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Abstract: Leaf pigment content retrieval is negatively affected by specular reflectance. To alleviate
this effect, some specific techniques that take specular reflectance or specular effects into account
have been proposed. In this study, continuous wavelet transform (CWT) and specific techniques
including some vegetation indices (VIs), radiative transfer (RT), and hybrid models, were examined
and compared in the nadir and near the mirror-like direction, with a 30◦ incident zenith angle. Results
show that the RT and hybrid models appeared to be ill-posed, and they were not applicable at this
high-incident zenith angle (>20◦). Most VIs effectively alleviated the specular disturbance in the
forward 35◦ direction, and comparable accuracy was obtained between the two viewing directions.
Multiple linear regression (MLR), derivative transformation, and CWT were effective for specular
interference alleviation. The MLR-based methods (reflectance, derivatives, etc., as the independent
variables and pigment content as the response) generally obtained higher retrieval accuracies than the
VIs. With MLR-based methods, the retrieval was more accurate for chlorophylls than for carotenoids.
CWT plus MLR (MLR on wavelet coefficients) was the most prominent among all the methods, and it
generally obtained the highest accuracy. The results are 2.68 and 0.88 µg/cm2 for chlorophylls and
carotenoids, respectively, in the nadir direction, and 2.42 and 0.86 µg/cm2 in the forward 35◦ direction,
with reflectance or the first derivative input for CWT. In the retrieval, wavelet coefficients at the
optimal decomposition scale may achieve a balance in corresponding to fine, and broad absorption
features, and the overall reflectance properties.

Keywords: specular disturbance alleviation; pigment content retrieval; continuous wavelet analysis;
multiple linear regression

1. Introduction

Leaf chlorophylls and carotenoids are of great importance for green plants. Chlorophylls play a
crucial role in photosynthesis, which directly determines plant productivity [1,2]. With a close link to
the nitrogen content, chlorophylls can be used as an indirect indicator for estimating plant nitrogen
nutritional status [1]. Carotenoids absorb light and contribute energy for photosynthesis, and they
can protect the photosynthetic system by dissipating excessive light energy received by the plant [3].
Moreover, the contents of the two pigments reveal various aspects of plant physiology and stress
(e.g., nutrient deficiency) [4]. Given this, an estimation of pigment content is meaningful for many
applications, such as agricultural management and ecological conservation.
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One method to measure pigment content is through remote sensing. Compared to conventional
wet chemistry, this method is fast, and time- and labor-saving. It does not destroy leaves, and thus
can be used to monitor pigment status during the whole life-cycle of leaves. Via platforms such as
satellites, remote sensing can be applied at spatial scales (e.g., [5]). The remote sensing of pigment
content is mainly conducted based on empirical and physical approaches. The empirical approaches
consist of classic vegetation indices (VIs) (e.g., [6]), multiple regression (e.g., [7]), machine learning
algorithms (e.g., [8]), etc. These empirical approaches are data-driven, and they are established
empirically, depending on the variability and quality of the data [9]. The physical approaches utilize
some radiative transfer (RT) models, such as PROSPECT [10]. These models simulate leaf reflectance
and transmittance, with some input parameters in the forward mode, while, in the reverse mode,
the parameters are retrieved. The accuracies of these approaches depend on how well the scattering
processes of the leaf are understood and how they are accounted for in models [11].

Of these remote sensing approaches, the reflectance data are the major data sources in application,
and reflectance is usually used as a whole in retrieval. Nevertheless, leaf reflectance is composed of
specular and diffuse components [12,13], and the two components are quite distinct. Specular reflectance
occurs at the air-leaf cuticle interface. The incident radiation that generates the specular component is
directly reflected, and it does not penetrate the leaf interior to interact with biochemical constituents
such as pigments [14]. This component depends on the leaf surface biophysical properties, and has
an angular distribution. Its spectral variability is not or very little affected by leaf biochemistry [13].
In contrast, the incident radiation that generates the diffuse component penetrates the leaf mesophyll,
where multiple scattering and absorption by biochemical constituents (e.g., pigments and protein)
occur. Diffuse component depends on biochemical concentrations, and it is isotropic in all directions.
Its spectral variability is strongly related to leaf biochemistry [13]. Therefore, it is the diffuse component
rather than the specular component that carries information about leaf biochemistry. Thus, as for
pigment content retrieval, the existence of specular reflectance usually causes interference [15].

To reduce the disturbance from specular reflectance in remote sensing applications, many
techniques have been proposed. These techniques may be divided into the specular removal and
specular resistance types. The specular removal type explicitly estimates (accurately or roughly) the
specular reflectance or the specular effect, and then separates them out from the reflectance. However,
the specular resistance type does not make such estimations, and only develops approaches to reduce
the probable specular effect. With respect to the first type, Rondeaux and Vanderbilt [16] calculated
the specular reflectance based on polarized measurements, and built the specularly modified VIs to
estimate plant photosynthetic activity. Sims and Gamon [17] used the reflectance at 445 nm as an
approximation of specular reflectance, and this was subtracted to build the modified simple ratio
(mSR705) and modified normalized difference (mND705) indices to retrieve leaf pigments. Jay et al. [18]
developed the physically-based model COSINE to estimate the specular effect in the bidirectional
reflectance factor (BRF), and coupled the simplified COSINE with PROSPECT (PROCOSINE) to retrieve
foliar biochemistry. In PROCOSINE, the specular effect is represented by a term, and this can be
retrieved. Li et al. [15] estimated the leaf specular reflectance through polarization measurements
and subtracted this component to build diffuse reflectance-based VIs. With respect to the second
technique type, based on a simple model [19], Peñuelas et al. [20] built the structure insensitive pigment
index (SIPI) to minimize the interference of the leaf surface and mesophyll structure. Based on this
same model, Datt [21] established other VIs, but used different wavelengths. Datt [22] performed
multiplicative scatter correction (MSC) [23] to adjust leaf reflectance to the same scattering level and
built scatter-adjusted VIs. Yu et al. [24] proposed the four-band ratio of reflectance difference indices
(RRDI) to alleviate the confounding effects of soil background and canopy structure to estimate the
chlorophyll content of barley. Li et al. [25] introduced the hybrid model PROCWT, which performed
CWT on BRF and PROSPECT-simulated reflectance, and then used wavelet coefficients in the retrieval.
The specular component was regarded as being constant, and it was reduced in CWT. Asaari et al. [26]
modeled the specular reflectance as an additive term and performed standard normal variate (SNV)



Remote Sens. 2019, 11, 983 3 of 24

transformation [27] to compensate for the specular effect in stress detection on individual plants.
Overall, although the two technique types are based on different starting points, they both attempt
to alleviate the specular disturbance in the application. Thus, they may generally be called specular
disturbance alleviation techniques. Although these studies obtained good results, their applications in
pigment content retrieval in other measurement geometries, or comparisons among these techniques,
should still be investigated.

Wavelet transform, proposed by Morlet in 1980 [28], is a mathematical tool for decomposing
original signals into multiple scales. It has been widely applied in nuclear engineering, geology,
optics, etc. [29]. In remote sensing, it is a very promising tool, and has been used for various objectives,
such as spectral smoothing and noise removal [30,31], image fusion [32], image classification and
species identification [33,34], biochemistry estimation [35–37], and stress detection [38]. Moreover,
there are studies that indicate that wavelet transform can remove specular disturbance. In addition to
the work in [25], Ehsani et al. [39] also implied that wavelet analysis removed specular interference in
soil nitrate content retrieval.

In this study, we examined and compared the applications of the above-mentioned specular
removal and specular resistance techniques in pigment content retrieval at a leaf scale under two
different specular circumstances, the conventional nadir, and an oblique direction. Moreover, special
attention was given to the performance of wavelet analysis in specular disturbance alleviation.

2. Materials and Methods

2.1. Experiment and Data Preparation

The dataset used was obtained from an experiment previously detailed in another study [15].
Thus, we only outline the experiment here.

Plant leaves were sampled on Zijingang Campus of Zhejiang University (Hangzhou, China) from
10 November to 5 December 2016. Because specular reflectance is closely related to the leaf surface
properties [13], three species with distinct surface properties, i.e., mucuna (Mucuna sempervirens),
paper mulberry (Broussonetia papyrifera; mulberry hereafter), and ginkgo (Ginkgo biloba), were selected.
Mucuna has smooth surfaces, with thick and shiny cuticles. Mulberry is coarse, with very sparse hairs.
Ginkgo is intermediate between the two. No leaves contained anthocyanins from their coloration.
Only visually homogeneous leaves were selected. In total, 68 samples were collected (Table 1).

After sampling, the leaves were immediately transferred to the laboratory to measure reflectance
with a spectroradiometer (Fieldspec 3 Hi-Res, ASD Inc., Boulder, CO, USA). This instrument has a
spectral range of 350–2500 nm with a 3 nm and a 10 nm resolution in the visible and the near infrared
regions, respectively. With a multi-angle platform [40], the zenith angle of the light source was fixed
at 30◦. Reflectance was measured in the conventional nadir and the forward 35◦ directions in the
principle plane (formed by the illumination direction and leaf surface normal; the xoz-plane in Figure 1).
The forward 35◦ direction rather than the mirror-like forward 30◦ direction was chosen, because
specular reflectance reaches the maximum at a greater angle due to leaf roughness [13,41]. In the two
directions, polarization data were also measured (details in [15]). The “mirror-like” term here was
defined as being analogous to the direction of the Fresnel reflection. The measured reflectance was
noisy at around 350 nm. Since the pigments mainly function in the visible region, only the data within
400–1000 nm were investigated in this study.
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Figure 1. The spectral measurement geometry. The sensor (spectroradiometer fiber + an optical lens) 
has a field of view of 8°, with a distance of about 12.5 cm from the leaf surface in the nadir direction. 
In this direction, the first measurements (“1st”) were conducted. Then, the sensor was revolved in the 
principal plane, and in the forward 35° direction, the second measurements (“2nd”) were conducted. 
For the mulberry and mucuna leaves, the major veins were kept out of the view of the sensor. 

After spectral measurements, a disk was punched from each leaf with a borer. The disk was cut 
into fine pieces and soaked in a certain volume of 80% (v/v) acetone solutions in a cuvette. The cuvette 
was kept in the dark at room temperature for 48 h. The absorbance of the extract supernatant was 
measured at 663.2, 646.8, and 470 nm with a spectrophotometer (UV-2550, Shimadzu, Kyoto, Japan). 
The concentrations of chlorophyll a, chlorophyll b, total chlorophylls (chlorophyll a + b), and 
carotenoids were obtained as described previously [42]. The pigment content was a function of 
concentration, leaf area, and solution volume, and it was thus determined. 

2.2. Data processing, Analysis, and Retrieval Methods 

2.2.1. Continuous Wavelet Transformation 

Wavelet analysis can be divided into continuous wavelet transform (CWT) and discrete wavelet 
transform (DWT). The coefficients after performing CWT on the spectral data can directly correspond 
to their original wavelengths, and they provide large amounts of information about the absorption 
features. However, the coefficients from DWT do not directly correspond to the wavelengths and 
they are difficult to interpret [43]. Considering our objectives, only CWT was performed. 

However, one aspect of confusion in the application of wavelet transform is the arbitrary choice 
of wavelet function [44]. Torrence and Compo [44] suggested that the function should reflect the 
types of features in the original spectrum. We chose the second derivative of the Gaussian (DOG), 
knowns as Mexican Hat, as the function. Previous studies have suggested that the shapes of 
absorption features are Gaussian-relevant [45,46], and some authors have also used DOG in their 
studies (e.g., [36,47]). CWT was performed in MATLAB (Version R2016a, MathWorks) with the 
function cwt, on both the original reflectance and the first derivative. The decomposition was 
conducted at the dyadic scales: 21, 22, …, and 27, similar to in [25,35,43]. 

2.2.2. Multiple Linear Regression 

Multiple linear regression (MLR) was used to build MLR-based retrieval models. To make the 
model as simple and as robust as possible, the most significant independent variables for explaining 
the response were selected, using the stepwise regression method. The criterion for keeping an 
independent variable in the model in stepwise multiple linear regression (SMLR), can be a sequence 
of F-tests, t-tests, the adjusted multiple coefficients of determination (adj. R²), etc. To distinguish the 

Figure 1. The spectral measurement geometry. The sensor (spectroradiometer fiber + an optical lens)
has a field of view of 8◦, with a distance of about 12.5 cm from the leaf surface in the nadir direction.
In this direction, the first measurements (“1st”) were conducted. Then, the sensor was revolved in the
principal plane, and in the forward 35◦ direction, the second measurements (“2nd”) were conducted.
For the mulberry and mucuna leaves, the major veins were kept out of the view of the sensor.

After spectral measurements, a disk was punched from each leaf with a borer. The disk was cut
into fine pieces and soaked in a certain volume of 80% (v/v) acetone solutions in a cuvette. The cuvette
was kept in the dark at room temperature for 48 h. The absorbance of the extract supernatant was
measured at 663.2, 646.8, and 470 nm with a spectrophotometer (UV-2550, Shimadzu, Kyoto, Japan).
The concentrations of chlorophyll a, chlorophyll b, total chlorophylls (chlorophyll a + b), and carotenoids
were obtained as described previously [42]. The pigment content was a function of concentration, leaf
area, and solution volume, and it was thus determined.

2.2. Data processing, Analysis, and Retrieval Methods

2.2.1. Continuous Wavelet Transformation

Wavelet analysis can be divided into continuous wavelet transform (CWT) and discrete wavelet
transform (DWT). The coefficients after performing CWT on the spectral data can directly correspond
to their original wavelengths, and they provide large amounts of information about the absorption
features. However, the coefficients from DWT do not directly correspond to the wavelengths and they
are difficult to interpret [43]. Considering our objectives, only CWT was performed.

However, one aspect of confusion in the application of wavelet transform is the arbitrary choice of
wavelet function [44]. Torrence and Compo [44] suggested that the function should reflect the types of
features in the original spectrum. We chose the second derivative of the Gaussian (DOG), knowns as
Mexican Hat, as the function. Previous studies have suggested that the shapes of absorption features
are Gaussian-relevant [45,46], and some authors have also used DOG in their studies (e.g., [36,47]).
CWT was performed in MATLAB (Version R2016a, MathWorks) with the function cwt, on both the
original reflectance and the first derivative. The decomposition was conducted at the dyadic scales: 21,
22, . . . , and 27, similar to in [25,35,43].

2.2.2. Multiple Linear Regression

Multiple linear regression (MLR) was used to build MLR-based retrieval models. To make the
model as simple and as robust as possible, the most significant independent variables for explaining
the response were selected, using the stepwise regression method. The criterion for keeping an
independent variable in the model in stepwise multiple linear regression (SMLR), can be a sequence
of F-tests, t-tests, the adjusted multiple coefficients of determination (adj. R2), etc. To distinguish
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the specular interference alleviation effect in different modes of spectral processing, the initial R2

without any spectral transformation should first be considered. Grossman et al. [48] called this the
“baseline” coefficient of determination. Thus, the SMLR was conducted on the original reflectance
first, and then on the first derivatives and wavelet coefficients. In these processes, the data derived at
wavelengths (e.g., reflectance, etc.) were the independent variables, and the pigment content was the
response. SMLR was performed in MATLAB (Version R2016a, MathWorks) with the function stepwise.
The change in the adj. R2 value before and after adding an independent variable into the model was
used as the criterion of keeping this variable.

Moreover, according to the authors of [49], when retrieving biochemical constituents with SMLR,
the selected wavelengths and R2 values may vary considerably among different calibration and
validation data subsets. Before determining the final model, the selection consistency of wavelengths
should be examined. Therefore, 10 randomly extracted subsets each with 50 samples, and the entire
dataset with all 68 samples, were, respectively, used for calibration. For two selections, if all of the
distances between the two corresponding wavelengths were ≤10 nm, these two selections would be
regarded as having good consistency, and vice versa. The consistency of a selection with the entire
dataset was especially stressed. For example, the #7 selection in Table A4 is not very consistent with the
“Entire”, because the wavelength pair of 555 and 580 nm has a distance of 25 nm > 10 nm. A distance
of 10 nm is the minimum spectral resolution that the hyperspectral instrument should have, thus was
used as the indicator here. To maximize the representativeness of the selections, the wavelengths
selected from the entire dataset were used as the independent variables in the final models. All of the
selections with SMLR in this study are provided in Figure S1.

Table 1. Some retrieval approaches that specifically consider the specular reflectance or specular effect.

Type Name Formula Specular Estimator Reference

VIs

SIPI
RNIR −Rred
RNIR −Rblue

[20]

Datt_710
R850 −R710
R850 −R680

[21]

mSR705
R750 −R445
R705 −R445

R445 [17]

mND705
R750 −R705

R750 + R705 − 2R445
R445 [17]

R-reSR 1 R800
R710

[11,15]

Rdiff-reSR
R800

diff

R710
diff

Specular reflectance [15]

MSC+R-reSR R-reSR using MSC
processed spectrum [11,23]

R-reND 1 R800 −R710
R800 + R710

[11,15]

Rdiff-reND
R800

diff −R710
diff

R800
diff + R710

diff

Specular reflectance [15]

SNV+ R-reND R-reND using SNV
processed spectrum [11,27]

Four-band RRDI
R j −Rk

Ri −Rh
(h , i , j , k) [24]

RT model
PROSPECT 1 [50]

PROCOSINE PROSPECT +
simplified COSINE bspec [18]

Hybrid model
PROCWT PROSPECT + CWT [25]

PROSPECT + R−445 R445 [17,25]
PROSPECT + Rdiff + R−445 Specular reflectance and R445 this study

1 These do not specifically consider the specular reflectance or specular effect and are just included for comparison.

2.2.3. Specular Removal and Specular Resistance Techniques

The above-mentioned approaches that especially take account of the specular reflectance or the
specular effect in Section 1 are summarized in Table 1. They were tested in this study.
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In Table 1, the column “Specular estimator” corresponds to the specular removal type, and it
represents the term that estimates the specular reflectance or specular effect.

Rx in the column “Formula” for VIs represents the reflectance at the wavelength x nm. RNIR, Rred,
and Rblue in SIPI means the wavelength is in the near-infrared, red, and blue regions, respectively.
Here, we used 800, 675, and 445 nm, respectively. R800

diff and R710
diff in Rdiff-reSR and Rdiff-reND represent

the diffuse reflectance at 800 and 710 nm, respectively. The diffuse reflectance was obtained at each
wavelength from a simple model, using polarization measurements. In the MSC transformation:

Smear = aE + bSavg + e (1)

where Smear is a measured reflectance spectrum, and Savg is the average reflectance spectrum from all
samples. a and b are the two regression coefficients obtained by linear least squares. E is a unit vector,
and e is the error vector after regression. The processed spectrum is:

mscSmear = (Smear - aE)/b (2)

In the SNV transformation, the processed spectrum is:

snvSmear = [Smear - mean(Smear) × E] / std(Smear) (3)

where mean(Smear) and std(Smear) are, respectively, the mean and standard deviation of Smear. Clearly,
the mathematical ideas behind MSC and SNV are similar, and the main difference lies in the selection of
the reference (i.e., Savg and mean(Smear) here). Rk and Rh in the four-band RRDI have the local minima
of the coefficient of variation across wavelengths, and then Rj and Ri are obtained from optimization
(e.g., to make the R2 value of the VI vs. the pigment content the greatest).

The RT and hybrid models are all based on the PROSPECT model [10]. PROSPECT was first
developed in 1990, and it has been updated, with several versions being released. The latest version
is PROSPECT-D [50], which adds the anthocyanin content parameter compared to the second-latest
version, PROSPECT-5 [51]. We only used PROSPECT-D in the RT and the hybrid models. bspec in
PROCOSINE is a complicated specular term, which is relevant to specular reflectance in BRF and
directional hemispherical reflectance factor (DHRF), and it is retrieved in model inversion. In PROCWT,
the specular reflectance in BRF and DHRF is regarded as being constant. Then, the constant term is
reduced in CWT. In PROSPECT + R−445, the measured and simulated reflectance at 445 nm (R445)
is used as a specular reflectance estimation, and it is subtracted from the measured and simulated
reflectance, respectively. With the consequent “approximate” diffuse reflectance, the pigment content
is retrieved with PROSPECT. Note that PROSPECT was originally developed for DHRF and the
directional hemispherical transmittance factor (DHTF) simulation, where the incident zenith angle is
0◦. Although PROCOSINE and PROCWT were applied to BRF and obtained good accuracies for their
own datasets, their incident zenith angles were relatively small (≤20◦). PROSPECT + Rdiff + R−445 is
similar to PROSPECT + R−445, but Rdiff is used instead of the measured reflectance minus the measured
R445. Rdiff here is the same as that in Rdiff-reSR and Rdiff-reND.

2.2.4. Statistics, Model Building, and Evaluation

Descriptive statistics such as the mean and range were made for the chlorophyll and
carotenoid contents.

When retrieving the pigment content, as for MLR-based models, the entire dataset was randomly
divided into two subsets in model building, one with 50 samples for calibration, and the other with
18 samples for validation. With the selected wavelengths from SMLR, MLR was conducted to calibrate
the model on the calibration subset. With the calibrated model, the pigment content was predicted
for the validation subset. This calibration-validation process was repeated 10 times. Each time, a
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root-mean-square error (RMSE) was obtained. The 10 RMSEs were averaged as the RMSE for this
retrieval method. The relative error (RE) was also calculated:

RMSE =

√√√√ n∑
i=1

(xi − x̂i)
2

n
, (4)

RE =
RMSE of the method

mean(content)
, (5)

where n is the number of samples, xi is the actual pigment content of the leaf numbered i, x̂i is the
corresponding prediction for xi, and mean(content) is the average of the actual pigment contents of
all leaves in the entire dataset. For each of the 10 calibration-validation processes, the estimated and
actual contents were fitted with a linear model at a confidence level of 95%. The 10 obtained R2 values
and 10 p-values were averaged. The mean values of R2, RMSE, and RE were the evaluation indicators
for a retrieval method.

R2 = 1−

n∑
i=1

(xi − x̂i)
2

n∑
i=1

(xi − x)2
(6)

where x is the mean of the actual contents of n samples. The RMSE was also calculated in wavelength
selections with SMLR. Moreover, when conducting SMLR on the wavelet coefficients, the scale at
which the selection produced the lowest RMSE and the highest adj. R2 value was determined as the
optimal decomposition scale:

Adj.R2 = 1− (1−R2)(
n− 1

n− t− 1
) (7)

where t is the number of independent variables.
For VIs, the calibration and validation were similar, while a simple linear model between the VI

and the pigment content was fitted.
For the RT and the hybrid models, the inversion consisted in optimization of (i.e., minimizing) the

merit function:

J(θ) =
λmax∑
λmin

[ f (Smear) − g(Ssimu,θ)]2 (8)

where θ is the input parameter vector, λ is the wavelength at λmin–λmax (400–1000 nm), and Ssimu

is the simulated reflectance. In PROSPECT + Rdiff + R-445, f (·) and g(·) indicate calculating Rdiff

and subtracting the simulated R445, respectively. In other models, f (·) and g(·) are the same; they
represent CWT in PROCWT, subtracting R445 in PROSPECT + R−445, and no processing in PROSPECT
and PROCOSINE. The optimization of Equation (8) was performed in MATLAB (Version R2016a,
MathWorks) using the function lsqcurvefit, with the trust-region-reflective algorithm. The bounds
of each parameter in θ (Table 2) were derived, referring to the LOPEX’93 experiment [52], and they
covered the chlorophyll and carotenoid content range in our dataset (Table 3). Anthocyanin and brown
pigment contents were fixed at 0.
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Table 2. Parameters, their bounds, and the initial values for optimization.

Parameter Lower Bound Upper Bound Initial Value

N (unitless) 1 3 2
Cab (chlorophylls; µg/cm2) 0 100 16
Cxc (carotenoids; µg/cm2) 0 20 5

Cw (cm) 0.01 0.05 0.03
Cm (g/cm2) 0.002 0.03 0.01

bspec (unitless) 1
−0.9 0.9 0

1 Only in PROCOSINE.

Table 3. Descriptive statistics for chlorophyll and carotenoid contents (µg/cm2).

Species Pigment Number Mean Range Standard Deviation

Ginkgo Chlorophylls
34

15.87 0.85–33.40 9.25
Carotenoids 4.46 1.58–6.96 1.39

Mulberry Chlorophylls
20

36.74 7.57–62.48 14.64
Carotenoids 9.66 5.73–14.21 2.38

Mucuna
Chlorophylls

14
68.79 56.17–85.19 7.58

Carotenoids 12.38 10.74–14.79 1.32

Total
Chlorophylls

68
32.9 0.85–85.19 23.12

Carotenoids 7.62 1.58–14.79 3.74

2.2.5. Summary of the Retrieval Methods

The main process of the retrieval techniques is illustrated in Figure 2. “SMLR” means using SMLR
to search for the several optimal wavelengths. “No processing” means directly using the original
reflectance for SMLR. “Derivative + CWT” means that the derivative transformation was performed
on the original reflectance first, and then CWT was conducted on the obtained first derivatives.
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3. Results

3.1. Statistics for Pigment Content

Table 3 shows the descriptive statistics for the chlorophyll and carotenoid contents. Mucuna had
the largest mean, but the smallest range. This species is a type of evergreen vine. Pigments accumulate
in the leaves with time, and hardly degrade in autumn and winter. On the contrary, the other two
species are deciduous, and their pigments break down during these seasons, thus forming a relatively
low mean and a wide range. The carotenoid and chlorophyll contents had a strong correlation, with a
Pearson’s correlation coefficient of up to 0.96, which was significant at p < 0.01.

3.2. Leaf Reflectance Characteristics and Confusion Caused by the Effects of Specular Reflectance

In the nadir direction, most samples showed the typical spectral characteristics of green leaves, as
Figure 3a displays. The reflectance in the blue and red regions was low, due to the strong absorption
by the pigments, while in the green region, a peak appeared because the absorption was relatively
weak. In the near-infrared, there was a high plateau, owing to strong scattering by the leaf structure.
Furthermore, with the increase in the pigment content, the reflectance in both major absorption regions
decreased. The reflectance in the green region also dropped, but with a relatively low intensity. Based
on these spectral feature changes with pigment content, a series of VIs were established to retrieve
pigment content, such as the NDVI and the green ratio (RNIR/Rgreen) [53].
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Figure 3. (a) Reflectance spectra of three leaves with different chlorophyll contents (µg/cm2, decimals
in the legend) in the nadir and forward 35◦ directions; and (b) their specular reflectance (Rs) and diffuse
reflectance (Rdiff) in the two directions. F 35◦ represents the forward 35◦ direction. The x-axes in the
subplots represent wavelength (nm).

However, in the forward 35◦ direction, the situation was different. Leaf reflectance was always
larger in this direction than in the nadir, especially for the mucuna leaves (Figures 3a and 4). Since leaf
diffuse reflectance was isotropic in directions [13,14], the higher reflectance in this direction was due to
a greater amount of specular reflectance (Figure 3b and Table 4). The specular reflectance in Figure 3b
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and Table 4 was obtained with a simple model, through polarization measurements [15]. Note that the
reflectance of the mucuna leaf at 800–1000 nm in Figure 3a reached almost 0.80, and in the green and
red regions, it was still higher than that of the mulberry leaf. However, the chlorophyll content of the
former was much higher than that of the latter (66.69 vs. 15.15 µg/cm2). This was a contradiction to the
nadir trend, where more pigments would result in a lower reflectance in the major absorption regions.
Therefore, this unusual spectral feature change would cause confusion in pigment content retrieval,
and usually induces a decrease in retrieval accuracy (e.g., using previous green ratio [15]).Remote Sens. 2019, 11, x FOR PEER REVIEW  11 of 25 
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Figure 4. The mean (solid line) ± standard deviation (colored shade) of reflectance, based on the leaf
species in the nadir (first column) and forward 35◦ (second column) directions. The mucuna leaves
have a much higher reflectance in the forward 35◦ than in the nadir direction.

Table 4. Specular reflectance for the three leaves in Figure 3 at specific wavelengths 1.

Leaf
Wavelength (nm; nadir) Wavelength (nm; forward 35◦)

550 675 800 550 675 800

Ginkgo 0.071 0.059 0.048 0.094 0.090 0.085
Mulberry 0.040 0.036 0.029 0.047 0.047 0.039
Mucuna 0.036 0.031 0.022 0.308 0.308 0.282

1 Specular reflectance is stable across the wavelengths [13,15], as shown in Figure 3b. This table lists its values at
several wavelengths.

3.3. Pigment Content Retrieval

3.3.1. VIs, RT, and Hybrid Models

Table 5 shows the validation results for the RT and hybrid models. For chlorophylls, with
higher specular reflectance in the forward 35◦ direction, the retrieval accuracy with PROSPECT-D
decreased considerably compared to that in the nadir direction (RE: 80.40% vs. 19.57%). All of the other
approaches reduced the specular interference in the forward 35◦ direction, and produced comparable
results (except PROCWT) between the two viewing directions. For example, the RE of PROCOSINE
was 15.05% and 15.62% in the forward 35◦ and nadir directions, respectively. However, these models
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could not retrieve the carotenoid content, due to the large errors (all REs > 58%). Overall, the retrieval
appeared to be ill-posed, and these models were not appropriate for our measurement geometry with a
30◦ incident zenith angle. Although PROCWT and PROCOSINE were applicable for BRF data in some
studies, the incident zenith angle was relatively small (≤20◦). Under these circumstances, the specular
component took up only a small proportion of the total DHRF at 400–1000 nm (e.g., <0.1 for corn and
soybean leaves [54]), and the diffuse reflectance in DHRF and BRF was considered to be equal [18,25].

Table 5. Pigment content retrieval using the RT and hybrid models. All R2 values have a p-value < 0.01.

Direction Pigment Indicator P-D 1 P-D+Rdiff + R−445
1 PROCWT 2 P-D+R−445

1 PROCOSINE

Nadir

Chlorophylls
RMSE 6.44 6.22 5.14 5.23 5.14

RE 19.57% 18.91% 15.62% 15.90% 15.62%
R2 0.93 0.95 0.96 0.96 0.96

Carotenoids
RMSE 5.19 5.75 4.48 5.60 5.55

RE 68.11% 75.46% 58.79% 73.49% 72.83%
R2 0.94 0.94 0.89 0.93 0.93

Forward 35◦

Chlorophylls
RMSE 26.45 6.81 11.67 5.32 4.95

RE 80.40% 20.70% 35.47% 16.17% 15.05%
R2 0.09 3 0.93 0.97 0.98 0.97

Carotenoids
RMSE 6.25 5.69 5.06 5.55 5.47

RE 82.02% 74.67% 66.40% 72.83% 71.78%
R2 0.11 0.93 0.85 0.94 0.94

1 P-D represents PROSPECT-D; 2 in the nadir direction, the scale was 32 and 8 for chlorophylls and carotenoids,
respectively; in the forward 35◦ direction, it was 32 and 8 as well; 3 p-value = 0.012.

Table 6 shows the validation with the 11 VIs. Unlike the RT and hybrid models, all of these VIs
were simultaneously applicable for chlorophylls and carotenoids. R-reSR and R-reND were not specific
for specular disturbance alleviation. Rdiff-reSR and Rdiff-reND were their counterparts, respectively,
where specular reflectance was removed. From RMSEs and REs of these four VIs, it was clear that
specular reflectance interfered with the retrieval, and that specular removal reduced the interference
and improved the retrieval. For example, without removal, the RE of R-reSR for chlorophylls increased
from 17.45% to 53.10% from the nadir to the forward 35◦ direction. In the forward 35◦ direction, after
removal, this value decreased to 19.00%, and it was comparable to 13.77% in the nadir direction. With
these four VIs as a reference, it was clear that each VI (except SIPI) obtained comparable accuracy in
the two directions, and they effectively alleviated the specular disturbance in the forward 35◦ direction.
SIPI had the worst results for both chlorophylls and carotenoids. This VI was originally designed for
the relative carotenoid/chlorophyll a content, so it may be not suitable for absolute content retrieval.
The four-band RRDI had the highest accuracy for both chlorophylls and carotenoids. Compared to
the four-band RRDI (where k = h) mSR705, one more wavelength may increase the retrieval power of
the VI.
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Table 6. Pigment content (µg/cm2) prediction with the eight VIs.

Direction Pigment Indicator R-reSR MSC+
R-reSR

R-reND SNV+
R-reND

SIPI Datt_710 mSR705 mND705 Rdiff-reSR Rdiff-reND Four-Band
RRDI 1

Nadir

Chlorophylls

RMSE 5.74 5.44 6.86 4.98 21.41 10.18 5.15 7.27 4.53 6.36 4.17
RE 17.45% 16.53% 20.85% 15.14% 65.08% 30.94% 15.65% 22.10% 13.77% 19.33% 12.67%
R2 0.94 0.95 0.92 0.96 0.26 0.83 0.95 0.91 0.96 0.93 0.97

p-value <0.01 <0.01 <0.01 <0.01 0.39 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Carotenoids

RMSE 0.93 0.99 0.96 0.98 3.39 1.60 1.06 1.08 0.92 0.97 0.80
RE 12.20% 12.99% 12.60% 12.86% 44.49% 21.00% 13.91% 14.17% 12.07% 12.73% 10.50%
R2 0.94 0.93 0.94 0.93 0.26 0.84 0.92 0.92 0.94 0.93 0.95

p-value <0.01 <0.01 <0.01 <0.01 0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Forward 35◦

Chlorophylls

RMSE 17.47 6.25 15.93 4.82 21.40 8.80 6.62 7.41 6.25 7.43 4.25
RE 53.10% 19.00% 48.42% 14.65% 65.05% 26.75% 20.12% 22.52% 19.00% 22.58% 12.92%
R2 0.49 0.93 0.55 0.96 0.26 0.87 0.94 0.91 0.93 0.90 0.97

p-value <0.01 <0.01 <0.01 <0.01 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Carotenoids

RMSE 2.27 1.00 2.07 0.94 3.39 1.33 1.18 1.06 0.99 1.07 0.90
RE 29.79% 13.12% 27.17% 12.34% 44.49% 17.45% 15.49% 13.91% 12.99% 14.04% 11.81%
R2 0.63 0.93 0.68 0.94 0.25 0.88 0.91 0.92 0.93 0.92 0.94

p-value <0.01 <0.01 <0.01 <0.01 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
1 In the nadir direction, this was R694−R800

R523−R550
and R642−R800

R670−R550
for chlorophylls and carotenoids, respectively; in the forward 35◦ direction, it was R612−R800

R523−R550
and R643−R800

R510−R550
.
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3.3.2. MLR Using the Original Reflectance and the First Derivatives

In our preliminary experiment on original reflectance, for the chlorophyll content, the adj. R2

values increased with the number of independent variables, and remained constant when the number
exceeded 3. To avoid overfitting and overestimation, the number of selected wavelengths was ≤3.
For carotenoids, with three selected wavelengths, two of them were around 710 nm, with a distance
of almost always less than 3 nm. To avoid such a correlation, no more than two wavelengths were
selected. To allow a comparison, the maximum number of selected wavelengths was fixed, with three
for chlorophylls and two for carotenoids in all of the MLR-based models.

Tables 7 and 8 show the respective validation results using MLR for the original reflectance
and the first derivatives. The accuracy was lower in the forward 35◦ than in the nadir direction
for both chlorophylls and carotenoids, owing to the interference created by a larger amount of
specular reflectance in the former direction (Table 7). Chlorophylls were more intensely disturbed than
carotenoids (RE: 9.54–12.89% for chlorophylls vs. 14.44–15.09% for carotenoids). This different effect
may be partly due to the content range, where chlorophylls were more abundant than carotenoids
in the leaves (Table 3). Moreover, for chlorophylls, the retrieval in Table 7 was better than Rdiff-reSR
(Table 5), and, for carotenoids, it approached mSR705. This was manifested in the effective specular
resistance capabilities of the MLR models.

Table 7. Pigment content (µg/cm2) prediction using MLR for the original reflectance. All R2 values
have a p-value < 0.01.

Pigment Direction Wavelength (nm) RMSE RE R2

Chlorophylls Nadir 710 725 772 3.14 9.54% 0.98
Forward 35◦ 400 713 780 4.24 12.89% 0.97

Carotenoids
Nadir 714 769 – 1.10 14.44% 0.92

Forward 35◦ 439 705 – 1.15 15.09% 0.91

Table 8. Pigment content (µg/cm2) prediction using MLR for the first derivatives. All R2 values have a
p-value < 0.01.

Pigment Direction Wavelength (nm) RMSE RE R2

Chlorophylls Nadir 576 745 778 2.72 8.27% 0.99
Forward 35◦ 474 747 773 2.63 7.99% 0.99

Carotenoids
Nadir 752 955 – 0.96 12.60% 0.94

Forward 35◦ 736 949 – 0.92 12.07% 0.94

The derivative transformation can remove low-frequency background signals in the spectra [55].
Since leaf specular reflectance in a direction remained stable across wavelengths (Figure 3b) [13],
it can be regarded as a constant (additive) term. Thus, the derivative transformation effectively
reduced specular reflectance. Moreover, this transformation enhanced the spectral features (Figure 7).
Compared to Table 7, Table 8 always has lower RMSE and RE values. This revealed that the derivative
transformation plus MLR not only alleviated the specular interference but also further improved
the retrieval. The improvement was more remarkable in the forward 35◦ direction than in the nadir
direction for both pigments. For example, the RE for carotenoids decreased by 3.02% in the forward
35◦ direction, while it decreased by 1.84% in the nadir direction.

3.3.3. CWT plus MLR

Table 9 presents validation results with the CWT plus MLR method, at the optimal decomposition
scales. Compared to Table 7, with the original reflectance input, the CWT plus MLR method further
reduced the RMSE and RE for both chlorophylls and carotenoids in either direction. With the
specular reflectance as a constant term, CWT reduced it, due to the linear additive property in wavelet
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analysis [25,47]. At the optimal decomposition scale, CWT enhanced the spectral features (Figure 7).
Thus, the CWT plus MLR method not only effectively alleviated the specular disturbance but also
further improved the retrieval. Moreover, after performing CWT on the reflectance or the derivatives,
the retrieval with the wavelet coefficients nearly achieved the best results for both pigments among all
of the methods in either direction. Of these CWT plus MLR models, the accuracy for either direction
was higher for chlorophylls than for carotenoids (e.g., the nadir RE: 8.15% for chlorophylls vs. 11.55%
for carotenoids), while for either pigment, the retrieval in the forward 35◦ direction was slightly better
than that in the nadir direction (e.g., RE for carotenoids: 11.29% in the forward 35◦ direction vs. 11.55%
in the nadir direction).

Table 9. Pigment content (µg/cm2) prediction with the CWT plus MLR method. The “spectral input
type” is the spectrum type that is used for the wavelet transformation. The underlined results are the
best (the second-best for carotenoids in the forward 35◦ direction) for a pigment in a direction, among
all of the retrieval methods. All R2 values have a p-value < 0.01.

Direction Spectral
Input Type Pigment Optimal

Scale Wavelength (nm) RMSE RE R2

Nadir

Original
reflectance

Chlorophylls 8 568 708 764 2.68 8.15% 0.99
Carotenoids 4 750 1000 – 0.88 11.55% 0.95

First
derivative

Chlorophylls 8 580 771 786 2.80 8.51% 0.99
Carotenoids 16 556 783 – 0.90 11.81% 0.95

Forward
35◦

Original
reflectance

Chlorophylls 8 580 761 862 2.42 7.36% 0.99
Carotenoids 16 536 775 – 0.88 11.55% 0.95

First
derivative

Chlorophylls 8 732 767 782 2.74 8.32% 0.99
Carotenoids 64 472 776 – 0.86 1 11.29% 0.95

1 The second-best, and only slightly higher than 0.80 from the four-band RRDI in Table 6.

4. Discussion

4.1. The Effects of the Specular Disturbance Alleviation Methods

From the above results, the RT and hybrid models appeared to be ill-posed, and they obtained
very high errors for carotenoids in the retrieval. Figure 5 displays the results with PROSPECT-D and
PROCOSINE. Evidently, these models were not applicable under the geometry with an incident zenith
angle = 30◦ for BRF. At such a high angle (>20◦), BRF was markedly anisotropic in directions, and
the anisotropy increased with the incident zenith angle. For example, the maxima of bidirectional
reflectance distribution function (BRDF; BRF = BRDF × π) for the European beech (Fagus sylvatica L.)
leaf ranged from 0.03 sr−1 at 5◦ to 0.45 sr−1 at 65◦ [56]. In our dataset, the mucuna leaves had large
reflectance differences between the two viewing directions (Figures 3a and 4), so the retrieval was
poor (Figure 5). However, the bidirectional transmittance distribution function (BTDF) for leaves was
much more isotropic than BRDF [12,54,56]. If leaf transmittance can be included in the models, or if
new models are developed for transmittance, retrievals at high incident zenith angles (>20◦) may be
improved. This needs to be further studied.

In addition, in PROSPECT inversion, two other strategies were also examined: (1) only the visible
range was used, and other parameters that were insensitive to the visible were fixed [25]; and (2) the
whole spectrum was used and all input parameters varied [43]. For Strategy (1), the reflectance within
400–800 nm was used, and Cw was fixed at 0. For Strategy (2), the reflectance within 400–2200 nm was
used (data at < 400 nm and > 2200 nm were discarded, due to high noise). For Strategies (1) and (2),
anthocyanin and brown pigment contents were fixed at 0. The model was inverted according to the
method in Section 2.2.4. The results were also ill-posed and they were generally not much different
from those in Table 5.
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Figure 5. Scatter plots for the retrievals for chlorophyll (Columns 1 and 3) and carotenoid (Columns 2
and 4) contents (µg/cm2) with PROSPECT-D (P-D) (Columns 1 and 2) and PROCOSINE (PC) (Columns 3
and 4) in the nadir (Row 1) and forward 35◦ (F 35◦) (Row 2) directions. The x-axis is the predicted content,
and the y-axis is the measured content. The retrieval is ill-posed (see Section 3.3.1). With PROSPECT-D,
the mucuna leaves seriously deviate from the 1:1 line.

For the empirical techniques, the REs in Tables 6–9 are illustrated in Figure 6. Again, it is clear that,
compared to the VIs, the four MLR-based methods not only effectively alleviated specular interference,
but also further improved the retrieval for both chlorophylls and carotenoids in either direction,
especially for chlorophylls in the forward 35◦ direction. There may be two reasons for this: First, the
linear combination of data at the specified wavelengths eliminated the low-frequency information.
Table 10 demonstrates this situation. As specular reflectance can be regarded as a constant term, it
was reduced by the combination of the positive and negative terms of the MLR models. Second, the
coefficients, selected wavelengths, and constant terms were optimized for different data. Thus, the
optimization not only effectively reduced the specular effect but also improved the retrieval. In addition,
both the derivative transformation and CWT suppressed specular interference and enhanced the
absorption features (Figure 7). Coupling either or both with MLR further improved the retrieval.
However, it should be pointed out that the retrieval was surprisingly accurate (R2

≥ 0.98 in Tables 7–9),
and the improvement among these methods was generally marginal (e.g., compare Tables 8 and 9).
The reason for this may be that our dataset was quite limited (68 samples from three species). Thus,
more samples and species should be added to the dataset. Under such circumstances, with a wider
variation of leaf traits, these MLR-based methods need to be further examined for their applicableness
and robustness.

Table 10. The MLR retrieval models for the original reflectance. The wavelengths correspond to the
ones in Table 7, in sequence.

Direction Pigment Wavelength Coefficients Constant Term

Nadir
Chlorophylls 148.91 −748.51 598.50 3.09
Carotenoids −37.04 19.89 — 10.77

Forward 35◦
Chlorophylls 113.73 −220.83 158.02 16.56
Carotenoids 36.27 −31.12 — 13.09

For each of the four MLR-based methods, in either direction, the retrieval accuracy for carotenoids
was always lower than that for chlorophylls. This may be due to the lower content of carotenoids vs.
chlorophylls and the overlapping absorption regions of the two pigments. This would lead to interference
from chlorophylls in carotenoid content retrieval, making the retrieval more challenging [57].
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Figure 7. Correlogram for reflectance (green), first derivatives (blue), and wavelet coefficients (red,
scale 8 with reflectance input, see Table 9) vs. chlorophyll content in the forward 35◦ direction.

4.2. Pigment Content Retrieval with CWT

Figure 7 displays the correlation coefficients between the data derived at each wavelength and
the chlorophyll content in the forward 35◦ direction. After the derivative transformation or CWT,
the spectral features were significantly enhanced. For example, the absolute r value increased from
0.32 and 0.35 at 550 and 710 nm, respectively, to >0.85. In addition, intense micro-fluctuations on
the blue line are noted, at approximately 400–450 nm and 770–1000 nm, which may be induced by
high-frequency noise in the first derivative spectra. Although the derivative transformation reduced
low-frequency signals (e.g., specular reflectance), it simultaneously increased high-frequency noise in
the data [55]. This noise was then amplified when calculating correlation coefficients. However, CWT
did not generate such noise, as indicated by the smooth red line in these regions. For carotenoids and
the nadir direction, there was a similar situation (figure not shown).

On the optimal wavelet decomposition scale for retrieval, the scale for chlorophylls was 8 with
original reflectance input in both directions, which was different from those in [25,35,43]. In [25], it
was 16, 32, and 16 for wheat, rice, and wheat + rice, respectively, using PROCWT (PROSPECT-D used).
In [43], it was 64 and 32, respectively, for PROSPECT- and LIBERTY-simulated [58] reflectance, both
with the first derivative input. In [35], it was 64 for the PROSPECT-simulated reflectance, and the
accuracies with reflectance and the first derivative input were equivalent. In addition, the authors
of [35,43] used only simulated data with a wide variation of leaf traits, while we used measured data
that contained only 68 samples from three species with a relatively narrow range of such variation.
For carotenoids, in [25], the scale was 32, 64, and 32 for wheat, rice, and wheat + rice, respectively.
In our study, the scale was 4, with the original reflectance input in the nadir direction, and 64 with the
first derivative input in the forward 35◦ direction.
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In all of these studies, the optimal scales for pigment content retrieval were generally located near
the intermediate position among the decomposition scales (e.g., 32 in 2, 4, 8, . . . , 128). At a lower
decomposition scale, the wavelet coefficients corresponded to noise and fine absorption features, while,
at a higher scale, they corresponded to the broad features and leaf structures that determined the overall
shape of the reflectance spectra [43]. Thus, the best scale for retrieval may appropriately respond
simultaneously to these factors, resulting in a balance among them. Figures 8 and 9 demonstrate this
situation. Notice the intense narrow colored stripes and micro-fluctuations at a scale of 2 in Figures 8
and 9c, respectively. When the scale was larger (e.g., 128), these stripes gradually merged into wider
colored blocks (Figure 8), and the micro-fluctuations disappeared, forming a smooth generalized curve
(Figure 9d). The optimal scale (e.g., 64 in Figure 8) achieved a compromise for this change.
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forward 35◦ direction. The x-axis in each subplot is the wavelength (nm).
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4.3. Selected Wavelengths and Selection Consistency with SMLR

All of the selections for searching for the best wavelengths for chlorophyll and carotenoid content
retrieval with SMLR are provided in Figure S1. The selections with the best scales are shown in Table 9
(underlined), and the selections based on the original reflectance in the two directions are presented in
the Appendix A.

For the best scales in Table 9 (Tables A2–A5), the percentages of wavelength consistency in the
selections were rather low (<0.5), but all of the selections for a pigment in a particular direction had
almost the same adj. R2 values. For the selections based on reflectance (Table A1), the consistency was
high (percentage ≥ 0.7), and the adj. R2 values were not much different (the R2 value difference was
generally ≤ 0.02), for a pigment in either direction. It seems that the percentage of selection consistency
decreased for the MLR models with the processed data, compared to those with the original data.
The reason for this may be that the CWT corresponded to and enhanced the spectral features, resulting
in wavelet coefficients that were more variable than the reflectance. Thus, greater differences should be
contained among the extracted subsets of the processed data than those of the original reflectance,
for a given calibration-validation process. Besides, the selections with reflectance were very different
from those in [49], whose R2 values (less than ours) and wavelength selection consistencies varied
greatly, depending on the calibration and validation subsets. This distinction may be caused by two
reasons. First, the dataset in [49] contained 50 species, covering a much wider variation of leaf traits
than ours, with only three species. Second, in the visible region, the spectral signals were dominated
by pigments, and these signals were very strong. However, the signals of lignin, cellulose, starch, etc.,
were located in the near-infrared region. These signals were relatively weak, and they were often
overlapped by water in fresh leaves, and they were susceptible to many other factors, such as noise.
All of these reasons may prevent calibrations from attaining good wavelength selection consistency
and high retrieval accuracy.

For the wavelengths selected for reflectance, for chlorophylls and carotenoids in both directions, there
was always a wavelength that was located in the red edge region (around 710 nm, Table A1). This revealed
the significance of this range for both the chlorophyll and carotenoid content retrievals, even when a large
amount of specular reflectance existed. For chlorophylls, another wavelength was situated at around
780 nm. These two wavelengths can be used to build VIs, such as the RNIR/Rred edge region [11], to retrieve
the pigment contents. In addition, with the reflectance at 450 and 675 nm as independent variables, the
MLR models were examined using the same process in Section 2.2.4 to retrieve the chlorophyll content.
The RMSEs were 18.08 and 16.04 µg/cm2 in the nadir and forward 35◦ directions, respectively. Thus, with
only the main absorption features, chlorophyll content cannot be accurately retrieved.

4.4. About the Application of Our Methods at a Canopy Scale

At a canopy scale, specular reflectance may cause a confusion in the biochemical content estimation,
such as photosynthetic activity [16], vegetation amount [59], and chlorophyll content [24]. However,
the specular reflection at a canopy scale is quite complicated. All the factors, such as the phenology,
plant physiological phases, and stress, which can affect canopy structure, may influence canopy
specular reflection. This situation may complicate the relationship between specular reflectance and
biochemical content as well. This issue has not been fully studied so far. Thus, the methods proposed
in this paper at a leaf scale should be further investigated when being applied at a canopy scale.

5. Conclusions

In this study, several VIs, RT, and hybrid models that specifically take account of the specular
reflectance or specular effect, and wavelet analysis, were investigated to retrieve the pigment contents
in the nadir and oblique viewing directions at a leaf scale.
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Although the RT and hybrid models confirmed their applicableness with high accuracy at a low
incident zenith angle (≤20◦) in some studies, their retrievals appeared to be ill-posed at a higher angle
of 30◦.

For the empirical methods, all eight of the VIs, namely MSC + R-reSR, SNV + R-reND, Datt_710,
mSR705, mND705, Rdiff-reSR, Rdiff-reND, and four-band RRDI, obtained comparable accuracies between
the two directions, and they could effectively alleviate the specular disturbance in the forward 35◦

direction. Of these VIs, the four-band RRDI performed the best for both chlorophylls and carotenoids.
The MLR, derivative transformation, and CWT could alleviate the specular interference as

well. Moreover, the MLR-based methods generally obtained higher retrieval accuracies than the VIs.
For these MLR-based methods, the retrieval for chlorophylls was always better than for carotenoids.
Among all of the methods investigated, CWT plus MLR was outstanding, and it generally achieved
the best retrieval for both pigments. The results are 2.68 and 0.88 µg/cm2 for chlorophylls and
carotenoids, respectively, in the nadir direction, and 2.42 and 0.86 µg/cm2 in the forward 35◦ direction.
Of the decomposition scales with CWT, the low scale corresponded to the noise and fine absorption
features, while the high scale characterized the broad absorption features and leaf structure properties
that defined the overall reflectance shape. The optimal scale for retrieval probably lays near the
intermediate position (e.g., 32 in 2, 4, 8, . . . , 128), appropriately resulting in a balance among the effects
of these factors.

Although excellent results were obtained with the MLR-based methods, they were based on a
limited dataset, with 68 samples from three species, and the improvements among these methods were
slight. More samples and leaf species should be added to the dataset, to enlarge the variation of leaf
traits. The approaches proposed must be verified under a context of wider variation to investigate their
performance and robustness. More effort should be made for carotenoid content retrieval, due to its
difficulty, and also due to the critical role of this pigment in plant physiology and ecology. In addition,
the relationship between specular reflectance and biochemical content at the canopy scale should be
further studied. The application of our methods at this scale also needs more investigation.
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Appendix A

Table A1. Selections with SMLR on the original reflectance. “Entire” means all that 68 leaves in the
dataset were used. In total, 41 datasets (40 subsets + 1 entire set) were used. Adj. R2 indicates adjusted
R2. The selections whose wavelengths are far (>10 nm) from the corresponding “Entire” are marked in
bold (indicating poor consistency). These abbreviations and symbols have the same meanings as in
Tables A2–A5. All adj. R2 values have a p-value < 0.01.

Nadir Wavelength/nm Adj. R2 RMSE/
µg·cm−2

Forward
35◦ Wavelength/nm Adj.

R2
RMSE/
µg·cm−2

Chlorophylls

#1 711 725 784 0.98 2.93 #1 400 713 780 0.96 4.58
#2 711 728 772 0.98 3.25 #2 400 713 775 0.96 4.55
#3 710 724 784 0.98 2.69 #3 400 712 773 0.96 4.64
#4 712 727 772 0.98 3.32 #4 400 713 773 0.96 4.64
#5 711 725 771 0.98 2.95 #5 400 712 779 0.96 4.50
#6 710 725 772 0.99 2.77 #6 400 714 788 0.96 4.58
#7 709 725 770 0.98 3.16 #7 400 711 770 0.96 4.43
#8 711 725 772 0.98 2.79 #8 400 713 975 0.97 3.63
#9 711 731 772 0.98 2.88 #9 400 713 788 0.96 4.60

#10 710 728 771 0.98 3.29 #10 443 700 705 0.94 5.60
Entire 710 725 772 0.98 3.14 Entire 400 713 780 0.96 4.40

Carotenoids

#1 714 769 0.92 1.03 #1 437 705 0.91 1.14
#2 405 714 0.93 1.00 #2 437 705 0.91 1.14
#3 714 769 0.92 1.06 #3 439 706 0.92 1.09
#4 711 771 0.92 0.97 #4 439 705 0.89 1.24
#5 714 769 0.92 1.06 #5 400 716 0.92 1.02
#6 714 770 0.92 1.09 #6 434 706 0.91 1.08
#7 712 771 0.91 1.08 #7 439 706 0.90 1.18
#8 714 784 0.92 1.08 #8 438 706 0.91 1.19
#9 714 784 0.93 1.06 #9 439 705 0.90 1.20

#10 715 768 0.93 1.01 #10 504 705 0.92 1.09
Entire 714 769 0.92 1.02 Entire 439 705 0.91 1.15

Table A2. Selections on the wavelet coefficients (original reflectance input, scale 8) where the retrieval
for chlorophylls is the best in the nadir direction (Table 9). All adj. R2 values have a p-value < 0.01.

Scale 8 Wavelength Adj. R2 RMSE

#1 625 764 897 0.99 2.37
#2 569 706 763 0.99 2.42
#3 764 877 975 0.99 2.19
#4 551 765 818 0.99 2.39
#5 763 877 975 0.99 2.41
#6 568 708 763 0.99 2.21
#7 568 708 764 0.99 2.21
#8 569 763 874 0.99 2.64
#9 565 686 764 0.99 2.34

#10 568 765 875 0.99 2.19
Entire 568 708 764 0.99 2.39
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Table A3. Selections on the wavelet coefficients (original reflectance input, scale 4) where the retrieval
for carotenoids is the best in the nadir direction (Table 9). All adj. R2 values have a p-value < 0.01.

Scale 4 Wavelength Adj. R2 RMSE

#1 527 751 0.95 0.85
#2 528 753 0.94 0.87
#3 750 992 0.95 0.84
#4 751 990 0.95 0.83
#5 505 766 0.94 0.91
#6 528 752 0.94 0.88
#7 529 752 0.94 0.86
#8 529 750 0.95 0.87
#9 529 752 0.94 0.96
#10 751 993 0.96 0.77

Entire 750 1000 0.95 0.82

Table A4. Selections on the wavelet coefficients (original reflectance input, scale 8) where the retrieval
for chlorophylls is the best in the forward 35◦ direction (Table 9). All adj. R2 values have a p-value < 0.01.

Scale 8 Wavelength Adj. R2 RMSE

#1 469 578 762 0.99 2.34
#2 579 715 763 0.99 2.30
#3 579 717 762 0.99 2.30
#4 582 761 839 0.99 2.01
#5 579 762 861 0.99 2.44
#6 582 761 863 0.99 2.28
#7 555 761 862 0.99 2.29
#8 625 762 863 0.99 2.35
#9 581 760 861 0.99 2.46

#10 581 760 862 0.99 2.19
Entire 580 761 862 0.99 2.30

Table A5. Selections on the wavelet coefficients (first derivative input, scale 64) where the retrieval
for carotenoids is the second-best in the forward 35◦ direction (Table 9). All adj. R2 values have a
p-value < 0.01.

Scale 64 Wavelength Adj. R2 RMSE

#1 476 644 0.95 0.85
#2 469 774 0.96 0.80
#3 476 643 0.95 0.83
#4 476 776 0.95 0.90
#5 468 775 0.95 0.87
#6 471 776 0.95 0.84
#7 479 644 0.95 0.79
#8 479 645 0.95 0.77
#9 475 644 0.95 0.87
#10 479 644 0.96 0.74

Entire 472 776 0.95 0.87
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