ground Type Canopy Closure Fraction

1 Virginia 1 20120921 22:25:00 Forest 0.55
2 Virginia 2 20120921 22:25:00 Forest 0.55
3 East Coast 20120920 23:16:00 Forest 0.90
4 West Coast 20120927 02:52:00 Forest 0.90

The studied locations are displayed in Figure 1.

2.2. Data

The MABEL was instrumented on the National Aeronautics and Space Administration (NASA)
Earth Resources-2 (ER-2) high-altitude airborne scientific aircraft. The ER-2’s flight altitude was 20 km
above sea level (ASL). The MABEL data was acquired using a photon-counting Lidar with the pulse
width of about 2 ns, the laser wavelength of 532 nm and 1064 nm, the laser energy of 5-7 µJ, the spot
diameter of about 2 m, and variable pulse repetition frequency of 5-25 kHz [5,7,8,15]. In order to
evaluate the performance of the ATLAS photon cloud data, NASA adjusted the photon data density,
trajectory, and spatial resolution of the MABEL according to the parameters of the ATLAS instrument
model to generate the MATLAS data.

The ATLAS laser beams within a pair of beams had different transmit energies, which improved the
measurement accuracy within the dynamic detector range for given variations in surface reflectance [2].
The MATLAS simulated data included different laser intensities and laser pointing types and was
based on the MABEL data. The MATLAS data of the center-pointing channel included an 000 channel,
043 channel, and 044 channel, and of the left-pointing channel included the 000 channel and 050
channel. Each channel included a strong beam and a weak beam.
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2.3. Methodology

In this work, the PSODBSCAN algorithm based on the DBSCAN was proposed to filter out the
noise photons. The new noise filtering algorithm consisted of two algorithms, the PSO algorithm and
the DBSCAN algorithm, as presented in Figure 2.
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Applications with Noise (PSODBSCAN) algorithm.

The PSO was invented by Eberhart in 1995 by simplifying the social simulation model, which
was originally developed to simulate the foraging process of birds [33]. In PSO, each individual
is named as a “particle” that represents a potential solution to a problem. Each particle adjusts its
flying according to its own flying experience and its companions’ flying experiences. Each particle is
manipulated as a point in a d-dimensional space. The ith particle is represented as XI = (xi1, xi2, . . . ,
xid). The best previous position (the position providing the best fitness value) of any particle is recorded
and represented as PI = (pi1, pi2, . . . , pid). The rate of the position change (velocity) of particle i is
represented as VI(vi1, vi2, . . . , vid). The particles are manipulated according to the following equations:

vid(t + 1) = w × vid(t) + c1 × r1 × (pid(t) − xid(t)) + c2 × r2 × (pgd(t) − xid(t)), (1)

xid(t + 1) = xid(t) + vid(t + 1), (2)

where c1 and c2 are the learning factors, r1 and r2 are two random functions in the range [0,1], and
they are different for all the dimensions and all the particles; w is the inertia weight factor, xid(t) is
the dth position of the ith particle at time t; pid(t) represents the best previous position (the position
providing the best fitness value) of the ith particle at the time t; further, g is the index of the best particle
among all the particles in its neighborhood, vid(t) is the rate of the dth position change (velocity) of



Remote Sens. 2019, 11, 980 6 of 20

particle i at time t [34]. Equations (1) and (2) define the flying velocity and trajectory of the a DBSCAN
particle, respectively. Equation (1) reflects the learning and collaboration capabilities of a DBSCAN
particle. The first part of Equation (1) represents the current particle velocity, the second part reflects the
particle’s self-learning capability, and the third part reflects the particle’s collaboration capability [35].
In order to prevent the DBSCAN particles from going far away from the searching space, the particle
velocity vid(t) is limited; otherwise, when the particle is too large, the algorithm can fly away from the
optimal solution, and when it is too small, the algorithm can fall into the local optimal solution.

The DBSCAN algorithm is a density-based clustering algorithm, where the density associated
with a photon is obtained by counting the photons in a region of a specified radius around that
photon [36,37]. The DBSCAN has two input parameters: eps (the radius of eps-neighborhood of a
photon p) and the minimum number of points (MinPts); MinPts in an eps-neighborhood of a photon p
needs to make p a core photon of a cluster [38].

The PSODBSCAN algorithm initializes the two parameters (particles), eps and MinPts, of
the DBSCAN algorithm by the PSO algorithm as input values of the DBSCAN clustering part.
The PSODBSCAN algorithm starts by initializing a random photon out of the photon dataset. If a
photon is not close enough to the eps-neighbor, the photon will be labeled as a noise photon, and
the process continues to select a new photon. If a photon is sufficiently close to the eps-neighbor,
the photon is added to the signal photon cluster. The photons are checked until the signal photon
clusters are completely expanded or there are no photons left to check. A photon is defined as a “noise
photon” if it does not belong to any classified signal cluster [21,39,40]. The clustering result and fitness
value are calculated using the values of eps and MinPts, and then optimized by an iterative process.
The optimal solution is used as an optimal parameter in the experiment, and the clustering result for
the optimal parameter represents the PSODBSCAN algorithm output. The selection parameters of the
PSODBSCAN algorithm are: c1 = 1.5, c2 = 1.7, w = 1, maximum speed vjmax = 100, minimum speed
vjmin = 0, maximum number of iterations iterationmax = 100. According to the PSO characteristics,
the fraction of true signal photons that are correctly classified from all the detected signal photons is
selected as an evaluation criterion of fitness.

2.4. Accuracy Evaluation

ATLAS technology is still in the airborne simulation stage, lacking evaluation criteria for noise
filtering. In previous research [12,15,20], visual inspection was used as a first-step evaluation standard
for photon cloud filtering. In this work, the PSODBSCAN algorithm is applied to the MATLAS data
at different laser beam intensities and pointing types, and both qualitative and quantitative analyses
are conducted by visual inspection using the corresponding KML file. In addition, the performances
of the PSODBSCAN noise filtering algorithm including recall R, precision P, and comprehensive
evaluation value F are quantitatively evaluated. Namely, R denotes the ratio of signal photons that are
successfully detected to all the true signal photons, P denotes the ratio of true signal photons that are
correctly classified to all the detected signal photons, and F denotes the harmonic mean of recall and
precision. These three indicators are calculated using the reference classification data [15,20], and they
are respectively given by:

R = TP/(TP + FN), (3)

P = TP/(TP + FP), (4)

F = 2 × P × R/(P + R), (5)

where TP, FP, and FN denote the numbers of true positives, false positives, and false negatives,
respectively. To be more specific, true positives represent the true signal photons that are correctly
detected, false positives are the noise photons that are misclassified as signal photons, and false
negatives stand for the true signal photons that are not correctly detected. To test the applicability of
the PSODBSCAN algorithm, the PSODBSCAN algorithm was compared with the localized statistics
algorithm proposed by Xia et al. [12].
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3. Results

3.1. Noise Filtering Under Strong Beams

3.1.1. Noise Filtering Under Laser Center Pointing

The noise filtering results of the PSODBSCAN algorithm and the localized statistics algorithm
over the Virginia 1 flight line channel 043 under the strong beam and center pointing are presented in
Figure 3. The statistical indicators, namely the R, P, and F values, of the PSODBSCAN algorithm and
the localized statistics algorithm over the Virginia 1, Virginia 2, East Coast, and West Coast flight line
channels 000, 043, and 044 under the strong beam are given in Tables 2–4, respectively.

Table 2. The R value of the noise filtering algorithms under the strong beam and center pointing.

Algorithm Localized Statistics PSODBSCAN

Channel 000 043 044 000 043 044

Virginia 1 1.0000 1.0000 1.0000 0.9993 1.0000 1.0000
Virginia 2 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000
East Coast 1.0000 1.0000 1.0000 0.9997 1.0000 1.0000
West Coast 1.0000 1.0000 1.0000 0.9997 1.0000 1.0000

Mean of channel 1.0000 1.0000 1.0000 0.9997 0.9999 1.0000
Mean of algorithmic result 1.0000 0.9999

Table 3. The P value of the noise filtering algorithms under the strong beam and center pointing.

Algorithm Localized Statistics PSODBSCAN

Channel 000 043 044 000 043 044

Virginia 1 0.9239 0.9457 0.9512 0.9658 0.9907 0.9962
Virginia 2 0.9900 0.9778 0.9200 0.9993 0.9965 0.9652
East Coast 0.9844 0.9852 0.9453 0.9922 0.9940 0.9549
West Coast 0.9913 0.9940 0.9944 0.9962 0.9991 0.9991

Mean of channel 0.9724 0.9757 0.9527 0.9884 0.9951 0.9788
Mean of algorithmic result 0.9669 0.9874

Table 4. The F value of the noise filtering algorithms under the strong beam and center pointing.

Algorithm Localized statistics PSODBSCAN

Channel 000 043 044 000 043 044

Virginia 1 0.9604 0.9721 0.9749 0.9822 0.9953 0.9980
Virginia 2 0.9949 0.9887 0.9583 0.9996 0.9981 0.9823
East Coast 0.9921 0.9925 0.9718 0.9959 0.9970 0.9769
West Coast 0.9956 0.9970 0.9971 0.9979 0.9995 0.9995

Mean of channel 0.9858 0.9876 0.9755 0.9939 0.9975 0.9913
Mean of algorithmic result 0.9829 0.9935

By comparing results presented in Figure 3b,c, it can be concluded that the PSODBSCAN removed
more noise photons than the localized statistics algorithm. In Figure 3e, the square areas denote the
canopy photons, and the elliptical area denotes the ground photons. Comparing the results presented
in Figure 3d,e, it can be noticed that the PSODBSCAN showed a clearer depiction of the ground
vegetation than the localized statistics algorithm.
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Figure 3. The noise filtering results of the PSODBSCAN algorithm and the localized statistics algorithm
over the Virginia 1 flight line channel 043 under the strong beam and center pointing. (a) Raw data;
(b) the noise filtering result of the localized statistics algorithm; (c) the noise filtering result of the
PSODBSCAN algorithm; (d) the noise filtering result of the localized statistics algorithm (the enlarged
view of a part of the result presented in figure (b)); (e) the noise filtering result of the PSODBSCAN
algorithm (the enlarged view of a part of the result presented in figure (c)); the square areas denote the
canopy photons and the elliptical area denotes the ground photons.

As given in Tables 2–4, the PSODBSCAN algorithm achieved the mean R, P, and F values of 0.9999,
0.9874, and 0.9935, respectively, and the localized statistics algorithm achieved the mean R, P, and F
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values of 1.0000, 0.9669, and 0.9829, respectively. Thus, the PSODBSCAN algorithm achieved similar R
value, but higher P and F values than the localized statistics algorithm.

In summary, results in Tables 2–4 and Figure 3 show that the PSODBSCAN algorithm performed
much better than the localized statistics algorithm. Accordingly, the PSODBSCAN algorithm could
remove the noise photons more effectively than the localized statistics algorithm under the strong
beam and center pointing.

3.1.2. Noise Filtering Under Laser Left Pointing

The noise filtering results of the PSODBSCAN algorithm and the localized statistics algorithm
over the Virginia 1 flight line channel 000 under the strong beam and left pointing are presented in
Figure 4. The statistical indicators, namely the R, P, and F values, of the PSODBSCAN algorithm and
the localized statistics algorithm over the Virginia 1, Virginia 2, East Coast, and West Coast flight line
channels 000 and 050 under the strong beam are given in Tables 5–7, respectively.

Table 5. The R value of the noise filtering algorithms under the strong beam and left pointing.

Algorithm Localized Statistics PSODBSCAN

Channel 000 050 000 050

Virginia 1 1.0000 1.0000 0.9998 1.0000
Virginia 2 1.0000 1.0000 1.0000 1.0000
East Coast 1.0000 1.0000 1.0000 1.0000
West Coast 1.0000 1.0000 1.0000 0.9997

Mean of channel 1.0000 1.0000 0.9999 0.9999
Mean of algorithmic result 1.0000 0.9999

Table 6. The P value of the noise filtering algorithms under the strong beam and left pointing.

Algorithm Localized Statistics PSODBSCAN

Channel 000 050 000 050

Virginia 1 0.8802 0.8579 0.9920 0.9885
Virginia 2 0.9200 0.9153 0.9652 0.9709
East Coast 0.9881 0.9889 0.9989 0.9971
West Coast 0.9944 0.9900 0.9990 0.9967

Mean of channel 0.9457 0.9380 0.9888 0.9883
Mean of algorithmic result 0.9419 0.9885

Table 7. The F value of the noise filtering algorithms under the strong beam and left pointing.

Algorithm Localized Statistics PSODBSCAN

Channel 000 050 000 050

Virginia 1 0.9362 0.9235 0.9958 0.9941
Virginia 2 0.9583 0.9558 0.9823 0.9852
East Coast 0.9940 0.9944 0.9994 0.9985
West Coast 0.9971 0.9949 0.9995 0.9982

Mean of channel 0.9714 0.9672 0.9943 0.9940
Mean of algorithmic result 0.9693 0.9942

Figure 4 shows the noise filtering results of the PSODBSCAN algorithm and the localized
statistics algorithm over the Virginia 1 flight line channel 000 under the strong beam and left pointing.
As presented in Figure 4b,c, the result of the PSODBSCAN contained fewer noise photons than that of
the localized statistics algorithm. In Figure 4e, the square areas denote the canopy photons, and the
elliptical area denotes the ground photons. Comparing the results presented in Figure 4d,e, it can
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be seen that the PSODBSCAN algorithm performed better than the localized statistics algorithm in
ground vegetation (i.e., the results obtained by the PSODBSCAN algorithm were clearer).
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Figure 4. The noise filtering results of the PSODBSCAN algorithm and the localized statistics algorithm
over the Virginia 1 flight line channel 000 under the strong beam and left pointing. (a) Raw data; (b) the
noise filtering result of the localized statistics algorithm; (c) the noise filtering result of the PSODBSCAN
algorithm; (d) the noise filtering result of the localized statistics algorithm (the enlarged view of a
part of the result presented in figure (b)); (e) the noise filtering result of the PSODBSCAN algorithm
(the enlarged view of a part of the result presented in figure (c)); the square areas denote the canopy
photons, and the elliptical area denotes the ground photons.
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The PSODBSCAN algorithm achieved the mean R, P, and F values of 0.9999, 0.9885, and 0.9942,
respectively, and the localized statistics algorithm achieved the mean R, P, and F values of 1.0000,
0.9419, and 0.9693, respectively, as presented in Tables 5–7. Accordingly, the PSODBSCAN algorithm
performed better than the localized statistics algorithm under the strong beam and left pointing.

Comparing the results given in Tables 2–7, which were obtained under the strong beam, it can
be seen that the PSODBSCAN algorithm achieved the mean R, P, and F values of 0.9999, 0.9879,
and 0.9938, respectively, while the localized statistics algorithm achieved the mean R, P, and F values
of 1.0000, 0.9569, and 0.9775, respectively. The experimental results showed that under the strong
beam, the PSODBSCAN algorithm could remove the noise photon more effectively than the localized
statistics algorithm.

3.2. Noise Filtering Under Weak Beams

3.2.1. Noise Filtering Under Laser Center Pointing

The noise filtering results of the PSODBSCAN algorithm and the localized statistics algorithm
over the East Coast flight line channel 043 under the weak beam and center pointing are presented in
Figure 5. The statistical indicators, namely the R, P, and F values, of the PSODBSCAN algorithm and
the localized statistics algorithm over the Virginia 1, Virginia 2, East Coast, and West Coast flight line
channels 000, 043, and 044 under the weak beam are given in Tables 8–10, respectively.

Table 8. The R value of the noise filtering algorithms under the weak beam and center pointing.

Algorithm Localized Statistics PSODBSCAN

Channel 000 043 044 000 043 044

Virginia 1 0.9181 0.8052 0.4855 1.0000 1.0000 1.0000
Virginia 2 0.7111 0.4762 1.0000 1.0000 1.0000 0.9981
East Coast 0.0000 0.1419 0.0787 1.0000 0.9989 1.0000
West Coast 0.0000 0.0180 0.0000 1.0000 1.0000 1.0000

Mean of channel 0.4073 0.3603 0.3910 1.0000 0.9997 0.9995
Mean of algorithmic result 0.3862 0.9997

Table 9. The P value of the noise filtering algorithms under the weak beam and center pointing.

Algorithm Localized Statistics PSODBSCAN

Channel 000 043 044 000 043 044

Virginia 1 0.9933 0.9747 0.7813 0.9878 0.9509 0.7811
Virginia 2 0.9223 0.9850 0.9200 0.9225 0.9489 0.9832
East Coast 0.0000 1.0000 0.9722 0.9242 0.9911 0.9834
West Coast 0.0000 1.0000 0.0000 0.9949 0.9905 0.9889

Mean of channel 0.4789 0.9899 0.6684 0.9574 0.9703 0.9342
Mean of algorithmic result 0.7124 0.9540

Table 10. The F value of the noise filtering algorithms under the weak beam and center pointing.

Algorithm Localized Statistics PSODBSCAN

Channel 000 043 044 000 043 044

Virginia 1 0.9542 0.8818 0.5988 0.9938 0.9748 0.8771
Virginia 2 0.8030 0.6421 0.9583 0.9596 0.9737 0.9906
East Coast 0.0000 0.2485 0.1455 0.9607 0.9949 0.9916
West Coast 0.0000 0.0353 0.0000 0.9974 0.9952 0.9944

Mean of channel 0.4393 0.4519 0.4256 0.9778 0.9846 0.9634
Mean of algorithmic result 0.4389 0.9753
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Figure 5. The noise filtering results of the PSODBSCAN algorithm and the localized statistics algorithm
over the East Coast flight line channel 043 under the weak beam and center pointing. (a) Raw data;
(b) the noise filtering result of the localized statistics algorithm; (c) the noise filtering result of the
PSODBSCAN algorithm; (d) the noise filtering result of the localized statistics algorithm(the enlarged
view of a part of the result presented in figure (b)); (e) the noise filtering result of the PSODBSCAN
algorithm(the enlarged view of a part of the result presented in figure (c)); the square areas denote the
canopy photons, and the elliptical area denotes the ground photons.

As presented in Figure 5b, the localized statistics algorithm filtered the noise and signal photons
in the forest region. However, the PSODBSCAN algorithm not only acquired more signal photons but
also filtered the noise photons better than the localized statistics algorithm. In Figure 5e, the square
areas denote the canopy photons, and the elliptical area denotes the ground photons. Comparing the
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results presented in Figure 5d,e, it can be concluded that the PSODBSCAN algorithm performed better
than the localized statistics algorithm in ground vegetation.

Besides, the PSODBSCAN algorithm achieved the mean R, P, and F values of 0.9997, 0.9540, and
0.9753, respectively, and the localized statistics algorithm achieved the mean R, P, and F values of
0.3862, 0.7124, and 0.4389, respectively, as given in Tables 8–10. Tables 8–10 also show that the localized
statistics algorithm achieved the R, P, and F values of about 0 over the East Coast and the West Coast,
while the PSODBSCAN algorithm achieved higher F value in those areas, thus performing much better
than the localized statistics algorithm.

Comparing the results given in Tables 2–4 and Tables 8–10, it can be noticed that the PSODBSCAN
algorithm achieved the mean R, P, and F values of 0.9998, 0.9707, and 0.9844, respectively, while
the localized statistics algorithm achieved the mean R, P, and F values of 0.6931, 0.8397, and 0.7110,
respectively. Thus, the PSODBSCAN algorithm removed the noise photon more effectively than the
localized statistics algorithm under the center pointing.

3.2.2. Noise Filtering Under Laser Left Pointing

The noise filtering results of the PSODBSCAN algorithm and the localized statistics algorithm
over the East Coast flight line channel 000 under the weak beam and left pointing are presented in
Figure 6. The statistical indicators, namely the R, P, and F values, of the PSODBSCAN algorithm and
the localized statistics algorithm over the Virginia 1, Virginia 2, East Coast, and West Coast flight line
channels 000 and 050 under the weak beam are given in Tables 11–13, respectively.

Table 11. The R value of noise filtering algorithms under the weak beam and left pointing.

Algorithm Localized Statistics PSODBSCAN

Channel 000 050 000 050

Virginia 1 0.4525 0.4808 1.0000 1.0000
Virginia 2 0.9231 0.5535 1.0000 1.0000
East Coast 0.1055 0.1151 1.0000 1.0000
West Coast 0.0000 0.0000 0.9812 1.0000

Mean of channel 0.3703 0.2874 0.9953 1.0000
Mean of algorithmic result 0.3288 0.9977

Table 12. The P value of noise filtering algorithms under the weak beam and left pointing.

Algorithm Localized Statistics PSODBSCAN

Channel 000 050 000 050

Virginia 1 0.7523 0.7642 0.7556 0.7392
Virginia 2 0.9692 0.8048 0.9596 0.8165
East Coast 1.0000 1.0000 0.9763 0.9922
West Coast 0.0000 0.0000 0.9212 0.9414

Mean of channel 0.6804 0.6423 0.9032 0.8723
Mean of algorithmic result 0.6613 0.8877

Table 13. The F value of noise filtering algorithms under the weak beam and left pointing.

Algorithm Localized Statistics PSODBSCAN

Channel 000 050 000 050

Virginia 1 0.5651 0.5902 0.8608 0.8500
Virginia 2 0.9455 0.6559 0.9793 0.8990
East Coast 0.1907 0.2064 0.9880 0.9961
West Coast 0.0000 0.0000 0.9502 0.9698

Mean of channel 0.4253 0.3631 0.9445 0.9287
Mean of algorithmic result 0.3942 0.9367
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Figure 6. The noise filtering results of the PSODBSCAN algorithm and the localized statistics algorithm
over the East Coast flight line channel 000 under the weak beam and left pointing. (a) Raw data; (b) the
noise filtering result of the localized statistics algorithm; (c) the noise filtering result of the PSODBSCAN
algorithm; (d) the noise filtering result of the localized statistics algorithm (the enlarged view of a
part of the result presented in figure (b)); (e) the noise filtering result of the PSODBSCAN algorithm
(the enlarged view of a part of the result presented in figure (c)); the square area denotes the canopy
photons, and the elliptical area denotes the ground photons.

As shown in Figure 6b, the localized statistics algorithm retained only a part of the signal photons
in the forest region. On the other hand, as presented in Figure 6c, the PSODBSCAN algorithm not
only retained much more signal photons but also filtered the noise photons. In Figure 6e, the square
area denotes the canopy photons, and the elliptical area denotes the ground photons. Comparing the
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results presented in Figure 6d,e, it can be seen that the PSODBSCAN algorithm performed better than
the localized statistics algorithm in both ground and forest.

As given in Tables 11–13, the PSODBSCAN algorithm achieved the mean R, P, and F values of
0.9977, 0.8877, and 0.9367, respectively, and the localized statistics algorithm achieved the mean R,
P, and F values of 0.3288, 0.6613, and 0.3942, respectively. Tables 11–13 also show that the localized
statistics algorithm achieved the mean R, P, and F values of about 0 over the West Coast, while the
PSODBSCAN algorithm obtained higher R, P, and F values in that area, thus performing much better
than the localized statistics algorithm.

As given in Tables 5–7 and Tables 11–13, the PSODBSCAN algorithm achieved the mean R, P, and
F values of 0.9988, 0.9381, and 0.9654, respectively, and the localized statistics algorithm achieved the
mean R, P, and F values of 0.6644, 0.8016, and 0.6818, respectively. The experimental results showed
that the PSODBSCAN algorithm removed the noise photon more effectively than the localized statistics
algorithm under the left pointing.

4. Discussion

There is considerable interest in developing an effective noise filtering algorithm needed to
conduct an accurate canopy height measurement from the MATLAS data. The proposed PSODBSCAN
algorithm addresses some of the drawbacks of the localized statistics algorithm [12], offering a suitable
solution for noise filtering from the MATLAS data.

4.1. Noise Filtering Results at Different Beam Intensities

The mean statistical indicators of the PSODBSCAN algorithm and the localized statistics algorithm
at different beam intensities are given in Table 14.

Table 14. The mean statistical indicators of noise filtering algorithms at different beam intensities.

Algorithm Localized Statistics PSODBSCAN

Beam Intensity Strong Weak Strong Weak

R 1.0000 0.3633 0.9999 0.9989
P 0.9569 0.6920 0.9879 0.9275
F 0.9775 0.4211 0.9938 0.9599

The previous studies suggested that variation in the MATLAS data density, caused by the
differences in the photon cloud at studied locations [15], is an important factor, which should be
considered at different laser intensities. In our experiments, the density of signal photons was higher
under the strong beam than under the weak laser beam.

The qualitative analysis results are summarized in Figures 3–6. According to the presented
results, under the strong beam, the densities of forest photons and ground photons were particularly
discernible, and both noise filtering algorithms could remove the noise photons. However, under the
weak laser beam, the densities of forest photons and ground photons could not be clearly described,
and only a part of the signal photons was retrieved by the localized statistics algorithm, while the
PSODBSCAN algorithm retrieved much more signal photons in studied areas.

The quantitative analysis results are summarized in Table 14, where it is shown that under the
strong beam and weak beam, the PSODBSCAN algorithm achieved the mean F value of 0.9938 and
0.9599, respectively, while the localized statistics algorithm achieved the mean F value of 0.9775 and
0.4211, respectively. The mean F value of the localized statistics algorithm was about 0.42 at different
laser intensities, while the mean F value of the PSODBSCAN algorithm was consistently better than
0.95. Thus, the PSODBSCAN algorithm was more effective than the localized statistics algorithm
for the MATLAS photon cloud at all laser intensities, which was due to several reasons. First, the
PSODBSCAN algorithm performed better in noise photons filtering (i.e., it achieved higher R, P, and
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F values) than the localized statistics algorithm because the PSODBSCAN had the characteristics of
local search and clusters of arbitrary shapes with a density as a criterion. Therefore, the PSODBSCAN
algorithm did not cluster signal photons according to the threshold of a local statistical distance,
avoiding the loss of canopy photons and ground photons. Moreover, the localized statistics algorithm
eliminated the noise photons using a fixed threshold; thus, errors appeared at a low density where
the ground and canopy were difficult to the identify in the photon cloud, especially under the weak
laser beam. Second, the localized statistics algorithm needed to adjust the key parameters according to
different laser intensity; however, it did not adjust the test parameters manually according to different
laser intensity, resulting in the F value of about 0.20 or even 0 under the weak beam condition. Manual
parameter adjustment has been known to affect noise filtering efficiency and accuracy. Although the
potential correction methods (e.g., factor adjusting procedures) may help to improve the noise filtering
accuracy [15], the final performance largely depends on manual adjustment of parameters, thus these
methods are not suitable to be implemented globally due to their specificity.

Notably, the visual inspection revealed that a part of the signal photons was removed by the
localized statistics algorithm (see Figure 5b, and Figure 6b and Tables 10 and 13). Besides, the localized
statistics algorithm achieved the mean F value of 0 over the East Coast and West Coast under the weak
beam. By analyzing the characteristics of the local statistical algorithm, the obtained results could be
explained by the two following facts. Namely, there was a lower density of signal photon in the region,
and the distance statistics sum of the signal photons exceeded the threshold of the local statistical
algorithm. Therefore, it was difficult to remove the noise photons in the forest and ground regions
by the localized statistics algorithm. Moreover, analyzing the test results of the localized statistics
algorithm, it was concluded that test parameters affected the noise filtering effect of the localized
statistics algorithm. Thus, it was necessary to adjust the algorithm parameters according to a different
density of test data. In this work, the parameters were not selected based on test settings but set to the
values used in reference [12]. Both qualitative and quantitative results indicated that the PSODBSCAN
algorithm performed better than the localized statistics algorithm, and the PSODBSCAN algorithm
did not need manual parameter adjustment to different test data.

Moreover, the noise filtering results of the two algorithms under the strong beam were better than
under the weak beam. The signal photon density under the strong beam conditions was higher than
under the weak beam conditions, and it could be obviously noticed that ground and canopy photons
under the strong beam condition (see Figures 3 and 4). Therefore, a higher density of signal photons
improved the noise filtering ability of both algorithms.

Overall, the qualitative and quantitative results indicated that the PSODBSCAN algorithm
performed better than the localized statistics algorithm in noise photon filtering under both strong
beam and weak beam.

4.2. Noise Filtering Results at Different Laser Pointing Types

The mean statistical indicators of the PSODBSCAN algorithm and the localized statistics algorithm
at different laser pointing types are given in Table 15.

Table 15. The mean statistical indicators of noise filtering algorithms at different laser pointing types.

Algorithm Localized Statistics PSODBSCAN

Laser Pointing Center Left Center Left

R 0.6931 0.6644 0.9998 0.9988
P 0.8397 0.8016 0.9707 0.9381
F 0.7110 0.6818 0.9844 0.9654

The previous studies suggested that variation in the MATLAS data density, caused by the
differences in the photon cloud at studied locations, is an important factor, which should be considered
at different laser pointing types. In our experiments, the density of signal photons was higher under
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the center pointing than under the left pointing. The qualitative analysis results are presented in
Figures 3–6. Under the condition of center pointing, the densities of forest photons and ground photons
were more obviously discernible than under the left pointing. The visual inspection revealed that a
part of the signal photons was removed by the localized statistics algorithm under the left pointing,
while the PSODBSCAN algorithm obtained more signal photons in those areas (see Figures 4 and 6).

The quantitative analysis results are summarized in Table 15. Based on these results, under the
center pointing and left pointing, the PSODBSCAN algorithm achieved a mean F value of 0.9844
and 0.9654, respectively, and the localized statistics algorithm achieved a mean F value of 0.7110 and
0.6818, respectively. The mean F value of the localized statistics algorithm was about 0.68, while the
mean F value of the PSODBSCAN algorithm was higher than 0.96. The comparison results indicated
that the PSODBSCAN algorithm was more effective than the localized statistics algorithm for the
MATLAS photon cloud at different beam pointing types, which was due to several reasons. First, the
PSODBSCAN algorithm achieved consistently better accuracy in noise photon filtering (i.e., it achieved
higher R, P, and F values) than the localized statistics algorithm. The main reason for this was that the
localized statistics algorithm resulted in a loss of canopy photons and ground photons due to the fixed
threshold, while the PSODBSCAN algorithm identified the noise cluster based on the signal photon
density. Therefore, the localized statistics algorithm failed to remove the noise at a lower density
where the ground and canopy were difficult to identify in the photon cloud (left pointing). Second, the
localized statistics algorithm should have adjusted the key parameters according to different test data;
however, it did not adjust all the test parameters according to different laser pointing data, resulting in
the F value of about 0.19 or even 0 under the left pointing. As it is well known, the manual parameter
adjustment affects the noise filtering efficiency and accuracy; therefore, it was necessary to combine the
PSO algorithm with the photon cloud noise filtering algorithm to determine the optimal parameters
for the given test data.

Moreover, the noise filtering results of the two algorithms were better under laser center pointing
than under laser left pointing. By analyzing the photon cloud data under different laser pointing, it is
obviously discernible that the ground and canopy photons under center pointing. Hence, a higher
density of signal photons improved the noise filtering ability of both algorithms.

In summary, both qualitative and quantitative results indicated that the PSODBSCAN algorithm
performed better than the localized statistics algorithm in noise photon filtering under both center and
left pointing.

4.3. Noise Removal Results of Different Algorithms

The mean statistical indicators of noise filtering algorithms are given in Table 16.

Table 16. The mean statistical indicators of noise filtering algorithms.

Statistical Indicators R P F

Localized statistics algorithm 0.6802 0.8016 0.6978
PSODBSCAN algorithm 0.9994 0.9560 0.9759

The noise filtering experiments were conducted at different laser pointing and different beam
types. The qualitative analysis results are shown in Figures 3–6. The visual analysis showed that
the results of the PSODBSCAN algorithm contained fewer noise photon than that of the localized
statistics algorithm. Thus, the PSODBSCAN algorithm described the coverage of canopy vegetation
and the change in the ground more clearly, especially in the case of strong beam and center pointing
(see Figure 3).

The quantitative analysis results are summarized in Table 16. In the noise filtering experiments, the
PSODBSCAN algorithm achieved the mean R, P, and F values of 0.9994, 0.9560, and 0.9759, respectively,
and the localized statistics algorithm achieved the mean R, P, and F values of 0.6802, 0.8016, and 0.6978,
respectively. In fact, the localized statistics algorithm had a large variation range of F value (F was
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0.99 under the center pointing and strong beam, and it was 0 under the left pointing and weak beam).
Such results indicated that the localized statistics algorithm was greatly affected by the change in
the photon density. Correspondingly, the localized statistics algorithm obtained high noise filtering
accuracy under the high signal photon density, but it failed in the photon cloud noise filtering test at
the low signal photon density. On the contrary, the PSODBSCAN algorithm consistently maintained a
high noise filtering accuracy without manual parameters adjustment.

In general, both qualitative and quantitative evaluation results showed that the PSODBSCAN
algorithm performed better in noise photon filtering than the localized statistics algorithm. This can be
explained by the two following reasons. First, the PSODBSCAN algorithm clustered signal photons by
using photon density rather than by using a certain threshold. Second, under different experimental
conditions, by using manual adjustment of the noise filtering algorithm parameters it was difficult to
obtain an optimal filtering effect. Therefore, the parameter adjustment was very critical in the noise
filtering experiment. At the same time, it was proven that the PSODBSCAN algorithm achieved high
noise filtering accuracy without manual parameters adjustment.

Ultimately, the result proved that the noise filtering effect of both algorithms depended on the
photon density of the MATLAS data because the MATLAS technology is still in the airborne simulation
stage. Based on the obtained results, the localized statistics algorithm can be useful for rapid noise
photon filtering achieving a moderate accuracy, but this algorithm results in loss of signal photons at a
low density of photon cloud. Thus, it can be used for rapid noise filtering at a high density of signal
photons (e.g., strong beam and center pointing) but it requires a clear threshold for classification of
noise and signal photons. Moreover, in the applications involving the MATLAS data, the PSODBSCAN
algorithm represents a more convenient solution because it can largely retain the ground and canopy
details achieving a much higher noise filtering accuracy at different laser pointing and beam types,
which is extremely valuable in an automatic method. Accordingly, due to the proven usefulness
for photon cloud processing of the proposed algorithm, it can be successfully implemented over the
studied locations.

5. Conclusions

In this paper, the PSODBSCAN algorithm is proposed for accurate noise filtering in the forest
region for simulated photon-counting Lidar data. The proposed noise filtering algorithm was validated
by the experiments with the MATLAS data at different laser pointing and beam types on the same
route over the forest region. Based on the results, the following conclusions can be drawn:

(1) At all laser intensities and laser pointing types, the PSODBSCAN algorithm performed better
than the localized statistics algorithm.

(2) The PSODBSCAN algorithm did not need manual adjustment of parameters for different test
data; thus, it had better applicability than the localized statistics algorithm.

These conclusions denote valuable information for noise filtering in forest regions using the
photon-counting Lidar data. Nevertheless, there are still many issues to be addressed in the future.
Since ATLAS is still in the research stage, there is no official accuracy-evaluation standard for noise
filtering algorithms. It is expected that future research will propose a recognized accuracy-evaluation
standard for noise filtering algorithms. The amount of ICESat-2 data covering the whole world would
be huge, which represents the main challenge of photon noise filtering. Therefore, the development of
a more effective and accurate noise removal algorithm will be the subject of our future work.
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