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Abstract: The accuracy of land surface temperature (LST) observations is critical to many applications.
Any observation of LST is subject to incomplete knowledge, so an accurate assessment of the
uncertainty budget is critical. We present a comprehensive and consistent approach to determining
an uncertainty budget for LST products. We apply this approach to the Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument on-board the Aqua satellite. In order to generate
the uncertainty model, a new implementation of the generalised split-window algorithm is applied,
in which retrieval coefficients are categorised by viewing angle and water vapour. Validation of the
LST against in situ data shows a mean absolute bias of 0.37 K for daytime and 0.73 K for nighttime.
The average standard deviation per site is 1.53 K for daytime and 1.21 K for nighttime. Uncertainties
from the implemented model are estimates in their own right and are also validated. We do this by
comparing the standard deviation of the differences between the satellite and in situ LSTs, and the
total uncertainties of the validation matchups. We show that the uncertainty model provides a good
fit. Our approach offers a framework for quantifying uncertainties for LST that is equally applicable
across different sensors and different retrieval approaches.

Keywords: land surface temperature (LST); consistent uncertainty model; uncertainty validation

1. Introduction

Land surface temperature (LST) is a basic determinant of the terrestrial thermal behaviour, as it
controls the effective radiating temperature of the Earth’s surface. It is influenced by land/atmosphere
boundary conditions and exerts control over the partitioning of energy into the component turbulent
heat fluxes. There is now an archive of LST data records from satellites [1–6] produced from both
thermal infrared [7–9] and passive microwave instruments [10] on multiple low-earth orbit and
geostationary observing platforms [11–13].

The LST for each pixel is the mean radiative skin temperature of an area of land resulting from the
mean balance of solar heating and land-atmosphere cooling fluxes. Any inference of LST as measured
from satellite is of limited value without the accompaniment of an uncertainty estimate. Indeed,
all LST observations will have an associated uncertainty estimate, since effects such as atmospheric
attenuation and variability of surface emissivities are not known to sufficient accuracy; and the
appropriate examination of these uncertainties is a necessary step in developing an LST retrieval
scheme. Furthermore, pixel-level uncertainty fields are becoming a mandatory requirement in provision
of operational LST products, such as those from the Sea and Land Surface Temperature Radiometer

Remote Sens. 2019, 11, 1021; doi:10.3390/rs11091021 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-9810-3790
https://orcid.org/0000-0001-9215-5808
https://orcid.org/0000-0002-9232-4509
http://www.mdpi.com/2072-4292/11/9/1021?type=check_update&version=1
http://dx.doi.org/10.3390/rs11091021
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 1021 2 of 24

(SLSTR) instrument on-board Sentinel-3 [1], the MOderate Resolution Imaging Spectroradiometer
(MODIS) instrument on-board Terra and Aqua [14,15], and the Spinning Enhanced Visible InfraRed
Imager (SEVIRI) on-board Meteosat [16].

The Joint Committee for Guides in Metrology quote an uncertainty as a parameter associated
with the result of a measurement that characterizes the dispersion of the values that could reasonably
be attributed to the measurand that is the value of the particular quantity to be measured [17].
Although often used interchangeably, here we use the term “uncertainty” rather than “error”. The term
“error” is defined as the measured value minus the true value of the measurand [17]. In most real-world
situations the error is not known since the true value cannot be measured, whereas the uncertainty
does not rely on a unique true value. An exception is when the measured value can be compared with
a reference value of negligible uncertainty [18]. In simple terms, “error” is the “wrongness” of the
measured value, and “uncertainty” is the “doubt” on the value of the measurement given an estimate
of the error distribution [18].

It has been conventional to categorise uncertainties into two broad categories: random and
systematic [19,20]. Random uncertainties, or in other words uncertainties due to uncorrelated error
effects, can be defined as “the result of a measurement minus the mean that would result from an infinite
number of measurements of the same measurand carried out under repeatability conditions” [17]
providing an estimate of the precision of the observations. Truly random uncertainties are uncorrelated,
whereas pseudo-random uncertainties—which may appear to be randomly scattered over large spatial
and temporal domains—may be correlated on either synoptic to seasonal scales or on scales greater
than this. Systematic uncertainties, on the other hand, are defined as “the mean that would result from
an infinite number of measurements of the same measurand carried out under repeatability conditions
minus a true value of the measurand” [17].

All inputs to an LST algorithm contribute to the overall uncertainty of the retrieved value for
each pixel. The uncertainty analysis should thus take into account the expected performance of the
algorithm under varying surface and atmospheric conditions. Satellite-derived observations of LST
for each pixel represent the aggregated surface temperatures of all the land cover features within the
instantaneous field of view: for bare soil surfaces this corresponds to the soil surface temperature;
whereas for dense vegetation this can be interpreted as the canopy surface temperature. In sparse
or mixed vegetation pixels, the satellite-observed LST is the average temperature of the sunlit and
shadow components of the canopy, understorey, and the soil surface—which is influenced by both
the satellite viewing geometry and the position of the sun at the time of observation. For global 1-km
observations such variability within a pixel is difficult to assess, and as such, any uncertainty analysis
is challenging for every component of the retrieval.

Uncertainty information is critical for many of the applications utilising these datasets, a prime
example being data assimilation. With LST being integral to the surface energy budget, satellite-derived
LST data have been used as inputs into data assimilation routines [21–24] to improve the estimate of
model state and prognostic variables. The strengths of both satellite observations and model predictions
are assessed given the respective weightings of the model and observation uncertainties enabling data
assimilation to apply appropriate corrections to the model. The broad distinction between random and
systematic uncertainties is critical since an underlying assumption is that the differences between the
model and observations are unbiased [22].

Uncertainty budgets have been estimated for LST products in several previous
studies [14–16,25–27] with some being applied in an operational capacity or in the generation of
first climate data records for LST [28]. In general, these budgets have been developed based on how
different conditions impact the retrieval and estimating these uncertainties on a pixel level within the
retrieval process. While these are welcome steps forward in understanding the LST data, there has
been no previous attempt to quantify the uncertainties into effects whose errors differ in terms of their
correlation properties. This is important, since unless errors can be appropriately categorised by their
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correlation properties then propagation of uncertainties from native resolution to higher-level gridded
products is not possible with any degree of accuracy.

The approach we take in this study is a significant advance on what has generally been done
for LST datasets to date, since we can demonstrate a method for propagating the LST pixel-level
uncertainties to gridded products utilising the knowledge on the correlation properties of the errors.
LST is a relatively new Essential Climate Variable (ECV) having been included for the first time in
the 2016 Global Climate Observing System (GCOS) Implementation Plan [29]. Improving uncertainty
estimation for the generation of LST CDRs is a key action for this ECV. Failing to account for the
properties of error correlation can lead to uncertainty underestimation thus affecting the interpretation
of the CDR [18]. Our study addresses this challenge ensuring an approach that can be used with more
confidence in the generation of CDRs for LST.

This paper introduces a comprehensive and consistent approach to determining an uncertainty
budget for LST products consistent with advances recently made for sea surface temperature (SST)
retrievals [30,31]. In generating this uncertainty model a new LST product for MODIS has been
produced. This differs both in the LST retrieved for MODIS compared with current operational
products [5,32] and in the estimation of the LST uncertainty. The algorithm itself and the framework of
uncertainties are introduced in Section 2. There are numerous studies that have presented validation
of MODIS LST [32–35], but none have evaluated the uncertainty budgets. In Section 3 we present
validation of both LST and the uncertainty budget. Propagation of these uncertainties to averaged
LST products are considered in Section 4. Finally, the overall product and uncertainty approach are
discussed in Section 5, with limitations and further work postulated.

2. Framework

To demonstrate the concept of the theoretical uncertainty approach applied to actual data,
we construct an uncertainty model for MODIS LST data. This necessitates generation of new retrieval
coefficients, and thus we first present the retrieval algorithm and summarise the steps taken to produce
the coefficients.

2.1. Data Source

MODIS is a multi-channel instrument, which is part of the payload of two sun-synchronous,
near-polar orbiting satellites Terra (EOS AM-1) and Aqua (EOS PM-1). A pair of observations each
day is acquired from each instrument. For Terra, “daytime” corresponds to approximately 10:30 am
(local solar time) in its descending mode; and “nighttime” corresponds to approximately 10:30 pm
(local solar time) in its ascending mode. For Aqua, “daytime” corresponds to approximately 1:30 pm
(local solar time) in its ascending mode; and “nighttime” corresponds to approximately 1:30 am
(local solar time) in its descending mode. The data record from MODIS goes back to late 1999 for Terra
and mid-2002 for Aqua. These are near-daily records since the large swath width of these instruments
(2330 km) enables the satellites to view most of the Earth’s surface every day at a spatial resolution of
1 km in the thermal channels. Land surface temperature and land surface emissivity are core data
products from these instruments.

The data utilized here for the new MODIS LST uncertainty model, and indeed a new
implementation of the standard MODIS retrieval algorithm, are from Collection 6.0 acquired from the
National Aeronautics and Space Administration Distributed Active Archive Center (NASA DAAC)
(https://lpdaac.usgs.gov/dataset_discovery/modis). Specifically, we utilize Level-1b geolocation and
viewing geometry (MOD03 and MYD03 for Terra and Aqua respectively), Level-1b radiances
(MOD021KM and MYD021KM), and Level-2 cloud information (MOD35_L2 and MYD35_L2).
Collection 6 includes improvements to the calibration algorithms, together with methods to handle
known issues with the aging instruments [36]. The MODIS cloud mask includes refinements to account
for surface elevation in the cloud-masking algorithm [4,5]. We apply a user-defined selection of the
individual cloud flags (cloudy, uncertain clear, and thin cirrus) in the MOD35_L2 and MYD35_L2

https://lpdaac.usgs.gov/dataset_discovery/modis
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products. Experience indicates these maintain conservative masking where required but reduces
over-masking. For the purpose of clarity, in this paper the demonstration of the new implementation
is focused on a single MODIS instrument (the instrument on the Aqua platform) over a processing
period 2003–2016 inclusive. However, the implementation has been applied to both instruments and
the resultant datasets are publically available (see Section 5).

2.2. Algorithm Review

The standard MODIS retrieval algorithm is based on the generalized split-window (GSW)
approach [37], similar to the split-window method [38] used for the Advanced Very High Resolution
Radiometer (AVHRR) data. LST is estimated as a linear function of the clear-sky top of atmosphere
(TOA) brightness temperatures (BTs) from bands 31 and 32 centred on 11 µm and 12 µm respectively.
The typical form of the equation is:

ST =
(
A1 + A2

1− ε
ε

+ A3
∆ε
ε2

)T11 + T12

2
+

(
B1 + B2

1− ε
ε

+ B3
∆ε
ε2

)T11 − T12

2
+ C (1)

where T11 and T12 are the TOA-BTs for the 11 µm and 12 µm channels respectively (bands 31 and 32),
ε is the mean land surface emissivity of the two channels, and ∆ε the emissivity difference between the
channels (ε11 − ε12). In the operational MODIS Collection 5 [1] and Collection 6 [5] implementations of
the algorithm the retrieval coefficients: A j, B j ( j = 1, 2, 3) and C are dependent on water vapour and
zenith view angle, such that the algorithm is dependent on a linearization of the TOA BTs with the
surface temperature and the controlling factors are the surface emissivity, atmosphere and satellite
viewing angle.

The products resulting from the implementation in this study are known as the ESA
DUE GlobTemperature (http://www.globtemperature.info/) MODIS products: GT_MOD_2P and
GT_MYD_2P for Terra-MODIS and Aqua-MODIS, respectively. In our implementation, this functional
form of the algorithm in Equation (1) is also used for both instruments and we generate retrieval
coefficients categorised into 13 classes of satellite viewing angle (in steps of 5◦) and 8 classes of water
vapour (in steps of 7.5 kg m−2). These retrieval coefficients are derived by minimizing the l2-norm
of the model fitting uncertainty for each viewing angle–water vapour category. When applying the
algorithm to MODIS TOA BTs at each pixel, the coefficients are interpolated to the actual satellite
zenith angle and water vapour for the observation.

2.3. Emissivity Data

The operational MODIS Level-2 LST product (MOD11_L2 and MYD11_L2) uses a
classification-based approach for a number of defined land cover types when determining the
pixel-level emissivities. This classification approach works well for surfaces where the emissivity
can be accurately assigned, such as full vegetated canopies, lakes and snow. It is less optimum for
surfaces with large variability in emissivity, such as arid and semi-arid regions [39]. To overcome
this weakness, the MOD21_L2/MYD21_L2 product utilises the Temperature-Emissivity Separation
(TES) approach, fits applied to the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) instrument [40], in order to simultaneously retrieve LST and emissivity using information
from three thermal channels of MODIS [39].

Here we use a different approach and utilise an external emissivity dataset as input to the GSW
algorithm. The most appropriate dataset is the well-established global database of land surface
emissivities produced by the University of Wisconsin (UWIREMIS), also known as Cooperative
Institute for Meteorological Satellite Studies (CIMSS) [41]. This is a monthly dataset, starting in 2002,
derived using the standard land surface emissivity product from the MOD11B1 product. The dataset
is available at ten wavelengths between 3.6 µm and 14.3 µm at a spatial resolution of 0.05◦. For the
split-window channels used in the GSW algorithm, UWIREMIS emissivities at 10.8 µm and 12.1 µm
can be used. The ten wavelengths were chosen as hinge points to represent the shape of the higher

http://www.globtemperature.info/
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resolution emissivity spectra. The spectral gap between the input MOD11B1 channels is filled in by
applying a baseline fit method [41].

In the implementation, the monthly 0.05◦ emissivity data is spatially and temporally interpolated
onto the 1-km instantaneous observation native swath grid to provide pixel-level emissivities. Spatially,
a bilinear interpolation is applied and temporally, a linear interpolation is applied to the day of the
MODIS acquisition. Where no data exists for a month—for example before the start of the UWIREMIS
database—a climatology of the monthly database is used instead.

2.4. Coefficient Generation

We utilise an approach to coefficient generation, trading off spectral resolution in the radiative
transfer model against fast processing of a large number of profiles sufficient to characterise the full
range of atmospheric states. The optimum model for this approach is RTTOV (Radiative Transfer Model
for TOVS satellite). RTTOV is a fast model for nadir-viewing passive infrared and microwave satellite
radiometers, spectrometers and interferometers [42,43]. A comparison of simulated and observed TOA
radiances for a selection of known atmospheric and surface states between the RTTOV model and the
full line-by-line Reference Forward Model (http://www.atm.ox.ac.uk/RFM/) show very small biases [44].
The version of RTTOV used here is 10.2. This is appropriate even for wide-swath instruments,
where radiances can be modelled for varying satellite zenith angles, and has successfully been used as
such [45]. In our derivation of the coefficients we stratify based both on water vapour and satellite zenith
angle. For the latter case we set different viewing angles in the RTTOV configuration. In other words
coefficients are determined by setting different viewing angles in the RTTOV configuration up to 60–65◦

for the end of a MODIS scan line. In [45] however, there are higher uncertainties for larger viewing
angles and more moist atmospheres. While we attempt to represent this by stratifying the errors in the
uncertainty model into in bands of water vapour and satellite zenith angle, we acknowledge there may
be greater uncertainty in the quantification of the errors at the extremes. Future work will look into
better quantifying any potential increased errors at the larger viewing angles.

For the generation of the retrieval coefficients for category combination of viewing angle and water
vapour, vertical atmospheric profiles of temperature, ozone, and water vapour, surface and near-surface
conditions (temperature, wind, humidity), and the surface emissivities are input. The channel spectral
response functions of the instrument are also part of the input to the radiative transfer model.
ECMWF ERA-Interim [46] daily and invariant fields are used for the atmospheric profile data and
surface/near-surface inputs. ERA-Interim uses 60-level atmospheric model data on a T255 resolution
grid four times each day. For surface emissivity input to the radiative transfer model the UWIREMIS
database is used.

The distribution of the input profiles should be representative of the range of atmospheres and
surfaces encountered globally. Globally, water vapour column amounts will change with season over
different latitudinal bands; however, land mass and surface characteristics plus the amount of ocean
surface mean that variability is not uniform throughout the tropics, mid-latitudes and polar regions,
but is more regionally specific [47,48]. A uniform random sampling distribution is used to select
clear-sky profile data spatially with a temporal sampling strategy to ensure sufficient coverage across
seasons and years. This sampling is presented in detail in [1]. Briefly, profiles are selected from the
15th day of every month from 10 years of data using the two profiles temporally closest to the daytime
and nighttime local overpass times of the satellite. Using a land cover map it is ensured that every
land cover type across all continents and latitudinal bands are sufficiently represented in the uniform
random sampling distribution.

The process of generating the retrieval coefficients for Equation (1) involves linear regression
applied to the simulated BTs and corresponding skin temperatures. A set of coefficients is generated
for each combination of satellite zenith angle band and water vapour band.

http://www.atm.ox.ac.uk/RFM/
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2.5. Uncertainty Budget

We adapt to LST data a theoretical approach for surface temperature uncertainties first applied
to SST [30,31]. This approach has gained much traction, both in the surface temperature community
and the wider satellite climate community [18]. It is for example, being adopted in multiple projects:
ESA SST CCI (http://www.esa-sst-cci.org/); H2020 EUSTACE (https://www.eustaceproject.eu/); and ESA
DUE GlobTemperature (http://www.globtemperature.info/). Each of these projects conforms to a
standard uncertainty model for surface temperature across different domains. A simplified version
of this approach was first applied to the Advanced Along Track Scanning Radiometer (AATSR)
instrument [1]. Here we present the full LST implementation of this uncertainty model, using MODIS
as an example case.

In general three components of uncertainty are provided for each pixel; each component represents
the uncertainty due to effects whose errors have distinct correlation properties:

1. Random (also called uncorrelated), for which there is no correlation of error components
between pixels;

2. Locally correlated (also called structured random), for which there is a correlation of error
components between pixels that are within the correlation length of the effect;

3. (Large-scale) systematic, for which there is a correlation of error components between all pixels.

This three-component model applies to all satellite processing levels (Level 1 through to Level 3
and above).

2.5.1. Level-1

Ideally, Level-1 products would provide per pixel uncertainty information that could be propagated
to Level 2, but frequently this is not yet the case. In general, Level-1 uncertainties are from effects related
to the instrument calibration. If available, a standard deviation of the measured values when viewing a
calibration target would be the basis for the Level-1 uncertainty. Where this is not known, as is the case
for MODIS, a constant noise equivalent differential temperature (NEDT) value per channel is used as a
standard uncertainty estimate. With the necessary information on locally correlated effects generally
absent for Level-1 data, an assumption is made that the error sources at Level 1 are not correlated.
We accept this assumption in our MODIS based on, for example, the work of [49] which shows that
Aqua bands 31 and 32 are stable with very low systematic errors. Indeed, for many operational sensors
this information is not available, and so an assumption is generally made that locally correlated effects
are removed through calibration models. The FIDUCEO project (http://www.fiduceo.eu/) is attempting
to address this, and future work could investigate applying such techniques to different sensors. In our
study, locally correlated effects are resolved at Level 2.

2.5.2. Level-2

For Level 2, we present the three-component model in detail, using MODIS as an example to
demonstrate each component. Unlike the uncertainty model implemented for SST and Ice Surface
Temperature (IST) in the projects introduced above, for LST the locally correlated component is divided
into two distinct sub-categories: (i) atmosphere; and (ii) surface. First, we revisit the LST retrieval
algorithm (Equation (1)). This can be simplified as:

x = R(X, β) + e (2)

where R is the retrieval which depends on the state vector X(Ti, εi, θ) and β which is the array of
retrieval coefficients: A j, B j ( j = 1, 2, 3) and C which depend primarily on the atmospheric state,
specifically water vapour (wv). For an actual retrieval of LST for any given pixel (x) we do not know
the exact values of each state of brightness temperatures (Ti) for each channel i, surface emissivity
(ε), water vapour (wv), and satellite zenith angle (θ). In most cases, we can make the assumption

http://www.esa-sst-cci.org/
https://www.eustaceproject.eu/
http://www.globtemperature.info/
http://www.fiduceo.eu/
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that the satellite zenith viewing angle (θ) is a known value for each pixel since any relatively small
mis-pointing produces a very small airmass uncertainty; pragmatically, information on any deviation
is not generally provided with Level-1 data. In the derivation of LST for any given pixel according to
Equation (1) the exact input states, and retrieval coefficients can thus be replaced with the inaccurate
input states (T11 + eT11, T12 + eT12, ε11 + eε11, ε12 + eε12) and uncertainty in the knowledge of the
atmosphere (wv + ewv). A characterisation of the uncertainty budget for each pixel utotal(x) can thus be
given as:

u2
total(x) = E

 (R
(

T11 + ey11 , T12 + ey12 , ε11 + eε11 , ε12 + eε12 , wv + ewv
)

−F( T11, T12, ε11, ε12, wv))2
∣∣∣ y11, y12, ε11, ε12, wv

 (3)

where given the observations of brightness temperatures (y11, y12), emissivities (ε11, ε12) and water
vapour (wv), R is the retrieval with the inaccurate input states and F is the retrieval with the accurate
input states.

This total pixel uncertainty budget is a combination of the random, locally correlated and
(large-scale) systematic components and can be expressed as such. Assuming each component is
independent of each other these components can be added together in quadrature:

utotal(x) =
√

u2ran(x) + u2
loc(x) + u2sys(x) (4)

The uncertainty analysis thus takes into account the expected performance of the retrieval
algorithm under varying surface and atmospheric conditions, with these uncertainties categorized into
the three-component model. The derivation of each of these is presented next.

Random

Truly random uncertainties are uncorrelated. Here we identify two distinct random effects:
(i) radiometric noise per channel since it is uncorrelated between individual pixels; and (ii) effects from
sub-pixel variability in channel surface emissivity. Assuming these are independent of each other,
the total random uncertainty per pixel uran(x) is:

uran(x) =
√

u2ran,T(x) + u2ran,ε(x) (5)

where uran,T(x) is the random uncertainty due to effects from radiometric noise, and uran,ε(x) is the
random uncertainty due to effects from surface emissivity. The random component of the Level-1
channel uncertainty uran(Ti) is the expected radiometric noise for channel i. Taking the MODIS
instrument on Aqua as our example, the typical respective NEDTs for the 11-µm (band 31) and 12-µm
(band 32) split-window channels are 0.02 K and 0.03 K, respectively [9]. The effect of the NEDTs
combined across all channels relevant to the retrieval needs to be appropriately propagated to give the
uncertainty contribution from random effects due to radiometric noise. Assuming the radiometric
noise is Gaussian the propagation can be expressed as:

uran,T(x) =

√√ n∑
i=1

(
∂R
∂Ti

uran(Ti)

)2

(6)

where the partial derivatives of the retrieval algorithm (Equation (1)) for each channel with respect to
T11 and T12 are respectively given by Equations (7) and (8):

∂R
∂T11

=
(A1 + B1)

2
+

(A2 + B2)(1− ε)
2ε

+
(A3 + B3)∆ε

2ε2 (7)
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∂R
∂T12

=
(A1 − B1)

2
+

(A2 − B2)(1− ε)
2ε

+
(A3 − B3)∆ε

2ε2 (8)

where ε is the mean land surface emissivity of the two channels ((ε11 − ε12)/2) and ∆ε the emissivity
difference between the channels (ε11 − ε12).

The second source of random effects relates to the sub-pixel variations in emissivity, which are
not fully captured in the auxiliary emissivity data. In other words, this variation is due to sub-pixel
variability more representative of the actual variability of emissivity on the ground. Assuming the effects
due to sub-pixel variability are Gaussian the propagation through the retrieval can be expressed as:

uran,ε(x) =

√√ n∑
c=1

(
∂R
∂εc

uran(εc)

)2

(9)

where the partial derivatives of the retrieval algorithm (Equation (1)) for each channel with respect to
ε11 and ε12 are respectively given by Equations (10) and (11):

∂R
∂ε11

= −
A2(T11+T12)

(ε11+ε12)
2 +

2A3(T11+T12)(3ε12−ε11)

(ε11+ε12)
3 −

B2(T11−T12)

(ε11+ε12)
2 +

2B3(T11−T12)(3ε12−ε11)

(ε11+ε12)
3 (10)

∂R
∂ε12

= −
A2(T11+T12)

(ε11+ε12)
2 +

2A3(T11+T12)(ε12−3ε11)

(ε11+ε12)
3 −

B2(T11−T12)

(ε11+ε12)
2 +

2B3(T11−T12)(ε12−3ε11)

(ε11+ε12)
3 (11)

To quantify uran,ε(x) some estimate of the effects due to sub-pixel emissivity variability per channel
is required (uran(εc)). Pixel-to-pixel scale emissivity variability is assumed to be categorised by the
different land cover types. An estimate of the magnitude of these effects is therefore determined for
each land cover class. For land cover classification in the MODIS example, we use the MCD12C1
MODIS land cover product [50,51] which applies the International Geosphere-Biosphere Programme
(IGBP) land cover classification system of 17 land cover types.

To quantify this sub-pixel scale emissivity variability we utilised knowledge of the emissivity at
finer spatial resolution. In this case, the Global Emissivity Database (GED), derived from ASTER data
at 100 m [52] was used to characterise the mean standard deviation within a 1-km MODIS pixel for
each IGBP class. We use band 14 of ASTER, centred at 11.3 µm, to determine our statistics. For many
materials the emissivity spectra is much flatter in the traditional split-window windows around
11 µm and 12 µm than in the 8–9 µm region. We have exploited this by assuming the coefficient of
variability at 11.3 µm would be similar to that for both the MODIS bands centred at 11 µm and 12 µm.
The pixel-to-pixel variability in the atmospheric state is assumed to be negligible and therefore no
random effects associated with the atmosphere are estimated.

Locally correlated

The estimation of remotely sensed LST data from TOA radiance measurements observed by a
satellite instrument is dependent on both atmospheric and surface states which are subject to errors that
are in general shared between nearby pixels. The spatial and temporal scale of these error correlations
depends on this effect. It is important to take into account the locally correlated errors otherwise there
is a general underestimation of the uncertainty [18].

It may be a reasonable assumption that atmospheric fields are correlated on timescales of the order
of days in the temporal domain and hundreds of kilometres in the spatial domain, with associated
errors also correlated on these scales. For LST retrieval though, the dominant factor is water vapour,
which has been argued as being correlated on much smaller scales of a few minutes and a few
kilometres [53,54]. For the derivation of coefficients from radiative transfer for coefficient based
retrieval methods, the minimization of the l2-norm in the model fitting is a source of uncertainty.
The standard deviation of the difference between the input surface temperatures into the model-fitting
and the simulated-retrieved output is an estimate of this uncertainty.
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ECMWF ERA-Interim daily fields are used both as the source of the water vapour band selection
in the LST retrieval (Equation (1)), and in the simulated-retrieved output from the model fitting.
For the latter perturbations to the water vapour are used to quantify the uncertainty as a result of
imperfect knowledge on the water vapour field. These perturbations are performed within error ranges
of water vapour determined from comparison of the ECMWF water vapour with respect to in situ
measurements from microwave radiometers at six sites of the Atmospheric Radiation Measurement
(ARM) network [55]: (i) NSA_C1, Barrow, Alaska; (ii) NSA_C2, Atqasuk, Alaska; (iii) SGP_C1, Lamont,
Oklahoma; (iv) TWP_C1, Manus, Papua New Guinea; (v) TWP_C2, Nauru Island; and (vi) TWP_C3,
Darwin, Australia. The differences are shown in Figure 1. Thus, the impact of locally correlated error
effects from water vapour on the selection of retrieval coefficients are encompassed the simulations.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 24 
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Figure 1. Comparison of European Centre for Medium-Range Weather Forecasts (ECMWF) against
water vapour from the Atmospheric Radiation Measurement (ARM) Network for January 2002 to
December 2012. The differences are banded into water vapour bands of 0.0–1.5 cm (first row), 1.5–3.0 cm
(second row), 3.0–4.5 cm (third row) and 4.5–6.0 cm (fourth row).
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Since the retrieval coefficients for GT_MYD_2P are categorised into 13 classes of satellite viewing
angle and eight classes of water vapour, the locally correlated atmospheric component of uncertainty
is stratified into 104 bands. For each range of satellite viewing angle and water vapour, the uncertainty
is estimated as:

uloc, f it(x) =
√

Var(x̂− xin) (12)

Land surface emissivity is input to the retrieval Equation (1) and therefore errors in the estimation
of this data will propagate forward through the LST retrieval. This emissivity can be assumed to be
driven by knowledge of the land classification. The CIMSS estimates are physically derived rather
than based on surface type. However, it is not the emissivity estimates themselves that are assumed to
be correlated, but the error effects. This is a reasonable assumption because a source of error in the
estimation of emissivity will be the response of the retrieval to different materials. Surface types sharing
similar materials, as can be categorised by land cover classes, present the emissivity retrieval with
similar error structures. Thus, for any given land cover class, there may be a mean difference between
the assumed and true mean emissivity. This is a locally correlated effect on the scales of variability in
the land cover classification. The form of the propagation to L2 uncertainty is estimated as:

uloc,ε(x) =

√√
n∑

c=1

(
∂R
∂εc

uloc(εc)

)2

(13)

where uloc(εc) is the error on the estimation of the surface emissivity per channel. Taking the assumption
that the errors are correlated within each land cover class we take as an estimate of these errors the
values from [56] who quantified these errors for each land cover class of the IGBP classification system.
This length scale based on land cover class is different in space and time to that for the atmospheric
effects and thus propagation would be handled differently for each. The emissivity data is temporally
interpolated to each date. There may be some additional unknown error that is not accounted due to
the temporal estimation, which will be investigated in future work.

For estimation of a total locally correlated component, this can be acquired by adding the individual
components in quadrature since the different effects from the atmosphere and surface can be assumed
to be independent.

Large-scale Systematic

Systematic uncertainties correlated on the global/instrument level directly propagate through the
LST retrieval without reduction when averaging. For any given instrument and retrieval algorithm
it is assumed that known corrections have been applied by the producers of the satellite-based data
product. Corrections can be made at either Level-1 in the calibration or Level-2 in the retrieval process.
The unknown remainder is assumed to be an uncertainty in the bias relative to other sources that are
more challenging to estimate. One such component is the uncertainty in the radiative transfer model.
The basis of this uncertainty is in the ability to accurately simulate radiances for a given channel
for a satellite instrument. This could be estimated by performing repeated simulations each with a
perturbation applied to a given parameter. Here we have used the estimate from [57], which we assume
is of an equivalent magnitude for the radiative transfer model when applied to MODIS filter functions.
A further source of error is in lack of knowledge regarding the satellite instrument engineering
specifications and calibration. This would be expected to be removed through an instrument calibration
model. Calibration results for MODIS from the literature [49–59] indicate bands 31 and 32 are stable
with very low systematic errors, particularly for Aqua. Systematic uncertainty can be quantified by way
of an estimate over different conditions of the performance with respect to ground-based validation.
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Other sources of uncertainty not quantified

In terms of impact on the estimated LST, the largest source of uncertainty can result from
misclassification of clear-sky pixels. Here we use the standard cloud flags from the MYD35_L2
product to determine a conservative cloud mask appropriate for LST estimation. In this sense,
cloud contamination is defined as the cloudy/part-cloudy pixels which are incorrectly classified as
clear-sky. However, this is perhaps the most challenging uncertainty component to quantify and
no operational LST algorithm has confronted this to date. A first attempt has been made in [60],
which exploits simulated data to estimate an average impact on the LST of misclassification with
the probability of any given pixel being misclassified extracted both from previous cloud masking
assessment and from the probability of a pixel being subject to cloud contamination. They found there
is a dependence on the dominant land cover classification, with uncertainties ranging from 0.09 K for
cropland up to 1.95 K over permanent snow and ice. An assumption was made though that different
cloud types are both equally likely and have the same impact on the LST. In reality, this would not be
the case and future work is needed to assess this.

2.6. Output Product

The GlobTemperature MODIS products (GT_MOD_2P and GT_MYD_2P) provide data on LST and
its associated uncertainty. Auxiliary information used in the LST retrieval, such as surface emissivity,
is also output together with indicators of overall quality as a set of flags. The Level-2 output data
are produced on the same swath grid and at five-minute granules consistent with the input MODIS
Level-1b data. Full-resolution geolocation and viewing geometry data are also provided in the output
of Level-2 products. In addition to the individual pixel uncertainty components, the output product
defines a total pixel uncertainty. Since the different random, locally correlated and large-scale systematic
components can be assumed to be mutually exclusive they can be added together in quadrature:

uLST =
√

u2
ran + u2

atm + u2
s f c + u2

sys (14)

Here we illustrate the contributions of the different components of the uncertainty budget by way
of a single GT_MYD 2P five-minute granule (Figure 2). The granule in question is from 1 June 2010
with a timestamp of 10:50 UTC. Higher locally correlated atmospheric uncertainties are evident as you
move towards the edges of the swath corresponding to larger errors in estimating atmospheric water
vapour. The locally correlated surface uncertainty is larger at the horn of Africa than over much of
the rest of the granule. This corresponds to larger errors in estimating emissivity for this primarily
bare soil region compared with more vegetated areas. For the lakes of Eastern Africa, the locally
correlated surface uncertainty is relatively small, which is consistent with the better knowledge and
less variability of lake surface water emissivity.
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Figure 2. Aqua MODIS Level-2 land surface temperature (LST) data and pixel uncertainty estimates for
1 June 2010 at 10:50: (a) LST; (b) total random component; (c) locally correlated atmosphere component;
and (d) locally correlated surface component. Note, the cloud mask is not applied in deriving the
Level-2 output but is made available as a separate field in the product.

3. Validation

3.1. Site Descriptions

The GlobTemperature MODIS LST products are validated against several permanent stations
of the Surface Radiation (SURFRAD) network to assess quality. These stations have been used in
numerous LST validation exercises [6,61–63]. Table 1 (reproduced from [1]) details the location,
altitude and surface characteristics of each of the seven sites.

Table 1. Characteristics of the in situ stations of the Surface Radiation (SURFRAD) network.

Site Latitude Longitude Elevation Surface Type Site

Bondville 40.05155 −88.37325 230 m Grassland Bondville
Desert Rock 36.62320 −116.01962 1007 m Arid shrub land Desert Rock

Fort Peck 48.30798 −105.10177 634 m Grassland Fort Peck
Goodwin Creek 34.2547 −89.8729 98 m Grassland Goodwin Creek

Penn State
University 40.72033 −77.93100 376 m Cropland Penn State

University
Sioux Falls 43.73431 −96.62334 473 m Grassland Sioux Falls

Table Mountain 40.12557 −105.23775 1689 m Sparse grassland Table Mountain

For the seven SURFRAD stations, ground-based LSTs are obtained from incoming and outgoing
infrared (IR) radiance measurements made by upward and downward pointing Eppley Precision
Infrared Radiometers respectively together with the associated broadband emissivities (BBE).
The instruments measure hemispherical IR radiances between 4–50µm with a spatial representativeness
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of approximately 70 × 70 m and are re-calibrated on an annual basis [64]. Further details of the
instrumentation and calibration can be found in [65].

To calculate the ground-based LST, we first estimate the BBE using the corresponding monthly
emissivities of the CIMSS Baseline Fit Emissivity Database applied in the linear equation given by [66]:

BBE = 0.068 + 0.045ε6 + 0.297ε7 + 0.215ε8 + 0.372ε9 (15)

We then use the BBE following the Stefan–Boltzmann law to convert the measured upwelling and
downwelling radiances to in situ LST using the following formula:

LST =
4

√
L↑ − (1− BBE)L↓

σ
(16)

where L↑ is the upwelling radiance, L↓ is the upwelling radiance, and σ is the Stefan–Boltzmann
constant. This is the same method as used in previous validation studies with SURFRAD such
as [34,67].

3.2. Product Validation

Figure 3 shows the validation for the GlobTemperature Aqua-MODIS product (GT_MYD_2P) at
each of the seven sites over a full year of observations (2011). Corresponding validation is also shown
for the level-2 operational Aqua-MODIS Collection 5 LST product (MYD11_L2) in Figure 4. Table 2
details the statistics of the validation. We use a three-sigma Hampel filter using robust statistics [67] to
limit the number of outliers primarily caused by undetected clouds. This has been used in previous
LST validation studies [68,69]. A general finding is that better agreement against the in situ data is
found for GT_MYD_2P compared with MYD11_L2.
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Figure 3. LST validation for the GlobTemperature Aqua-MODIS LST product (GT_MYD_2P) over
seven SURFRAD validation sites: (a) Table Mountain, (b) Penn State University, (c) Bondville, (d) Desert
Rock, (e) Goodwin Creek, (f) Sioux Falls, (g) Fort Peck; covering the year of 2011. Daytime matchups
are in red, and nighttime matchups are in blue.
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Figure 4. LST validation for the operational Aqua-MODIS Collection 5 Level-2 LST product (MYD11_L2)
over seven SURFRAD validation sites: (a) Table Mountain, (b) Penn State University, (c) Bondville,
(d) Desert Rock, (e) Goodwin Creek, (f) Sioux Falls, (g) Fort Peck; covering the year of 2011.
Daytime matchups are in red, and nighttime matchups are in blue.

Table 2. In situ validation statistics during 2011 for both GlobTemperature Aqua-MODIS LST retrievals
(GT_MYD_2P) and operational Aqua-MODIS LST retrievals (MYD11_L2) with respect to the seven
SURFRAD sites. Number of matchups (n), median (µ) differences, robust standard deviations (σ) and
root-mean-square errors (RMSEs) are presented for both day and night observations.

Site LST Product
Day Night

n µ (K) σ (K) RMSE (K) n µ (K) σ (K) RMSE (K)

Bondville
MYD11_L2 74 −1.16 1.74 2.09 92 −0.51 1.38 1.47

GT_MYD_2P 84 0.08 1.66 1.66 93 0.02 1.33 1.33

Desert Rock
MYD11_L2 101 −1.57 0.85 1.78 16 −2.36 0.23 2.37

GT_MYD_2P 219 0.87 1.48 1.71 270 −0.88 1.17 1.46

Fort Peck
MYD11_L2 116 −0.68 1.60 1.74 167 −0.63 1.06 1.23

GT_MYD_2P 107 0.28 1.43 1.46 166 −0.42 1.09 1.17

Goodwin
Creek

MYD11_L2 113 −1.91 1.06 2.18 90 −0.08 1.41 1.41

GT_MYD_2P 138 0.31 1.38 1.42 89 0.86 1.21 1.49

Penn State
University

MYD11_L2 82 −2.20 1.67 2.76 76 0.75 1.47 1.65

GT_MYD_2P 91 −0.28 1.66 1.68 73 1.85 1.37 2.31

Sioux Falls
MYD11_L2 110 −0.84 1.69 1.89 139 −0.88 1.27 1.55

GT_MYD_2P 120 0.35 1.63 1.67 142 −0.29 1.26 1.30

Table
Mountain

MYD11_L2 87 −0.96 1.40 1.70 121 −1.23 0.84 1.49

GT_MYD_2P 102 −0.40 1.45 1.50 136 −0.77 1.06 1.31

The overall statistics for GT_MYD_2P show mean daytime bias of 0.37 K and an average daytime
standard deviation per site of 1.53 K. For nighttime these values are 0.73 K and 1.21 K respectively.
The corresponding statistics for MYD11_L2 show mean daytime bias of 1.33 K and average daytime
standard deviation per site of 1.43 K. For nighttime, these values are 0.92 K and 1.09 K respectively.
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While the spread of the matchups (as measured by the standard deviation) is similar for GT_MYD_2P
and MYD11_L2, there is a reduction in overall bias for GT_MYD_2P compared with MYD11_L2 both
during the day and night. For almost all combinations of day/night and site the RMSE is lower for the
GT_MYD_2P product. Another noticeable feature is that the MYD11_L2 is primarily negative biased
with respect to the in situ measurements. This “cool” bias of the operational MYD11_L2 product with
respect to in situ data is consistent with previous studies [3,61], whereas GT_MYD_2P is more evenly
spread across the sites between positive and negative differences. The implication is that the new
approach to determining retrieval coefficients for the GSW algorithm implementation for Aqua-MODIS
LST is better able to eliminate any systematic “cool” bias for MODIS. The generally higher number of
matchups for GT_MYD_2P is a result of the selection of optimum cloud flags we have made.

Possible explanations for this reduction in bias include: (i) an improved representation of the
surface emissivity; and (ii) an improved stratification of the retrieval coefficients by water vapour and
satellite zenith angle. The statistical improvement from MYD11_L2 to GT_MYD_2P is dependent on
the site, with bias reductions at some sites larger than others, which indicates the surface emissivity
estimation is the most likely factor influencing the product improvement.

3.3. Uncertainty Validation

The uncertainty associated with each pixel is an estimate in its own right and thus should be
validated as such. The approach here is to compare the standard deviation of ground-based differences
between the satellite-derived LST and in situ measurements, and the total uncertainties of such
validation pairs. In other words, we test the goodness-of-fit between the uncertainty from in situ
validation (σsat−ground) and the total satellite product uncertainty for each associated matchup (σtotal),
where σtotal is determined from four components:

σtotal =
√
σ2

sat + σ2
ground + σ2

space + σ2
time (17)

For each matchup, σsat is the total LST uncertainty for the satellite pixel (uLST) from Equation (4);
σground is the uncertainty associated with the ground-based instrumentation; σspace is the uncertainty
associated with matching a satellite and ground observation in a spatial context; and σtime is the
uncertainty associated with matching a satellite and ground observation in time. Here we validate the
uncertainties for each of the seven sites independently for the full year (2011) of matchups. This is a
necessity since the characteristics of the spatial matchups between a 1-km satellite pixel and a point
source measurement from the in situ sites vary between sites.

The uncertainty associated with the ground-based instrumentation (σground) is ±0.3 K for the
seven SURFRAD stations. This is determined firstly from the quoted instrument uncertainty of
±5.0 Wm−2 [70] for measuring the radiance with the upwelling and downwelling pyrgeometers.

The second component is the uncertainty for each site, which is composed of the input IR global
land surface emissivities [41] uncertainty and the fitting equation uncertainty. [71] gives a standard
deviation between 0.005 and 0.02 for the emissivity uncertainty per channel, and an RMSE of 0.005 is
given for the emissivity fitting uncertainty [66]. An upper value of 0.01 is estimated from uncertainty
propagation of the input emissivity uncertainty and the input fitting uncertainty.

For the uncertainty associated with matching a satellite and ground observation in a spatial
context (σspace) the standard deviation of the clear-sky LST for the 5 × 5 0.01◦ region of interest centred
on the validation station is estimated. Since any temporal variability between the satellite data and the
in situ measurements is minimised to within one minute for any matchup, the associated uncertainty
(σtime) is assumed to be negligible.

Figure 5 illustrates the comparison between σtotal (x-axis) and σsat−ground (y-axis) for each 0.1 K band
of σtotal. If the uncertainty model is accurate the σsat−ground estimates should fit within and intersect
with the 1:1 dashed lines for each σtotal 0.1 K band. Values of σtotal outside the dashed lines represent
an underestimate of σtotal, with values inside representing an overestimate. The horizontal section
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of the dashed lines represent the component of σtotal that cannot be reduced further, specifically the
uncertainty due to the calibration on the in situ instrumentation σground. In general, this appears to be
the case, with the fit remaining relatively stable across the bands of σtotal. Nevertheless, differences up
to 0.5 K exist between σsat−ground and σtotal. These tend to be for higher values of σtotal where there is an
overestimate in σtotal, or for lower values of σtotal where there is an underestimate in σtotal, although the
frequency of such matchups is generally much lower. There are several possible explanations for this.
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Figure 5. Validation of the satellite uncertainty estimates over seven SURFRAD validation sites:
(a) Table Mountain, (b) Penn State University, (c) Bondville, (d) Desert Rock, (e) Goodwin Creek,
(f) Sioux Falls, (g) Fort Peck. The standard deviation of satellite LST minus ground-based LST is plotted
against bands of the total uncertainty budget for the matchup. The cone shape is distorted near zero
since the in situ instruments have a calibration uncertainty. Chi-squared goodness-of-fit values are
given for each site.

Larger differences are primarily associated with either higher uncertainties due to cloud
contamination or higher values of σspace. The former is related to how well the operational cloud
detection algorithm correctly identifies cloud types over the different surfaces where the validation
station is located, the latter is a function of the heterogeneity of the 5 × 5 pixel region of interest
surrounding the station. Surface types where cloud contamination is more likely, due to the challenge
of distinguishing cloud features from surface features, could lead to an underestimate of the uncertainty
leading to larger biases in the matchup pair. For landscapes with higher heterogeneity, the standard
deviation of the 5 × 5 pixel region of interest may not accurately represent the difference between
the in situ measurement and the mean of the 5 × 5 pixel satellite pixels if the station is measuring an
unrepresentative surface in the context of the wider landscape.

For the validation matchups, the reduced chi-squared test can be employed to assess the
goodness-of-fit between the observed uncertainty and the estimated uncertainty. The chi-squared
values for each site are given in Figure 5. An accurate estimation of the uncertainty would result
in a chi-squared value of 1.0. Values <1.0 imply that the estimated uncertainties are on average
overestimating the observed uncertainties; and values >1.0 imply that the estimated uncertainties are
on average under-estimating the observed uncertainties. The values for the seven sites are spread
between 0.6 and 1.28 with the most homogeneous sites showing chi-squared values close to 1.0.
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Overall the uncertainty model is providing a reasonable representation of the observed uncertainties.
The principle explanatory factor for site-to-site differences in the uncertainty validation is a result of
surface heterogeneity around each site.

4. Propagation of Uncertainties

Many applications require LST data with associated uncertainties as gridded products with
individual pixel values averaged within each grid-cell (GT RBD). This propagation of uncertainties
requires knowledge of the spatial and temporal correlation properties. For each component of the
uncertainty budget, it is important to understand to what extent an individual pixel shares properties
in common with other pixels, both nearby and distant pixels.

The way in which individual components propagate is related to whether pixels are correlated
within the output grid cell. For Nc clear-sky observations, random components when averaged in a
grid-cell are reduced by 1/

√
Nc. The correlation length scales for locally correlated components are

driven by changes primarily in atmospheric water vapour and surface emissivity. These do not reduce
by 1/

√
Nc when averaged providing the averaging is on a scale within the respective correlation length.

The determination of this correlation length itself is subject to uncertainty, and will change dependent
on both geographical and seasonal scales. The total cell uncertainty is estimated in Equation (18),
and an assumption is made here that all averaging is carried out within the respective length scales of
the atmospheric and surface components respectively.

u2
cell =

1∑
Nc

(∑
i=c u2

ran∑
Nc

)
+

∑
i=c u2

loc,atm∑
Nc

+

∑
i=c u2

loc,s f c∑
Nc

+ u2
sys +

NcVarLST
Nc + Nc − 1

(18)

where Nc and Nc are the number of clear-sky and cloudy pixels respectively in the grid-cell; the overall
total number of pixels being the sum of those pixels where an LST estimate is possible. The individual
uncertainty components for the cell are calculated from the clear-sky pixels only. The final term in
Equation (18) relates to the grid-cell uncertainty as a result of sub-sampling only clear-sky pixels;
as introduced in previous studies of averaging sea surface temperature from satellite [31,72] to account
for such fields not being fully observed and thus how well the calculated average represents the surface
temperature of the cell if it was fully sampled. It is assumed this concept is equally valid for spatial
and/or temporal averaging. Examples of these gridded uncertainties per cell over a single day of
MODIS data are illustrated for scrutiny in Figure 6.

Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 24 

 

4. Propagation of Uncertainties 

Many applications require LST data with associated uncertainties as gridded products with 
individual pixel values averaged within each grid-cell (GT RBD). This propagation of uncertainties 
requires knowledge of the spatial and temporal correlation properties. For each component of the 
uncertainty budget, it is important to understand to what extent an individual pixel shares properties 
in common with other pixels, both nearby and distant pixels. 

The way in which individual components propagate is related to whether pixels are correlated 
within the output grid cell. For 𝑁 ̅ clear-sky observations, random components when averaged in a 
grid-cell are reduced by 1/√𝑁 ̅. The correlation length scales for locally correlated components are 
driven by changes primarily in atmospheric water vapour and surface emissivity. These do not 
reduce by 1/√𝑁 ̅  when averaged providing the averaging is on a scale within the respective 
correlation length. The determination of this correlation length itself is subject to uncertainty, and 
will change dependent on both geographical and seasonal scales. The total cell uncertainty is 
estimated in Equation (18), and an assumption is made here that all averaging is carried out within 
the respective length scales of the atmospheric and surface components respectively. 𝑢 = 1∑ 𝑁 ̅ ∑ 𝑢̅∑ 𝑁 ̅ + ∑ 𝑢 ,∑̅ 𝑁 ̅ + ∑ 𝑢 ,∑̅ 𝑁 ̅ + 𝑢 + 𝑁 𝑉𝑎𝑟𝑁 ̅ + 𝑁 − 1 (18) 

where 𝑁 ̅ and 𝑁  are the number of clear-sky and cloudy pixels respectively in the grid-cell; the 
overall total number of pixels being the sum of those pixels where an LST estimate is possible. The 
individual uncertainty components for the cell are calculated from the clear-sky pixels only. The final 
term in Equation (18) relates to the grid-cell uncertainty as a result of sub-sampling only clear-sky 
pixels; as introduced in previous studies of averaging sea surface temperature from satellite [31,72] 
to account for such fields not being fully observed and thus how well the calculated average 
represents the surface temperature of the cell if it was fully sampled. It is assumed this concept is 
equally valid for spatial and/or temporal averaging. Examples of these gridded uncertainties per cell 
over a single day of MODIS data are illustrated for scrutiny in Figure 6. 

 
Figure 6. Aqua MODIS global Level-3 gridded LST data and associated total uncertainty estimates 
for 1 June 2010: (a) daytime LST composite; (b) nighttime LST composite; (c) total uncertainty for the 
daytime LST composite; and (d) nighttime LST composite. 

The sub-sampling uncertainty is based on an estimate of the grid-cell variance 𝑉𝑎𝑟 . This 
estimate is taken as the variance of all the clear-sky observations within the grid-cell. For grid-cells 
where the proportion of clear-sky pixels is high relative to the total number of pixels within the grid-
cell the variance is assumed to be representative. Where relatively few clear-sky pixels exist the 

Figure 6. Aqua MODIS global Level-3 gridded LST data and associated total uncertainty estimates
for 1 June 2010: (a) daytime LST composite; (b) nighttime LST composite; (c) total uncertainty for the
daytime LST composite; and (d) nighttime LST composite.



Remote Sens. 2019, 11, 1021 18 of 24

The sub-sampling uncertainty is based on an estimate of the grid-cell variance VarLST. This estimate
is taken as the variance of all the clear-sky observations within the grid-cell. For grid-cells where
the proportion of clear-sky pixels is high relative to the total number of pixels within the grid-cell
the variance is assumed to be representative. Where relatively few clear-sky pixels exist the estimate
of VarLST may become unstable. While it may be possible to overcome this difficulty by deriving
a climatology of cell variances this would need to be defined for every possible spatial-temporal
framework, thus limiting flexibility. A simple solution is to define a minimum value of VarLST when
the proportion of clear-sky pixels falls below a given threshold value. Rational values for the minimum
estimate and threshold value can be obtained empirically through an assessment of completely clear-sky
grid-cells. Here this was performed over a sample of a full year of MODIS Aqua data. The scaling
of the variance is a function of the proportion of cloudy pixels within a grid-cell; thus the sampling
uncertainty reduces to zero as the cloudy proportion reduces to zero. The total uncertainty values
in Figure 6 show larger uncertainties: (i) in the tropical regions where water vapour errors are likely
to be higher; (ii) in the bare soil regions, such as the Sahara, where emissivity errors are likely to be
higher; and (iii) at the edges of cloud-cleared cells where missed cloud detections of cloud edges are
more likely.

In the propagation the random components, such as the radiometric noise component and the
sub-pixel emissivity component, are reduced by 1/

√
N. Over much of the land surface, taking the

example in Figure 6, this reduction in random components is offset by the additional sampling term.
For other regions, such as the Sahara, which is principally cloud-free; this additional term is also near
zero for most grid cells. On propagation of the LST uncertainties to Level-3 differences between day
and night become apparent. This is because the final term in Equation (18) introduces divergence.
There are two relevant factors: (i) LST heterogeneity is generally higher during the day within each
corresponding grid-cell; and (ii) there is on average a difference between the proportion of pixels
masked as cloudy between day and night since the cloud masking algorithms utilise different channel
combinations for day and night.

5. Discussion

In this study, we have developed an uncertainty approach that attempts to quantify and
appropriately propagate uncertainties from the individual effects whose errors have distinct correlation
properties. We have applied this approach in a first instance to MODIS data, and a necessary prerequisite
is to derive a set of retrieval coefficients from model fitting, from which components of the uncertainty
model can be determined. While the functional form of the retrieval algorithm remains the same
as the operational MxD11 algorithm the coefficients are derived from a different set of profile data.
Furthermore, we have taken an alternative approach to the input emissivity estimates. While a focus of
the study has been a consistent approach to uncertainty estimation for LST data, it is pertinent to also
assess the quality of the LST data retrieved with this new implementation of the standard generalised
split-window algorithm, which we have done through validation of LSTs against in situ data.

In addition to the derivation of a fully characterised Level-2 uncertainty model for MODIS
LST data, this study has also produced an improved Level-2 LST dataset relative to the operational
Collection 5 MxD11 product. In particular, the differences against ground-based validation data are
lower for this new implementation of the GSW. This new implementation is publically available on the
UK CEDA Archive (http://archive.ceda.ac.uk/) with a dataset name of “EUSTACE/GlobTemperature:
Global clear-sky land surface temperature data from MODIS Terra/Aqua on the satellite swath with
estimates of uncertainty components, v2.1, 2000-2016”. While no immediate updates to recent years
are scheduled, it is foreseen to update to the end of 2018 at minimum and to compare the validation
performance against the most recent operational Collection 6 MODIS MxD11 product.

The validation of the uncertainty model—the first such validation of LST uncertainties—shows
the satellite uncertainty model for LST is reasonably capturing the main sources of uncertainty in the
satellite observations. There is in general good agreement at low uncertainty values and consistent

http://archive.ceda.ac.uk/


Remote Sens. 2019, 11, 1021 19 of 24

behaviour across many sites, which provides some evidence that the satellite uncertainty model
is capturing most of the main sources of uncertainty. Future work will focus on the upscaling
uncertainty, uncertainty due to instrument calibration, and assess the feasibility of integrating the most
advanced approaches, such as [60], to cloud detection uncertainty into the uncertainty model for LST
presented here. Such work would be intended to address any underestimation at low uncertainties
and overestimation at high uncertainties. Previous quantification of LST uncertainty budgets have
placed a caveat upon their uncertainty budgets due to lack of understanding of cloud detection
errors [16,27,73]. While our study also adds this caveat, the consistent approach to uncertainty
characterisation does however provide a more robust framework for incorporating additional, as yet
unquantified, uncertainty components. One of these additional uncertainty components to be assessed
in future work is the impact on LST as a result of the presence of high aerosol loading. The rationale
here is that coarse mode aerosol, such as dust—a mineral tropospheric aerosol—can modify up-welling
radiances over a broad range of wavelengths in the thermal infrared including the split-window
radiances [74].

The estimation of LST from a satellite as—with any measurand—is bound by its uncertainty
budget. This budget itself must also be treated as a measurand, in that each uncertainty component
is itself an estimate of the true lack of knowledge. Thus validation of the uncertainty budget is
recommended to facilitate a better understanding of this measurand. This study represents to our
knowledge a first attempt to assess the uncertainty components of LST retrieval. We demonstrate
that the uncertainty model displays a good fit with the standard deviation of the in situ differences.
However, the conceptual cone shape may well be an overly simplistic representation of the true
relationship between the total uncertainty and the in situ differences. For instance, LST validation has
a non-negligible site component, which is a function of factors such as its heterogeneity and elevation.
Further quantification of these factors is necessary in order to evolve the LST uncertainty budget with
the aim of meeting climate quality standards.

6. Conclusions

Earth observation satellites offer an opportunity to obtain global coverage of LST, with the
appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal
cycle on a global scale. To confront such a challenge, as a minimum, both a consistent algorithm
and a consistent approach to uncertainty analysis, which distinguishes and quantifies the different
components: random, locally correlated and large-scale systematic, should be employed. An accurate
assessment of the uncertainty budget is thus critical. Any observation of LST from a satellite or any
other observing instrument is subject to an incomplete lack of knowledge. Even though the physical
process of retrieving LST from split-window radiances is well established, any algorithm will have
inherent uncertainties—ranging from systematic uncertainty in the radiative transfer code employed
to generate retrieval coefficients, to imperfect identification of cloud contamination. Furthermore,
a consistent uncertainty budget with a common nomenclature for uncertainty and accuracy is a
powerful tool enabling users to explore and compare the differences between LST datasets.

We present in this study a comprehensive and consistent approach to determining an uncertainty
budget for LST products, which distinguishes and quantifies the different components: random,
locally correlated and large-scale systematic. This approach is applied to MODIS data and necessarily
requires a new implementation of the GSW algorithm. Validation of this new LST product shows a
mean absolute daytime bias with respect to the reference in situ data of 0.37 K. The mean absolute bias
for nighttime is 0.73 K. The average standard deviation per site is 1.53 K for daytime and 1.21 K for
nighttime. These statistics show improvement on the corresponding biases and standard deviations for
the MYD11_L2 operational product. Goodness-of-fit tests show that the uncertainty model provides a
good representation of the observed uncertainties.

The developments made here not only result in a new dataset of LST from the MODIS instruments,
but also provide a framework for quantifying uncertainties for LST estimation from satellite observed
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TOA radiances that is equally applicable across different sensors and different retrieval approaches.
Future work will focus on the impact on the LST uncertainty model as a result of missed clouds,
high aerosol loading, and instrument calibration, utilising techniques being developed in studies such
as FIDUCEO [75], and Land Surface Temperature CCI (http://cci.esa.int/lst/). The framework we present
will enable datasets of LST to be compared with each other with greater certainty, hence increasing
confidence in our knowledge of recent surface temperature changes over land.

This approach underlines a new direction for LST research, demonstrating that LST datasets can
achieve uncertainties of better than 1.0 K, particularly in mid-latitudes. The error framework provides
a clear guide to areas of focus where improvements may results in lower errors, e.g., the Sahara and
where errors are dominated by natural phenomena, such as mostly cloudy regions. For the first time,
exploitation of the data can be secured by knowledge of uncertainties appropriate to the region of the
world under study.
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