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Abstract: Accurate digital mapping of soil organic carbon (SOC) is important in understanding the
global carbon cycle and its implications in mitigating climate change. Visible and near-infrared
hyperspectral imaging technology provides an alternative for mapping SOC efficiently and accurately,
especially at regional and global scales. However, there is a lack of understanding of the impacts
of spatial resolution of hyperspectral images and spatial autocorrelation of spectral information on
the accuracy of SOC retrievals. In this study, the hyperspectral images (380–1700 nm) with a spatial
resolution of 1 m were acquired by Headwall Micro-Hyperspec airborne sensors. Then, hyperspectral
images were resampled into three different spatial resolutions of 10 m, 30 m, and 60 m by near neighbor
(NN), bilinear interpolation (BI), and cubic convolution (CC) resampling methods. The geographically
weighted regression (GWR) model was used to explore the role of spatial autocorrelation in predicting
SOC contrast with the partial least squares regression (PLSR) model. Results showed that (1) the
hyperspectral images can be used to predict SOC and the spatial autocorrelation can improve the
prediction accuracy, as the ratio of performance to interquartile range (RPIQ) values of PLSR and
GWR were 1.957 and 2.003; (2) The SOC prediction accuracy decreased with the degradation of spatial
resolution, and the RPIQ values of PLSR were from 1.957 to 1.134, and of GWR were from 2.003 to
1.136; (3) Three resampling methods had a much weaker influence than spatial resolution on SOC
predictions because the differences of RPIQ values of NN, BI, and CC resampling methods were 0.146,
0.175, and 0.025 in the spatial resolutions of 10 m, 30 m, and 60 m, respectively; (4) Finally, the Global
Moran’s I and the Anselin Local Moran’s I proved the existence of the spatial autocorrelation in SOC
maps. We hope that this study can offer valuable information for digital soil mapping by satellite
hyperspectral images in the near future.
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1. Introduction

Soil holds the largest terrestrial organic carbon stock, which is approximately three times more
than the vegetation C-pool and approximately twice that of the atmospheric C-pool [1]. Therefore,
mapping soil organic carbon (SOC) is important in understanding soil carbon reservoir and its cycling
in different global carbon pools [2]. The conventional approach for mapping SOC relies on field
samplings and wet chemical analyses in the laboratory (e.g., potassium dichromate), which are
time-consuming, labor-intensive, and prohibitively expensive [3–5]. Thus, reducing the costs and
improving the efficiency in mapping variations of SOC in the spatial domain are of great significance.

Soil type and property are influenced by climate, relief, organisms, and parent materials (original
minerals) over time [6]. SOC is a characteristic of the spatial and environmental heterogeneity at different
landscapes, and producing SOC maps using traditional surveys is time-consuming and prohibitively
expensive [5,7]. Numerous studies have demonstrated that proximal visible and near-infrared (VNIR,
400–2500 nm) hyperspectral technology can be used to rapidly and accurately quantify the SOC
contents [8–12]. Laboratory-visible and near-infrared (VNIR) spectra have been successfully used to
estimate SOC in many studies [12–15]. However, some tedious steps, including complex field sampling,
time-consuming air drying, and toilsome grinding, are needed before spectral measurements can be
obtained. Therefore, there is a tendency to avoid these labor-extensive steps by collecting in situ VNIR
spectra to achieve more rapid SOC estimations [16,17]. Although the efficiency of SOC estimations by
laboratory or in situ hyperspectral imaging is higher than that of traditional methods, sampling points
are still sparsely distributed in study regions. Thus, spatially continuous SOC maps cannot be easily
obtained by these discrete soil samples.

Due to its synoptic view and abundant spectral information, hyperspectral remote sensing (HRS)
has gained increasing attention in the fields of natural resource, precision agriculture, and environmental
protection [18,19]. HRS imaging consists of hundreds of spectral bands with a spectral resolution
of less than 10 nm and a spatial resolution that is finer than 30 m. It has great potential in mapping
SOC. Gomez et al. [20], Stevens et al. [21], and Peon et al. [22] demonstrated that HRS imaging
technology could provide SOC contents in a physical, non-destructive, rapid, and reproducible way.
The prominent characteristic of hyperspectral data is high spectral resolution. Thus, extracting valuable
information from hyperspectral imaging through data reduction techniques or specific absorption
features is necessary to construct soil prediction models [23,24]. Regression models, such as multiple
regression analysis [25,26], partial least squares regression (PLSR), regression tree [27–29], random
forest [13,30], support vector machines [17,31], artificial neural network [4,32], and locally weighted
regression [28,33,34], have been used to construct soil spectral models. Nevertheless, these methods
conflict the basic hypothesis of the regression methods that the soil properties and spectra should be
independent due to the spatial autocorrelation existing in these variables.

Forthcoming space-borne hyperspectral sensors will have numerous narrow bands with a spectral
resolution of less than 10 nm continuous interval within the VNIR spectral regions, such as the China
GF-5, ZhuHai No.1, the DLR Earth Sensing Imaging Spectrometer (DLR ESIS), the Italian Precursore
Iperspettrale della Missione Applicativa (PRISMA), the Canada Hyperspectral Environment and
Resource Observer (HERO), and the Spaceborne Hyperspectral Applicative Land and Ocean Mission
(SHALOM) [35–37]. The main limiting factors of digital soil mapping by the hyperspectral images were
spatial resolution and spectral resolution [38]. Given the great research difficulty of the hyperspectral
technique, it is hard to improve the accuracy of the spatial resolution and the spectral resolution at the
same time, and the spatial resolution of the near future space-borne hyperspectral sensors are coarser
than that of the airborne sensors. The spatial resolutions of ZhuHai No.1 and SHALOM are 10 m,
and of GF-5, DLR ESIS, PRISMA, and HERO are 30 m. Spatial resolution, as an important indicator for
the quality of digital soil mapping, affects the land surface information content captured by satellite
sensors at the pixel level, and thus may cause errors in retrieval accuracy. The lack of understanding of
the relationship between spatial resolution and SOC prediction accuracy hinders further applications
of the developed prediction techniques. Therefore, it is necessary to explore the relationships between
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the spatial autocorrelation of SOC and spatial scales (or spatial resolution), and the role of spatial
autocorrelation in digital soil mapping, as well as the effects of spatial resolution on the prediction
accuracy of the soil properties. Also, many studies have shown that spatial autocorrelation exists
in soil properties [39–42]. Spatial autocorrelation models and geostatistic models have been used
to improve the prediction accuracy of soil spectral models relative to non-spatial models, and the
spatial resolution can influence the spatial autocorrelation of the spectral reflectance [34,43]. Thus,
the relationship between the spatial resolution and the spatial autocorrelation of the remote sensing
images should be explored to improve the accuracy of digital soil mapping by hyperspectral methods.

In this study, Headwall Micro-Hyperspec sensors (A-Series: 400–1000 nm, and X-Series:
900–1700 nm) onboard a helicopter were used to collect HRS images. To simulate the hyperspectral
images that have the same spatial resolutions as the satellites and explore the differences of resampling
methods, the original HRS images at 1 m spatial resolution were rescaled to different spatial resolutions
(10 m, 30 m, and 60 m) by a nearest neighbor (NN), a bilinear interpolation (BI), and a cubic convolution
(CC) resampling method. The objectives of this study were to (1) evaluate the prediction accuracy of
HRS imaging in mapping SOC by PLSR and geographically weighted regression (GWR), (2) explore
the impact of spatial resolution on SOC prediction accuracy, and (3) determine the role of spatial
autocorrelation in predicting SOC. We hope our study results can imply the effects of spatial resolution
of satellite-based hyperspectral images and SOC prediction accuracy, and offer valuable information
for digital soil mapping in the near future.

2. Materials and Methods

2.1. Study Area and Soil Samples

The study area (385.45 ha) is located in a watershed in the southeast of Iowa, USA (41◦44′09′′N,
91◦56′51′′E) (Figure 1). The major crop types are corn and soybeans in this area. The geography of
Iowa is generally rolling hills. The elevation of the sturdy region ranges from 756.57 to 881.00 m.
The climate of Iowa is a humid continental climate, and the mean annual precipitation is 903.70 mm,
with the mean snowfall being 104.18 mm. The mean annual temperature is 9.80 ◦C, ranging from
−11.60 ◦C to 18.30 ◦C. The major soil types of the study region were silty clay loam, clay loam, and silt
loam [44]. Fifty surface soil samples (0–15 cm) were collected on October 2015, and another 145 surface
soil samples (0–15 cm) were collected on March 2016, both by a grid soil sampling strategy of 130 m.
The first soil sampling plan was used to understand the soil background knowledge in the study
region, and the second soil sampling plan was to collect more soil samples and further excavate the
potential of hyperspectral imaging in digital soil mapping. Nicked soil samples were collected from
bare soils of a farmland, and one representative soil sample was mixed by five soil subsamples from
the four corners and one center of a 1 m2 square. Soil samples were ground with a porcelain mortar
and passed through a 2 mm stainless steel sieve after air-drying at an indoor temperature (20–25 ◦C)
for 14 days. The CHNS combustion gas analyzer (Vario El Cube, Elementar, Germany) [45] was used
for measuring the SOC contents. Prior to the analysis, the soil inorganic carbon related materials were
removed by acidification with HCl (4 mol/L). Fourteen outliers of soil samples were discarded based
on the Chauvenet’s criterion [46].
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Figure 1. Geographical location and soil and land-use types of the study area. The soil type map was
downloaded from the Online Web Soil Survey (official United States Department of Agriculture soil
information), and the land-use type map was manually interpreted from the hyperspectral image
by a local expert. The maps of soil types and land-use types have been used in the following
references: [47,48].

2.2. Airborne Hyperspectral Images

The Headwall Micro-Hyperspec airborne sensors (SpecTIR LLC) of Micro-Hyperspec VNIR
imaging spectrometer (A-Series, 400–100 nm) and Micro-Hyperspec near infrared (NIR) imaging
spectrometer (X-Series, 900–1700 nm) carried on the helicopter were used to obtain the aerial
hyperspectral images on 19 November 2015. Not long ago, the land was ploughed and there
were no crops or crop residues on the land surface, thus the hyperspectral images can reflect the spectral
reflectance of the bare soil. The A-Series spectrometer records signals from 380 to 1000 nm in 1.9 nm
contiguous bands (325 spectral bands in total), and the X-Series spectrometer captures images from 900
to 1700 nm in 12.9 nm contiguous bands (67 spectral bands in total). The instantaneous field of view
(IFOV) of the A-Series and X-series was 30.8◦ and 20.9◦, respectively. The two sensors were carried by
a helicopter platform at a height of 2800 m. HRS images at a spatial resolution of 1 m were collected
between 10:00 am and 2:00 pm to ensure enough bright sunlight under clear-sky conditions. Geometric
corrections were performed in the Hyperspec III software with SpectralView, and an orthorectified
digital aerial photograph of 1 m spatial resolution was used for geometric corrections. The calibration
files were used for the radiometric and wavelength calibrations before and after sensor mobilization.
The Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) was used for atmospheric
calibration, and transformed the spectral radiance into spectral reflectance.

The study area comprises mainly bare soils (82.41%) with the remaining area covered by urban
built-up areas, water, vineyards, and vegetation. Prior to data analysis, spectral regions spanning from
380 to 430 nm, from 950 to 1000 nm, and from 1350 to 1420 nm, were removed because of the absorption
by water vapor in the atmosphere. The random noise of the spectra was reduced by the Savitzky–Golay
smoothing (SG) technique with a moving window of 15 nm. The background noise of spectral radiance
was removed by the log (10) transform. A scatter-corrective method named standard normal variate
(SNV) was employed to partially remove undesired scatter- or particle-sized information from the
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spectral reflectance. The pre-processing methods of SG, log(10), and SNV were used to guarantee the
consistency of the calibration datasets.

The original HRS images (spatial resolution 1 m) were resampled into three spatial resolutions
(10 m, 30 m, 60 m) using bilinear interpolation (BI), cubic convolution interpolation (CC), and nearest
neighbor (NN) resampling methods (Figure 2). The theoretical basis of NN, BI, and CC resampling
methods can be found in Lehmann et al. [49], Schultz and Stevenson [50], and Keys [51]. The resampling
procedure was performed in the ENVI environment (Version 5.1, Exelis Visual Information Solutions,
Inc., CO, USA).
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Figure 2. Original hyperspectral remote sensing image (1 m) and the resampled remote sensing images
at different spatial resolutions (10 m, 30 m, and 60 m) by bilinear interpolation (BI), cubic convolution
interpolation (CC), and nearest neighbor (NN) resampling methods. The original hyperspectral images
were the same as the following references: [47,48].

2.3. The Prediction Models

In this paper, the soil-spectral models were constructed by PLSR and geographically weighted
regression (GWR) models for predicting SOC contents. PLSR as a statistical technique can project
the explanatory variables and the explained variables to a new space [52]. It has been used for
predicting soil properties by the VNIR spectral reflectance in chemometric and quantitative spectral
analyses [53,54]. The PLSR algorithm selects successive orthogonal factors that maximize the covariance
between the explanatory variables (hyperspectral data) and the explained variable (SOC data). More
details on the PLSR algorithm can be found in Harald and Paul [55]. The PLSR formulas are as follows:

ẐPLSR(xi, yi) =

p∑
k=0

β̂k·qk(xi, yi), i = 1, . . . ., n (1)

qk(xi, yi) =
m∑

j=1

l′j·X j(xi, yi), i = 1, . . . ., n (2)

where ẐPLSR(xi, yi) is the SOC content estimated by PLSR at geographical location (xi, yi); qk(xi, yi) is
the transferred components of the latent variables (LVs) from the hyperspectral reflectance; β̂k is the
estimated drift model coefficients; p is the number of LVs; X j(xi, yi) is the hyperspectral reflectance of
the soil sample; m is the total number of spectral wavelengths; l′j is the eigenvector of the PLSR model.
The PLS toolbox (Version 7.9.3, Eigenvector Research, Inc., Wenatchee, WA, USA) was used to operate
the PLSR model in MATLAB (R2008a, MathWorks, Inc., Natick, MA, USA).
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GWR as a spatial analysis technique can model the local relationships between the explanatory
variables (hyperspectral data) and the explained variable (SOC data), and then construct a separate
linear regression model for every location in the study region. The assumption of GWR is that the
strength and direction of the relationship between the hyperspectral images and SOC may be modified
by neighboring factors. The LVs extracted from PLSR were used as explanatory variables in GWR. GWR
extends the traditional regression framework by allowing the relationships between the independent
and dependent variables to vary by locality [56–58]. The GWR model is expressed in Equation (3):

ẐGWR(xi, yi) =

p∑
k=1

β0(xi, yi) +

p∑
k=1

βk(xi, yi) × qk(xi, yi) + ε(xi, yi), i = 1, . . . , n (3)

where ẐGWR(xi, yi) is the predicted SOC content by GWR; β0(xi, yi) is the intercept at geographical
location (xi, yi); βk(xi, yi) are the coefficients; qk(xi, yi) is the explanatory variables of LVs; p is the
number of LVs extracted from PLSR; ε(xi, yi) is the error term. The GWR model was operated by
ArcGIS (Version 10.4.1, Esri Inc., Redlands, CA, USA), and the optimal bandwidth was determined by
the corrected Akaike information criterion (AICc).

2.4. Evaluation Indices

The dataset is divided into two groups, one group for the calibration of the model (120, two thirds
of the dataset), and a second group used for validation (61, one third of the database). The Y values
are sorted in an ascending order. The method starts by selecting the sample with the lower Y value,
and placing it in a validation set. Then, the next two samples are placed in the calibration set, and the
procedure is continued by alternately placing the following sample in the validation set and the next
two samples in the calibration set. Such a process would ensure a relatively equal distribution of the
samples in both sub-datasets. The root mean square error and R2 of the calibration dataset (RMSEC
and R2C) were used for checking the modeling accuracy of SOC prediction models. The RMSE and R2

of the validation dataset (RMSEP and R2P), and the ratio of performance to the inter–quartile range
(RPIQ) were used to verify the predictive ability of the soil models [59,60].

R2 = 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − y)2 , (4)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2, (5)

RPIQ =
Q3 − Q1
RMSEp

, (6)

where n is the number of soil samples; yi is the measured SOC content; ŷi is the predicted SOC content;
y is the mean value of all the measured SOC. Q3 is the third quarter of measured SOC content, and Q1
the first quarter of SOC contents in the validation dataset. Generally, a model that performs well would
have large values of R2 and RPIQ as well as a small RMSE value.

3. Results

3.1. Descriptive Statistics of SOC

Table 1 shows the descriptive statistics of the calibration, validation, and whole datasets. The range
of SOC contents in the calibration datasets varies between 1.31% and 3.14%. This range was the same
as that for the whole dataset and was lager than the validation dataset, which ranged from 1.43% to
2.98%. Thus, the separation method can provide representative soil samples for training and validation.
The skewness values of these datasets were −0.65, −0.93, and 0.74, indicating an approximately
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normal distribution. The corresponding standard deviation values were 0.38%, 0.28%, and 0.35%,
and the coefficient of variances were 16.05%, 11.79%, and 14.72% for the calibration, validation,
and whole datasets, respectively. Therefore, the dispersion degree of the SOC was small in this study
region, and this can further help evaluate the predictive ability of the models. The semivariogram
function estimated by the spherical model was used to reveal the spatial autocorrelation of SOC
contents. The ratios of nugget value (C0) to sill value (C0+C) of SOC contents in calibration, validation,
and whole datasets were 59.46%, 41.84%, and 58.62%, respectively, which showed that moderate spatial
autocorrelation (0.25 < C0/(C0+C) < 0.75) existed in the SOC contents of the soil samples [61].

Table 1. Statistical descriptions of the soil organic carbon contents.

Number Range
(%)

Minimum
(%)

Maximum
(%)

Mean
(%)

S.D.
(%) Skewness CV C0/(C0 + C)

Calibration 120 1.84 1.31 3.14 2.34 0.38 −0.65 16.05% 59.46%
Validation 61 1.55 1.43 2.98 2.40 0.28 −0.93 11.79% 41.84%
Whole 181 1.84 1.31 3.14 2.36 0.35 0.74 14.72% 58.62%

Note: St.D: standard deviation, CV: coefficient of variation, C0: nugget value, C0+C: sill value, C0/(C0 + C): the ratio
of nugget value to sill value. The semivariogram function was estimated by the spherical model.

3.2. Resampled Hyperspectral Reflectance

Figure 3 shows the spectral reflectance of the original HRS image (1 m) and its resampling images,
as well as the preprocessed spectral reflectance. The original and preprocessed spectral reflectance
decreased with the descending of the spatial resolution (Figure 3a,b). This phenomenon may be
explained by the spectral mixture at the coarse spatial resolution that resulted in smooth spectral
reflectance curves. Figure 3c,d presents the deviation values of the resampled spectral reflectance to the
original spectral reflectance. The difference between spectral reflectance of the HRS images at 10 m and
the original spectral reflectance was much smaller than that at 30 m and 60 m. Moreover, the deviation
values varied with the wavelengths, and large errors were expected with the degradation of spatial
resolution. The spectral reflectance values provided by three resampling methods do not have much
difference. Figure 3e,f shows the Pearson’s correlation coefficients between the spectral reflectance and
SOC at different wavelengths. The spectral reflectance has a strong relationship with SOC in the visible
wavelengths (400–800 nm), and this relationship weakens with the reduction of spatial resolution.
Moreover, as shown in Figure 3f, the preprocessing methods can enhance this relationship. Overall,
spatial resolution has a strong influence on spectral reflectance, whereas the resampling methods have
minor effects.
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Figure 3. Average original (a) and preprocessed (b) spectral reflectance of the soil samples (n = 181)
at different spatial resolutions (10, 30, and 60 m) resampled using the bilinear interpolation, cubic
convolution interpolation, and nearest neighbor; The average deviation values between resampled
spectral reflectance and the original spectral reflectance (c,d); The Pearson’s correlation coefficient
between the spectral reflectance and soil organic carbon (e,f). In the symbol of H10B, H means
hyperspectral images, 10 means the spatial resolution and B means the bilinear interpolation. C means
the cubic convolution interpolation, and N means the near neighbor.

3.3. SOC Predictions

Table 2 shows the evaluation indices of PLSR and GWR for predicting SOC contents at different
spatial resolutions (1, 10, 30, and 60 m) by using different resampling methods (BI, NN, and CC).
To guarantee the comparability and robustness of the prediction models, the number of the latent
variables was kept constant for PLSR and GWR at the same spatial resolutions. The evaluation indices
showed that the prediction accuracy of SOC decreased with the decrease in spatial resolution. PLSR
and GWR yielded the highest R2C (0.797 and 0.857), R2P (0.708 and 0.691), and RPIQ (1.957 and
1.905), and the lowest RMSEC (0.165 and 0.138) and RMSEP (0.159 and 0.163) by using the original
hyperspectral reflectance. Compared with the spatial resolution, the different resampling methods
have a weaker influence on the prediction accuracy of SOC. The RPIQ values of PLSR were 1.697, 1.400,
and 1.166, and the RPIQ values of GWR were 1.595, 1.364, and 1.165 for predictions derived from the
BI resampled images at 10 m, 30 m, and 60 m, respectively. The RPIQ values of PLSR were 1.697, 1.603,
and 1.583, and the RPIQ values of GWR were 1.813, 1.713, and 1.667 for the prediction of SOC from the
BI resampled image at 10 m. At each spatial resolution, the performance of the predictive models built
upon the BI-based resampled images was superior to that of the models built upon NN and CC-based
resampled images. In addition, the performance of GWR was better than PLSR among different spatial
scales. Thus, GWR could use the spatial autocorrelation to construct a better soil-spectral model.

The calibrated PLSR and GWR models were applied to the spectral reflectance of bare soils for
characterizing SOC contents, and the BI resampling method was used (Figure 4). In these predicted
SOC maps, spatial patterns of SOC contents were very similar across spatial resolutions. The SOC
value ranged from 1.34% to 3.13%, with high values in the north of the study region and low values in
the southern region. As the spatial resolution degraded, the block effects of SOC became more obvious.
Although SOC maps produced by PLSR and GWR were very similar, those produced by GWR were
relatively smooth.
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Table 2. Assessment of soil organic carbon (SOC) predictions from hyperspectral images at different
spatial resolutions using PLSR and GWR models.

PLSR GWR

Num.LVs RMSEC RMSEP R2C R2P RPIQ RMSEC RMSEP R2C R2P RPIQ

Original 4 0.165 0.159 0.797 0.708 1.957 0.138 0.155 0.857 0.814 2.003
H10B 4 0.181 0.183 0.754 0.609 1.697 0.16 0.171 0.807 0.802 1.813
H10C 4 0.184 0.194 0.747 0.559 1.603 0.163 0.181 0.801 0.793 1.713
H10N 4 0.18 0.196 0.759 0.551 1.583 0.160 0.186 0.808 0.788 1.667
H30B 5 0.226 0.222 0.617 0.45 1.400 0.220 0.216 0.639 0.646 1.435
H30C 5 0.227 0.232 0.613 0.406 1.342 0.223 0.227 0.630 0.638 1.366
H30N 5 0.235 0.250 0.587 0.33 1.242 0.228 0.246 0.611 0.607 1.260
H60B 6 0.259 0.267 0.497 0.382 1.166 0.247 0.267 0.543 0.497 1.161
H60C 6 0.260 0.270 0.494 0.381 1.151 0.250 0.267 0.533 0.502 1.161
H60N 6 0.257 0.274 0.505 0.417 1.134 0.237 0.273 0.578 0.535 1.136

Note: PLSR: partial least square regression, GWR: geographically weighted regression model, LVs: latent variables,
RMSEC: the root mean square error of the calibration model, R2C: R2 of the calibration model, R2P: R2 of the
prediction model, RMSEP: the root mean square error of the prediction model, RPIQ: the ratio of performance to
inter-quartile range, RPD: the residual prediction deviation. H10B means the hyperspectral spectral image with the
spatial resolution of 10 m by the bilinear interpolation, C means the cubic convolution interpolation, and N means
the nearest neighbor resampling.
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Figure 4. Spatial patterns of soil organic carbon (SOC) contents predicted from the original and bilinear
interpolation (BI)-resampled hyperspectral remote sensing (HRS) images by using partial least squares
regression (PLSR) and geographically weighted regression models (GWR).

4. Discussion

4.1. Influential Factors in Predicting SOC

The prediction accuracy of SOC contents may be influenced by both internal and external factors.
The internal factors are related to satellite sensors, including spectral range, spectral resolution, spatial
resolution, IFOV, and signal-to-noise ratio [62]. The external factors include atmospheric effects,
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geometric distortion, vegetation cover, and view geometry [63]. Among all these factors, spectral
resolution and spatial resolution are of importance in digital soil mapping [38,64]. Most of the
hyperspectral sensors have a spectral resolution of less than 10 nm, while the band depth of most
surface materials is about 20–40 nm [65]. Thus, spectral resolution is rarely an issue for predicting
soil properties from hyperspectral images [38]. A coarse spatial resolution may lead to a pixel that
has a composite spectra of diversified materials in that pixel [66]. It is difficult to ensure a one-to-one
correspondence between the soil samples and the hyperspectral reflectance. This study found that
the SOC prediction accuracy was influenced by spatial resolution, similar to Gomez, Oltra-Carrio,
Bacha, Lagacherie and Briottet [38]. To further explore the influence of spatial resolution on the
hyperspectral analysis, the first latent variable (LV1) loading values on different wavelengths at four
spatial resolutions were revealed (Figure 5a), and the variable importance in projection (VIP) was
used to show the significant bands (Figure 5b). VIP is one most popular variable selection methods
at present in the PLSR method, and it was proposed by Wold et al. [67]. VIP scores are useful in
understanding the contribution rates of the spectral reflectance of soil samples (X space predictor
variables) to SOC content (y variance), and the VIP value of 1 is one useful boundary to select the
larger contribution spectral bands. LV1 had a positive relationship with the spectral reflectance from
400 to 500 nm and from 900 to 1700 nm, and had a negative relationship with the spectral reflectance
from 500 to 900 nm. Significant variations in the LV1 loading values were found from 600 to 900 nm
and from 1200 to 1800 nm at different spatial resolutions. The most important bands were located at
580 nm, 670 nm, 900 nm and from 1350 to 1700 nm (VIP value > 1). Meanwhile, the spectral bands of
the hyperspectral images with the spatial resolution of 1 m and 10 m have more sensitive bands than
the spatial resolution of 30 m and 60 m, especially in the NIR bands (900–1000 nm). Thus, the reduction
of the spatial resolution has stronger influence on the NIR bands than the visible bands.
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Figure 5. First latent variable (LV1) loading (left) and variable importance in projection (VIP) (right)
values for partial least squares regression (PLSR) models built from hyperspectral images at different
spatial resolutions (1, 10, 30, and 60 m) which were resamples by the bilinear interpolation method.
The horizontal lines indicate the threshold of VIP (threshold at 1), and the bilinear interpolation
was used.

4.2. Spatial Autocorrelation of SOC at Different Spatial Scales

To reveal the spatial autocorrelation in SOC maps, the Moran’s I of the SOC maps predicted from
the HRS images were calculated (Figure 6). Results showed that the SOC maps exhibited strong spatial
clustering features since the Moran’s I value was larger than 0.595 and the Z score was larger than
2560. The Moran’s I values of SOC predicted from the original HRS image using PLSR and GWR were
0.733 and 0.724, and those of SOC predicted from the BI resampled HRS image at 10 m using PLSR
and GWR were 0.603 and 0.595. The main reason can be due to the basic theory of the resampling
methods that the new pixel value was calculated from four nearest points (1 m × 1 m, 4 pixels) to the
central point to replace the original matrix (10 m × 10 m, 100 pixels), thus the resampling method will
lose more information from the original matrix. Although one larger pixel unit has a larger scope,
it cannot obtain more environmental objects, thus the resampled hyperspectral images reduced the
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spatial autocorrelation of SOC. For the resampled images from the spatial resolution of 10 m to 60 m,
the spatial autocorrelation of the SOC map increased, mainly because more soil units were clustered
into one unit with the degradation of spatial resolution, leading to an increase of the similarity among
neighboring units. One pixel unit can represent a larger range, and this can smooth the SOC contents.
Thus, the reduction of the spatial resolution can improve the spatial autocorrelation of SOC. Only a few
studies have considered the spatial autocorrelation of soil properties to improve the performance of
soil prediction models [33,68,69]. The evaluation indices indicated that the predictive ability of GWR
was better than PLSR, and the Anselin Local Moran’s I was calculated to evaluate the local spatial
autocorrelation of the SOC map (Figure 7). The non-significance values increased with the reduction of
spatial resolution. The total percentages of high–low and low–high values (outliers) decreased with the
degradation of spatial resolution. The high–low and low–high values mean a high value surrounded
by features with low values or a low value surrounded by features with high values, thus less and less
outliers were detected by the Local Moran’s I with the increase of the pixel unit, and more and more
clustering characteristics could be easily found. Thus, the descending of spatial resolution can improve
the spatial autocorrelation of the SOC map. The global Moran’s I and Anselin Local Moran’s I showed
that there was a very small difference between the SOC maps predicted by PLSR and GWR at one same
spatial resolution. However, although the evaluation indices showed that the GWR was better than
PLSR, all of them can provide similar SOC maps through hyperspectral images. Nonetheless, the total
percentages of high–low and low–high values for PLSR were 6.54%, 3.43%, 2.57%, and 1.93%, and for
GWR were 6.83%, 3.64%, 2.68%, and 1.86% at the spatial resolutions of 1 m, 10 m, 30 m, and 60 m,
respectively. Thus, the outliers of SOC can be easily obtained by GWR relative to PLSR. GWR was
more sensitive to the outliers of SOC content than PLSR in digital soil mapping.
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Figure 6. Global Moran’s I of the soil organic carbon (SOC) predicted from hyperspectral images
at 1, 10, 30, and 60 m which were resamples by the bilinear interpolation method. H10B means the
hyperspectral spectral image with the spatial resolution of 10 m by the bilinear interpolation method,
and H30B and H60B were the spatial resolutions of 30 m and 60 m, respectively.
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Figure 7. Anselin Local Moran’s I of the soil organic carbon (SOC) predicted from hyperspectral images
at 1, 10, 30, and 60 m which were resamples by the bilinear interpolation method. H10B means the
hyperspectral spectral image with the spatial resolution of 10 m by the bilinear interpolation method,
and H30B and H60B were the spatial resolutions of 30 m and 60 m, respectively. HH means a statistically
significant cluster of high values, LL means a statistically significant cluster of low values, HL means a
high value surrounded by features with low values, and LH means a low value surrounded by features
with high values.

5. Conclusions

The VNIR hyperspectral imaging technology provides a promising tool for mapping topsoil
properties in a timely and inexpensive way. In this study, the airborne hyperspectral images
(400–1700 nm) acquired by the Headwall Micro-Hyperspec airborne sensors were used to characterize
the spatial distribution of SOC contents. BI, NI, and CC were used to rescale the original hyperspectral
image (1 m) into three new spatial resolutions (10 m, 30 m, and 60 m). The PLSR and GWR methods
were used to construct the soil spectral models, and then the relationships between the prediction
accuracy and the spatial resolution were explored. In addition, the influence factors of the soil spectral
models, the uncertainty, and the spatial variability of SOC were discussed in this study.

(1) Results showed that the original and resampled VNIR hyperspectral images could be used to
predict SOC through PLSR and GWR with the RPIQ values of 1.957 and 2.003. The prediction accuracy
of SOC decreased with the decrease in spatial resolution, for the RPIQ values of PLSR were from 1.957
to 1.134, and of GWR were from 2.003 to 1.136. The resampling methods have weaker influence on
SOC prediction accuracy, for the differences of RPIQ values of NN, BI and CC resampling methods
were 0.146, 0.175 and 0.025 in the spatial resolutions of 10 m, 30 m and 60 m.

(2) The SOC prediction uncertainty mainly resulted from the soil spectral models and the spatial
scale. The most important bands were located at 580 nm, 670 nm, 900 nm and from 1350 to 1700 nm
(VIP value > 1), and the reduction of the spatial resolution has a stronger influence on the NIR bands
than the visible bands.
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(3) The Moran’s I values of SOC maps predicted by PLSR and GWR were 0.724 and 0.733 which
showed that the spatial autocorrelation existed in SOC maps. The resampling of the hyperspectral
images decreased the spatial autocorrelation and the degradation of the spatial resolution can enhance
the spatial dependence. GWR was more sensitive to the outliers of SOC content than PLSR in digital
soil mapping.

This study provides a basis to improve the design and configuration of space-borne sensors,
especially in terms of spatial resolutions and signal-to-noise ratio. As the assessment of HRS maps is
not a trivial task, future research refinements can be made on soil sampling strategies.
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